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0. INTRODUCTION

Closure operators are well-known in topology and order theory. In the setting of an 〈E,M 〉 -

category for sinks we show that the categorical abstraction of the notion of closure operator is such

that closure operators appear as essentially the fixed points (i.e., as the Galois-closed members)

of a natural Galois connection. We identify a common principle that underlies the construction

of various types of closure operators, from regular closure operators induced by some class of

objects by means of the Salbany construction, to idempotent modal closure operators induced

by some Grothendieck topology. Our analysis also sheds additional light on the Pumplün–Röhrl

connection and its factorizations, previously dealt with in [6] and [8]. Proofs and a more detailed

treatment can be found in [4] and [7].

In Section 1 we present preliminary definitions and constructions, and in Section 2 we show

how certain natural Galois connections yield closure operators (of various types) as precisely their

Galois fixed points.

In Section 3 we introduce the notion of regular closure operator relative to Galois connections

of the form P (M � M) D
ρ
• and P (M ) D

τ
• (where M � M denotes the family of com-

posable pairs of members of M ), and we analyze under what conditions ρ and τ factor through

the Galois connections that are fundamentally related to closure operators.

Section 4 is devoted to applications where the Galois connections ρ and τ are polarities

induced by relations.

1. PRELIMINARIES

Our main tool will be a notion of orthogonality that generalizes the one introduced by Tholen

(cf. [14]), and encompasses part of the defining properties of factorization structures for sinks and

for sources as well as one of the essential features of closure operators (cf. Definition 1.01).

1.00 Definition. (cf. [12]) A pair 〈a, a′〉 consisting of a sink a = 〈 Ai A′ai // 〉I and a mor-

phism A′ A′′a′ // in a category X is called left orthogonal to a pair 〈b, b′〉 consisting of a

morphism B B′b // and a source b′ = 〈B′ B′′j
b′j // 〉J , written as 〈a, a′〉 ⊥ 〈b, b′〉 , iff for any
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sink f = 〈Ai Bfi // 〉I and any source f ′′ = 〈A′′ B′′j
f ′′j // 〉J with the property that for each

i ∈ I and each j ∈ J the rear square of following diagram commutes

Ai B

A′ b′

A′′ B′′j

fi //

ai

�
�
�
�
  a′ ◦ ai

��

b

�
�
�
�
�
  

��

b′j ◦ b

f ′
��������������� //

a′~~
�
�
�
�

b′j~~
�
�
�
�

f ′′j

//

(1-00)

there exists a unique X -morphism A′ B′f ′
// such that all other squares commute. In this

case the pair 〈b, b′〉 is called right orthogonal to 〈a, a′〉 .

The topologically-motivated notion of a closure operator for a category X is defined relative

to a class M ⊆ Mor (X ) (corresponding to the embeddings in Top ). We regard M as a full

subcategory of the arrow category of X . An M -morphism 〈f, g〉 from m to n is a pair of

X -morphisms that satisfy g ◦m = n ◦ f . The domain functor M X
U // maps 〈f, g〉 to

f , and the codomain functor V maps 〈f, g〉 to g . We call m n
〈f,g〉

// cartesian iff it is

V -initial (cf. [1]). This is equivalent to m n
〈f,g〉

// constituting a pullback square in X .

1.01 Definition. A closure operator F = 〈( )F , ( )F 〉 on M maps each m ∈ M to a

pair 〈mF ,m
F 〉 with m = mF ◦mF and mF ∈ M , 1 such that F (m) ⊥ F (n) for all n ∈ M .

m ∈ M is called F -closed (resp. F -dense) if mF (resp. mF ) is an isomorphism. ∇∗ (F )

and ∆∗ (F ) denote the classes of F -closed and F -dense members of M , respectively.

1.02 Remarks. (0) A succinct categorical formulation of the concept of closure operator,

first proposed by Dikranjan and Giuli [9], views ( )F as an endofunctor M M
( )F

//

that satisfies V ( )F = V , and views ( )F as the domain-part of a natural transforma-

tion idM ( )Fδ // that satisfies idV δ = idV . The uniqueness part of the orthogonality

condition then says that 〈δ, ( )F 〉 is a pre-reflection in the sense of Börger [2], cf. also [15].

(1) If M has the following cancellation property

p ◦n ∈ M and p ∈ M implies n ∈ M (1-01)

then every closure operator on M is also a density operator on M . Furthermore, if F is

a closure operator on a class M of monos, as we will assume below, the uniqueness part

of the orthogonality condition is automatically satisfied.

In order to have analogues to the complete subspace lattices of topological spaces, from now on

we assume that X is an 〈E,M 〉 -category for sinks. This insures that X is sufficiently nice to

support certain constructions (cf. [4]). In particular, M then consists of monos, is closed under

composition, and satisfies the cancellation property (1-01). We write M � M for the category

whose objects are all composable pairs of members of M , i.e., the pullback of U and V .

1 If we require mF ∈ M rather than m
F
∈ M , then we obtain the notion of density operator.



1.03 Definition. The composition functor M � M M
W // maps 〈n, p〉 〈q, r〉

〈a,b,c〉
// to

the M -morphism p ◦n r ◦ q
〈a,c〉

// . For each m ∈ M its W -fiber, i.e., the comma category

W/m , is pre-ordered by 〈n, p〉 � 〈q, r〉 iff there exists a (necessarily unique) X -morphism b

such that 〈n, p〉 〈q, r〉
〈id,b,id〉

// is an M � M -morphism.

The W -fibers form (possibly large) complete lattices under � . Intersections and 〈E,M 〉 -

factorizations of the (collections of) second components yield infima and suprema, respectively.

The codomain functor V and the composition functor W both are bi-fibrations. For an X -

morphism X Yg
// the V - inverse image functor V/Y V/Xg←

// maps an M -subobject

of Y to its pullback along g , while an M -morphism m n
〈f,g〉

// induces a W - inverse image

functor W/m′ W/m
〈f,g〉←

// that maps 〈s, t〉 ∈W/n to the unique 〈q, r〉 ∈W/m , whose sec-

ond component is the chosen pullback of t along g . The corresponding adjoints are the V -direct

image functor V/X V/Yg∃ // (that maps an M -subobject m of X to the M -component of

the chosen 〈E,M 〉 - factorization of g ◦m ), and the W -direct image functor W/m W/n
〈f,g〉∃ //

(that maps 〈q, r〉 ∈W/m to the unique 〈s, t〉 ∈W/n for which there exists an X -morphism d

such that 〈〈d, s〉, t〉 is the chosen 〈E,M 〉 - factorization of the 2-sink 〈g ◦ r, n〉 ).

1.04 Definition. A closure operator F is called

(0) idempotent iff mF is F -closed for every m ∈ M , i.e., iff ( )F ( )F ∼= ( )F ;

(1) weakly hereditary iff mF is F -dense for every m ∈ M , i.e., iff ( )F ( )F
∼= ( )F .

(2) hereditary iff nF is a pullback of mF along p whenever 〈n, p〉 ∈W/m ;

(3) modal iff nF is a pullback of mF along g whenever n m
〈f,g〉

// is cartesian, i.e., iff F

preserves cartesian M -morphisms.

CL (M ) denotes the collection of all closure operators on M , pre-ordered by F v G iff

F (m) � G (m) for all m ∈ M , while iCL (M ) , wCL (M ) , hCL (M ) , mCL (M ) , and

iwCL (M ) stand for the subcollections of idempotent, weakly hereditary, hereditary, modal, and

idempotent weakly hereditary closure operators, respectively.

1.05 Definition. (0) A closure operator F is called Z -modal, if F commutes with all

W - inverse images along members of Z , i.e., F (m) ∼= 〈f, g〉← (F (n)) if m n
〈f,g〉

//

belongs to Z . We write CL〈M ,Z 〉 for the collection of all Z -modal closure operators

on M .

(1) C ⊆ M � M is called Z -stable, if whenever m n
〈f,g〉

// belongs to Z , and 〈s, t〉 ∈

C ∩W/n , then the W - inverse image of 〈s, t〉 along 〈f, g〉 belongs to C . We call A ⊆ M

Z -stable, if γ∗ (A) has this property.

(2) For any class Y a relation R ⊆ (M �M )×Y (resp. T ⊆ M ×Y ) is called Z -stable if for

each y ∈ Y the class { 〈n, p〉 ∈ M � M | 〈〈n, p〉, y〉 ∈ R } (resp. {m ∈ M | 〈m, y〉 ∈ T } )

has this property.

1.06 Remark. The following choices for Z deserve particular attention:

hCL (M ) = CL〈M ,Z 〉 for Z = { 〈f, g〉 ∈ Mor (M ) | f iso and g ∈ M }

mCL (M ) = CL〈M ,Z 〉 for Z = { 〈f, g〉 ∈ Mor (M ) | 〈f, g〉 cartesian }

CL (M ) = CL〈M ,Z 〉 for Z = { 〈f, g〉 ∈ Mor (M ) | 〈f, g〉 iso }

Every closure operator F has an idempotent hull (i.e., reflection) F i ∈ iCL (M ) as well

as a weakly hereditary core (i.e., coreflection) F w ∈ wCL (M ) . Each CL〈M ,Z 〉 is closed

under the formation of suprema in CL (M ) . If E is stable under V∃ (Z )-pullbacks, CL〈M ,Z 〉

is closed under the formation of infima as well, cf. [5]. The Z -modal hull and core (if it exists)



of F are denoted by FZ and FZ , respectively. For additional background on closure operators

see, e.g., [3], [9], [10], and [5].

2. CLOSURE OPERATORS ARE GALOIS FIXED POINTS

A B
π
• will be used to denote a Galois connection from the preordered class A to the

preordered class B , i.e., a pair of order-preserving functions A B
π∗ // and B A

π∗ // such

that π∗ a π∗ . We call π a reflection (resp. coreflection) provided that π∗ ◦ π
∗ ∼= id (resp.

π∗ ◦ π∗ ∼= id ). Recall that for every relation R ⊆ X × Y there are two naturally induced Galois

connections P (X) P (Y )
opR+

+

• , called a polarity, and P (X) P (Y )R∃
∀

• , called an

axiality (cf. [11]).

Let P (M � M) P (M � M)
opω

• be the polarity induced by the restriction of the ortho-

gonality relation ⊥ to M � M . The following theorem shows that the closure operators on M

are essentially the Galois fixed points of ω .

2.00 Theorem. There exists a reflection P (M � M) CL (M )ω̇
• as well as a coreflection

CL (M ) P (M � M)
opω̈

• such that ω = ω̈ ◦ ω̇ .

In particular, every subclass C ⊆ M � M yields two closure operators, ω̇∗ (C) and ω̈∗ (C) .

Moreover, every closure operator F up to isomorphism can be recovered from ω̇∗ (F ) , the class

of its relatively dense pairs, and from ω̈∗ (F ) , the class of its relatively closed pairs.

Let P (M ) P (M � M)γ
• be the natural axiality that arises from the inverse of the first

projection function M � M M// , considered as a relation, and for the second projection

function let P (M � M)
op

P (M )
opδ

• be the corresponding axiality. The following theorem

shows that the closure operators on M that are simultaneously idempotent and weakly hereditary

are essentially the Galois fixed points of the composite Galois connection δ ◦ω ◦ γ .

2.01 Theorem. There exists a reflection P (M ) iwCL (M )υ̇
• as well as a coreflection

iwCL (M ) P (M )
opϋ

• such that δ ◦ω ◦ γ = ϋ ◦ υ̇ .

Let wCL (M ) CL (M )∆̈
• and CL (M ) iCL (M )∇̇

• be the coreflection the reflection

induced by ( )w and ( )
i
, respectively. Next we see that both the weakly hereditary closure

operators on M and the idempotent closure operators on M are also essentially the Galois fixed

points of natural Galois connections.

2.02 Theorem. There exists a reflection P (M ) wCL (M )∆̇
• with ω̇ ◦ γ = ∆̈ ◦ ∆̇ , and

there exists a coreflection iCL (M ) P (M )op∇̈
• such that δ ◦ ω̈ = ∇̈ ◦ ∇̇ .

The idempotent weakly hereditary closure operators on M appear (in a natural way) as a

Galois fixed point lattice for a second time.

2.03 Theorem. There exists a reflection P (M ) iwCL (M )ε̇
• as well as a coreflection

iwCL (M ) iCL (M )ε̈
• such that ∇̇ ◦ ∆̈ = ε̈ ◦ ε̇ .

We summarize the results of this section with the following commutative diagram of Galois

connections between complete lattices.

P (M � M) CL (M ) P (M � M) op

wCL (M ) iCL (M )

P (M ) iwCL (M ) P (M )
op

ω̇
•

γ

•
∆̈
�
�
�
�
� •

∇̇
	
	
	
	
	
•

ω̈
•

δ

•

∆̇









 •

ε̇
	
	
	
	
	
•

ε̈
�
�
�
�
� •

∇̈
�
�
�
�
�
•

υ̇
•

ϋ
•

(2-00)



3. REGULAR CLOSURE OPERATORS

Consider an arbitrary pre-ordered class D , and arbitrary Galois connections P (M � M) D
ρ
•

and P (M ) D
τ
• . In the applications these will in fact be polarities induced by suitable

relations.

3.00 Definition. Suppose that ρ and τ factor through ω̇ and ∆̇ via Galois connections

CL (M ) D
µ
• and wCL (M ) D

ν
• , respectively, i.e.,

P (M � M) D

CL (M )

ρ
•

ω̇

�
�
�
�
•

µ








 •

and

P (M ) D

wCL (M )

τ
•

∆̇

�
�
�
�

•
ν

•��
�
� (3-00)

are commutative diagrams of Galois connections. F ∈ CL (M ) (resp. F ∈ wCL (M )) is

called ρ-regular (resp. τ -regular), if F is a fixed point of µ∗ ◦µ∗ (resp. of ν∗ ◦ ν∗ ).

Clearly, since ω̇ ◦ γ factors through ∆̇ , the right triangle can be constructed from the left

one whenever τ is taken to be ρ ◦ γ .

Let us first consider the question of how many Galois connections µ and ν can exist that

make the diagrams in (3-00) commute. To find suitable candidates for such Galois connections,

we use the fact that ω̇ and ∆̇ are well-behaved in the sense of the following lemma.

3.01 Lemma. If Galois connections α , φ and ψ satisfy φ ◦α = ψ , and if α is a reflection,

then φ∗ ∼= ψ∗ ◦α
∗ and φ∗ ∼= α∗ ◦ψ

∗ .

Since ω̇ and ∆̇ are both reflections, the only possible candidates for µ and ν (up to iso-

morphism) are

µ := 〈ρ∗ ◦ ω̇
∗, ω̇∗ ◦ ρ

∗〉 and ν := 〈τ∗ ◦ ∆̇∗, ∆̇∗ ◦ τ
∗〉

3.02 Proposition. For every element D of D

(0) if ρ∗ (D) is a fixed point of ω̇∗ ◦ ω̇∗ , then µ is a Galois connection;

(1) if τ∗ (D) is a fixed point of ∆̇∗ ◦ ∆̇∗ , then ν is a Galois connection.

It can be shown that ω̇∗ ◦ ω̇∗ and ω∗ ◦ω∗ have the same fixed points; indeed C ⊆ M �M is

a fixed point of ω∗ ◦ω∗ (and hence of ω̇∗ ◦ ω̇∗ ) iff C satisfies the conditions

(C0) C is closed under the formation of W -direct images.

(C1) sup�
(

C ∩W/m
)

∈ C for every m ∈ M .

(C2) C is downward closed with respect to � .

We use this characterization when applying part (0) of Proposition 3.02. Next we characterize

the fixed points of ∆̇∗ ◦ ∆̇∗ .

3.03 Theorem. A ⊆ M is a fixed point of ∆̇∗ ◦ ∆̇∗ iff A satisfies the following conditions

(C̄0) γ∗ (A) is closed under the formation of W -direct images;

(C̄1) sup� (γ∗ (A) ∩W/m) ∈ γ∗ (A) for every m ∈ M .

It is important to notice that (C̄0) is not equivalent to A being closed under the formation

of V -direct images. (If m = p ◦n , then 〈p, idV (p)〉 always is a W -direct image of 〈m, idV (m)〉

along 〈n, idV (p)〉 , but p need not be an V -direct image of m along idV (m) .) Translating (C2)

for γ∗ (A) in terms of A yields the cancellation property (C̄2): p ◦n ∈ A and p ∈ M implies

n ∈ A . By Corollary 2.03(0) of [5] (C̄2) characterizes hereditary closure operators. The fact that

this condition is not needed to characterize the fixed points of ∆̇∗ ◦ ∆̇∗ indicates that A may be

a fixed point of ∆̇∗ ◦ ∆̇∗ without γ∗ (A) being a fixed point of ω∗ ◦ω∗ .



The Galois connections ρ and τ may of course factor through various sublattices of CL (M )

and wCL (M ) , respectively. Proposition 3.02 makes it clear that we need to characterize the

classes ω̇∗ (F ) for idempotent closure operators F , as well as the classes ∆̇∗ (F ) for idempotent

weakly hereditary closure operators F . From Proposition 2.02 of [5] it follows that the classes

ω̇∗ (F ) and ∆̇∗ (F ) for Z -modal closure operators F are characterized by Z -stability.

3.04 Proposition. C ⊆ M � M is of the form ω̇∗ (F ) for some idempotent closure operator

F iff in addition to conditions (C0) – (C2) above we have

(C3) C is stable under left-shifting, i.e., 〈l, p ◦ n〉 ∈ C and 〈n, p〉 ∈ C ⇒ 〈n ◦ l, p〉 ∈ C .

Similarly, A ⊆ M is of the form ∆̇∗ (F ) for some idempotent weakly hereditary closure

operator F iff in addition to conditions (C̄0) and (C̄1) of Theorem 3.03 we have

(C̄3) A is closed under composition.

4. APPLICATIONS

We now consider the case that relations induce the Galois connections ρ and τ as polarities.

Our main interest concerns suitable restrictions of the orthogonality relation ⊥ and modifications

thereof. According to Definition 1.00 ⊥ relates the collection L of all pairs 〈l, l〉 consisting of an

X -sink l and an X -morphism l with matching codomain and domain, respectively, with the

collection R of all pairs 〈r, r〉 consisting of an X -morphism r and an X -source r , also with

matching codomain and domain, respectively. Let R
iso

(resp. Rmono denote the subcollection

of R that consists of those pairs that have an isomorphism in the first component (resp. a

monosource in the second component). We want to restrict L to M �M , or to M �Id (X ) ∼= M ,

or in case of the Pumplün-Röhrl connection to Mor (X )� Id (X ) ∼= Mor (X ) . On the other

side we consider a subcollection H of R . We will see that depending on whether or not

we require R
iso

to contain H , the polarities in question will even factor through classes of

idempotent closure operators.

Two of the motivating examples we want to be able to explain are the factorization of the

Pumplün–Röhrl polarity established in [6], and the Salbany construction of a closure operator

induced by a class of objects, cf. [13]. In both cases one considers the class consisting of all

identity 2-sources H = { 〈X, 〈idX , idX〉〉 | X ∈ Ob (X )} , which we identify with Ob (X ) . In

[6] we established the commutativity of the diagram

P (Mor (X )) P (Ob (X )) op ,

iCL (M )

σ
•

ς

�
�
�
�
�
•

κ�
�
�
�
� •

(4-00)

provided that X has equalizers and M contains all regular monomorphisms or, equivalently,

provided that E consists of epi-sinks. σ ( = (α, β) in [6]) is the Pumplün–Röhrl connection, i.e.,

the polarity induced by the “separating relation” S ⊆ Mor (X )× Ob (X ) that consists of all

〈f,X〉 that satisfy 〈f, id〉 ⊥ 〈X, 〈idX , idX〉〉 . The Galois connection ς is determined by ς∗ which

maps F ∈ iCL (M ) to the class of F -dense X -morphisms. Finally, κ is determined by κ∗
which maps each F ∈ iCL (M ) to the class of F -separated objects, i.e., those objects X that

satisfy F (m) ⊥ 〈X, 〈idX , idX 〉〉 for every m ∈ M . The adjoint κ∗ maps each Y ⊆ Ob (X )

to the Salbany (or regular) closure operator induced by Y . The Salbany closure mκ∗(Y ) of

m ∈ M is defined as the intersection of all equalizers of parallel pairs 〈r, s〉 of X -morphisms

with codomain in Y and the property that r ◦m = s ◦m . In particular, κ∗ (Y )(m) is a

supremum in W/m of all those pairs 〈n, p〉 with the property that if m equalizes any parallel



pair 〈r, s〉 with domain V (m) and codomain in Y , so does p , i.e., κ∗ (Y )(m) is a supremum

of the class ρ∗ (Y )∩W/m .

A special subclass of sinks in E described below plays a crucial role in most of our results.

In particular, it defines the interesting subclasses H of R to which one may want to restrict

the orthogonality relation ⊥ .

4.00 Definition. (0) E ′ ⊆ E denotes the collection of all sinks in E that either consist

entirely of members of M , or else have exactly two components at least one of which

belongs to M .

(1) J denotes the class of all 〈h,h〉 ∈ Rmono that satisfy e ⊥ h for each e ∈ E ′ , and

J0 := J ∩ R
iso

.

4.01 Definition. Let H be a subcollection of R , and let Z be a pullback-stable class of

M -morphisms. We denote the restrictions of ⊥ to (M � M ) × H and M × H , respectively,

by RH and TH , and write RH,Z and TH,Z for the largest Z -stable relations contained in

RH and TH , respectively. ρH,Z and τH,Z stand for the polarites induced by them.

We first address the question as to whether ρH,Z and τH,Z factor through appropriate

classes of closure operators.

4.02 Theorem. (0) For any H ⊆ R we have ρH,Z ◦ γ = τH,Z .

(1) If E′ is stable under V∃ (Z )-pullbacks, then for every H ⊆ J and every K ⊆ J0 there

exist Galois connections µH,Z and νK,Z such that

P (M � M) P
op (H)

CL (M )

ρH,Z
•

ω̇

�
�
�
�
�
•

µH,Z�
�
�
�
� •

and

P (M ) P
op (K)

wCL (M )

τK,Z
•

∆̇

	
	
	
	
•

νK,Z
�
�
�
� •

(4-01)

commute.

(2) If K ⊆ J0 , there also exists a Galois connection κK,Z such that both

P (M � M) P (K) op

CL (M ) iCL (M )

ρK,Z
•

ω̇
•

κK,Z

•

µK,Z� �
� �
� �
� �
� •

∇̇
•

and

P (M ) P (K)
op

wCL (M ) iCL (M )

τK,Z
•

∆̇
•

κK,Z

•

νK,Z� �
� �
� �
� �
� •

ε
•

(4-02)

commute. In particular, in this case τK,Z factors through iwCL (M ) .

In general, we may choose any subclass of J for H . Singleton sources h that consist of an

M -element are always admissible. To include other types of sources, we may need additional

information about E ′ . For example, we have the following:

4.03 Corollary. Let K = { 〈X, 〈idX , idX〉〉 | X ∈ Ob (X )} ∪ { 〈id,m〉 | m ∈ M } and let

Z = Iso (M ). If E′ consists of epi-sinks, then for all Y ⊆ Ob (X ) and all A ⊆ M the class

(τK,Z )∗
(

{ 〈X, 〈idX , idX〉〉 | X ∈ Y } ∪ { 〈id,m〉 | m ∈ A }
)

is the class of dense M -elements for the largest closure operator F with respect to which all

objects in Y are separated, and all elements of A are closed. Moreover, F is both idempotent

and weakly hereditary.

In order to derive the factorization of the Pumplün-Röhrl connection displayed in Diagram

(4-00) from Theorem 4.02, we need to link σ with τH,Z . Recall that any relation Q ⊆ X×Y in-

duces a Galois connection P (X) P (Y )
〈Q∃,Q∀〉

• where Q∃ (A) = { y ∈ Y | ∃x∈A 〈x, y〉 ∈ Q }



and Q∀ (B) = {x ∈ X | ∀y∈Y 〈x, y〉 ∈ Q ⇒ y ∈ B } (cf. [11], Proposition 5.00). Hence the

relation K ⊆ Mor (X )× M defined by

〈f,m〉 ∈ K ⇐⇒ ∃e∈E f = m ◦ e

induces a Galois connection P (Mor (X )) P (M )K∃
∀

• .

4.04 Corollary. Let H = { 〈X, 〈idX , idX〉〉 | X ∈ Ob (X )} , and Z = Iso (M ) .

(0) If E ∩ Mor (X ) consists of epimorphisms, then σ = τH,Z ◦K∃
∀ ;

(1) If E consists of epi-sinks, then (κK,Z )∗ (up to isomorphism) agrees with the Salbany

operator κ∗ , and σ factors as σ = κK,Z ◦ ε ◦ ∆̇ ◦K∃
∀ .
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