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Introduction

The notion of closure operator in an arbitrary category A introduced in [7]
depends on one parameter: subobjects. Precisely, for every object A ∈ A, a
class of subobjects subA of A is given and then a closure operator is defined
on these classes. This notion has lead to a useful theory. For more details on
closure operators see, e.g., [2], [6-7], [8-9], [15] and [16]. However, many very
natural and useful closures cannot be described by means of the previous
notion, since they do not act on the given subobjects of the category A,
but rather on subobjects of another category X related to A via a functor

A
U
−→ X . More precisely, for a given class of subobjects in the category X

and for a given functor A
U
−→ X , for each A in the category A, we close

the subobjects of UA in such a way that, for each A-morphism A
f

−→ B,
Uf preserves the closure. The main motivating example is the Kuratowski
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closure in the category of topological groups: with the previous notion of
closure operator we can only close subgroups while the Kuratowski closure
acts on every subset of a given group. Other examples of this phenomenon
are: the subgroup generated by a subset of a given group, the convex hull
and the radial hull of a subset of a convex space, the down closure and the
Scott closure of a subset of a directed-complete partially ordered set.

It is worth to observe that the move from (ordinary) closure operators
to the types of operators considered in this paper is analogous to the move
from factorization structures to factorizations along a functor, as considered
by Herrlich ([13]) and Tholen ([21]), which (in Proposition 12) also provides
an analogue of Proposition 1.5.

The aim of this paper is first of all to introduce the notion of closure
operator with respect to a functor U (also called U -closure operator) that,
besides containing the previous notion as a special case, is general enough to
include all the above mentioned examples and more. Then some basic results
that were widely used with the previous notion of closure operator can be
extended to this setting as well (e.g., every idempotent and weakly hered-
itary U -closure operator induces, under suitable conditions, a factorization
structure on A).

The U -closure operator induced by a suitable subclass of the class M
of all subobjects of all objects of the category X is defined, and a notion of
regular U -closure operator is derived as a special case.

We provide conditions under which a class of A-morphisms N can be
used to construct a U -closure operator (called the hull operator induced
by N ). In the case when N is the second factor of a proper factorization
structure for morphisms of the category A then, under suitable conditions,
the hull operator induced by N composed with every closure operator of A
with respect to N gives a U -closure operator. U -closure operators that can be
obtained this way are called standard. It turns out that for these U -closure
operators compactness (cf. [3], [4]), connectedness in the sense of [23] and [5]
and Hausdorffness, are only depending on their second component (which is a
usual closure operator of A) so that the investigation goes back to the classical
case. For non-standard U -closure operators (e.g., the Kuratowski closure in
topological groups) the situation is different. For instance for the Kuratowski
U -closure in topological groups it is not known whether the corresponding
class of compact objects (which are the usual compact topological groups
by an adaptation of the Kuratowski-Mrowka theorem given for topological
spaces) coincides or is properly contained in the class of compact objects with
respect to the restriction of the above closure to subgroups (see [10] and [4]).

Many examples that support the theory are included at the end of the
paper.
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We use the terminology of [1] throughout. We also acknowledge that
Paul Taylor’s commutative diagrams macro package was used to typeset most
of the diagrams in this paper.

1. U-closure operators

Throughout we consider a finitely complete category X with a proper (E ,M)-
factorization structure for morphisms.

For every object X ∈ X , the class MX of morphisms of M with codomain
X is preordered by m ≤ n if there is a morphism t such that n ◦ t = m. We
define the following equivalence relation in MX : m ≃ m′ if m ≤ m′ and
m′ ≤ m. The quotient class will be denoted by subX and called the subob-
ject class of X with respect to (E ,M). Since subX may be large, we assume
that X has multiple pullbacks of arbitrary large families of M-morphisms
with common codomain, with the pullback in M. Consequently, subX forms
a (possibly large) complete lattice.

In what follows we will not distinguish between m ∈ MX and the M-
subobject that it defines (i.e., m = n means m ≃ n when m and n are taken
as subobjects).

If X
f

−→ Y is an X -morphism, M
m
−→ X is a subobject of X and

M
e

−→ f(M)
f(m)
−→ Y is the (E ,M)-factorization of f ◦ m, then f(M)

f(m)
−→ Y

is the image of m along f . Moreover, if N
n

−→ Y is a subobject of Y , then

the pullback f−1(N)
f−1(n)
−→ X of n along f is the inverse image of n along

f . Clearly f(−) and f−1(−) yield an adjoint situation between subY and
subX.

For the general theory of factorization structures for morphisms we refer
to [11], [22] and [1].

Let A be any category, let X be as above and let A
U
−→ X be a given

functor. A pair (A,m) with A object of A and M
m
−→ UA in M will be called

U -subobject of A. We will write subUA for the class of all U -subobjects of A

(i.e., subUA = {A}×subUA) and we will simply refer to m for a U -subobject
(A,m) of A when no confusion is possible.

1.1. DEFINITION. A U -closure operator c of A (with respect to (E ,M))
is a family of functions

(subUA
cA−→ subUA)A∈A
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with the following properties that hold for each A ∈ A and U -subobjects m

and n of A:

(a) m ≤ c
A
(m);

(b) m ≤ n ⇒ c
A
(m) ≤ c

A
(n);

(c) For each A-morphism A
f

−→ B, Uf(c
A
(m))≤ c

B
(Uf(m)).

Condition (a) implies that for every U -closure operator c on A, every

U -subobject M
m
−→ UA of any object A has a canonical factorization

M
c

A

(m)
−→ c

A
(M)

m ց




y

c
A

(m)

UA

where c
A
(m) is called the U -closure of the U -subobject m of A.

1.2. REMARK.

(1) Notice that under condition (b) of the above definition, condition (c) is

equivalent to the following statement concerning inverse images: if A
f

−→
B is an A-morphism and m is a U -subobject of B, then c

A
((Uf)−1(m)) ≤

(Uf)−1(c
B
(m)), i.e., the U -closure of the inverse image of m is less than

or equal to the inverse image of the U -closure of m.

(2) Under condition (a), both conditions (b) and (c) together are equivalent
to the following: given m and n U -subobjects of A and B, respectively,
if f is an X -morphism and g is an A-morphism such that n◦f = Ug◦m,
then there exists a unique morphism d such that the following diagram

M
f - N

@@@
c

A

(m)
R

@@@
c

B

(n)
R

c
A
(M)

d -

n

c
B
(N)

	��
�
c

A
(m) 	��

�
c

B
(n)

UA

m

?

Ug
- UB

?

commutes.

(3) The notion of closure operator of a category A with respect to a class
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of monomorphisms M introduced in [7] can be easily seen as a special
case of U -closure operator by simply taking U = idA.

We recall that an A-morphism A
f

−→ B is U -initial if for every A-

morphism D
h

−→ B and X -morphism UD
g

−→ UA such that (Uf) ◦ g = Uh,

there exists a unique A-morphism D
g′

−→ A such that Ug′ = g and f ◦g′ = h.
(cf. [14, Definition 2.1(1)]).

1.3. DEFINITION. Given a U-closure operator c of A, we say that a U -
subobject m of an object A is c-closed (c-dense) if m = cA(m) (m = cA(m),

equivalently, cA(m) = idUA). An A-morphism A
f

−→ B is called c-dense
if (Uf)(idUA) is c-dense. We call c idempotent provided that cA(m) is c-
closed for every A ∈ A and U -subobject m of A. c is said to be weakly
hereditary if for every A ∈ A and U -subobject m of A, whenever there is

a U -initial A-morphism P
p

−→ A such that cA(m) = U(p), we have that
cP (cA(m)) = idcA(M), that is cA(m) is c-dense in P = cA(M). We call c

additive if for every A ∈ A and U -subobjects m and n of A, we have that
c

A
(m ∨ n) = c

A
(m) ∨ c

A
(n). We say that c is grounded if cA(0A) = 0A for

every A ∈ A, where 0A is the smallest element of the lattice subUA

In what follows we extend to U -closure operators two classical results
(Propositions 3.1 and 3.2 of [7]).

For any U -closure operator c on A, Ec will denote the class of all c-dense
A-morphisms and Mc will denote the class of all U -initial A-morphisms m

such that Um ∈ M is c-closed. Notice that every morphism in Mc is a
monomorphism.

1.4. PROPOSITION. (Diagonalization Property) Let c be a U -closure oper-
ator and let m ∈ Mc, f ∈ Ec and h and k A-morphisms such that k◦f = m◦h;

then there exists a unique A-morphism B
d

−→ M such that the following di-
agram commutes

A
f

−→ B

h





y

d ւ




y

k

M −→
m

D

Proof. Let us consider the following commutative diagram
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UA
Uf - UB

HHHHHHHHH
cB(n) ◦ e

j ���������

cB(n)

*

cB(f(UA))

UM

Uh

? Um - UD
?

Uk

HHHHHHHHH
cD(Um)

j ���������

cD(Um)

*

cD(UM)

where (e, n) is the (E ,M)-factorization of Uf . Since e ∈ E and Um ∈ M,

the (E ,M)-diagonalization property yields a morphism f(UA)
t

−→ UM such
that t ◦ e = Uh and (Um) ◦ t = (Uk) ◦ n. From Remark 1.2(2) we obtain a

morphism c
B
(f(UA))

d′

−→ c
D

(UM) such that d′ ◦ c
B

(n) = c
D

(Um) ◦ t and
c

D
(Um) ◦ d′ = Uk ◦ c

B
(n). Since f is c-dense and Um is c-closed, c

B
(n) and

c
D

(Um) are isomorphisms. Therefore, the composite of their inverses with

d′ yields a morphism UB
d′′

−→ UM such that Um ◦ d′′ = Uk and d′′ ◦ Uf =
Uh. Initiality of m implies the existence and uniqueness of the wanted A-
morphism d.

1.5. PROPOSITION. Let c be an idempotent and weakly hereditary U -

closure operator. If, for every A-morphism A
f

−→ B, the c-closure of the
image of idUA under Uf has an initial lift, then the pair (Ec,Mc) is a fac-
torization structure on A.

Proof. Let A
f

−→ B be an A-morphism and let UA
e

−→ P
m
−→ UB be the

(E ,M)-factorization of Uf . Since U initially lifts the c-closure of the image of

idUA under Uf , we obtain a factorization A
f

−→ B = A
e′

−→ D
m′

−→ B, where

m′ is the U -initial lift of c
B
(m) and e′ is such that U(e′) = c

B

(m) ◦ e We
shall show that (e′,m′) is an (Ec,Mc)-factorization of f . Notice that since c

is idempotent, c
B
(m) is c-closed, and so m′ ∈ Mc. To see that e′ ∈ Ec, let

us consider the commutative diagram
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UA
e

−→ P

e1





y





y

cB(m)

M1 −→
m1

c
B
(P )

where (e1,m1) is the (E ,M)-factorization of U(e′). The (E ,M)-diagonaliza-

tion property yields a morphism d such that m1 ◦ d = c
B

(m) and d ◦ e = e1.

From the monotonicity of c we have that c
D

(c
B

(m)) ≤ c
D

(m1) ≤ idc
B

(P ).

Since c is weakly hereditary, we have that c
D

(c
B

(m)) = idc
B

(P ), and conse-

quently, c
D

(m1) = idc
B

(P ). Therefore, e′ ∈ Ec.

The diagonalization property is Proposition 1.4.

2. Hull Operators and standard closure operators

A familiar way to produce idempotent closure operators of a category X is
by means of a subclass M′ of M which is stable under pullback. The same
procedure works for U -closure operators if we assume that M′ is stable under

U -pullback. That is: for every A-morphism A
f

−→ B and M ′ m′

−→ UB in M′

the pullback (Uf)−1(m′) lies in M′.

Let , in fact, M′ ⊂ M be stable under U -pullback. For every U -subobject
m of A set

cM
′

A (m) = ∧{M ′ m′

−→ UA : m′ ∈ M′ and m ≤ m′}.

Then cM
′

is an idempotent U -closure operator of A (the proof is provided
by a slight adaptation of the proof in the classical case).

A special case of the above construction is obtained, for a given full
subcategory B of A, by taking M′ to be the class of all existing equalizers
of pairs of X -morphisms of the form Uf,Ug with f, g ∈ A(A,B), B ∈ B.
The corresponding U -closure operator cB is called (as in the classical case)
the regular U -closure operator of A induced by B and is as useful as in
the classical case. Precisely, assuming U to be faithful, a morphism in the
category B is an epimorphism if and only if it is cB-dense.

Another special case is obtained by choosing a suitable class of A-mor-
phisms.

2.1. PROPOSITION. Let N be a class of A-morphisms that is stable under
pullback and that satisfies the following conditions:



8 G. CASTELLINI, E. GIULI

(a) U(N ) ⊆ M;

(b) U preserves pullbacks of morphisms of N along arbitrary morphisms.

Then the operator h defined by setting, for every object A of A and
U -subobject m of A,

hN
A (m) = ∧{U(n) : n ∈ N and m ≤ U(n)}

is an idempotent U -closure operator of A.

Proof. It is enough to show that U(N ) is stable under U -pullback. So,

let A
f

−→ B be an A-morphism and let n′ = U(n) with n ∈ N . Let us
consider the following pullback diagrams:

UA
Uf
−→ UB

(Uf)−1(n′)

x





x





n′

(Uf)−1(N ′) −→
t

N ′

and

A
f

−→ B

f−1(n)

x





x





n

f−1(N) −→
d

N

By applying U to the diagram on the right, we obtain that Uf ◦U(f−1(n)) =
n′ ◦ U(d). Condition (b) implies that U(f−1(n)) = (Uf)−1(n′). Therefore,
since N is stable under pullback, we obtain that (Uf)−1(n′) ∈ U(N ).

The U -closure operator hN
A (m) is called the hull operator defined by

N . If U preserves meets of elements of N then the hull operator hN
A (m) can

be obtained by first producing, for every U -subobject of A, the A-morphism

h̄N
A (m) = ∧{n ∈ N : m ≤ U(n)},

and then taking U(h̄N
A (m)).

If now N is the second factor of a proper factorization structure of A (with
U(N ) ⊂ M) then we define, for every closure operator c of A with respect
to N , a closure ch of U -subobjects m of any object A in A, as follows

chN
A (m) = U(cA(h̄N

A (m)))

2.2. PROPOSITION. Let U preserve images, inverse images and meets of
elements of N . Then the operator ch is a U -closure operator of A and it is
idempotent whenever c is idempotent.

Proof. Since U preserves meets of elements of N clearly m ≤ ch
A
(m).

and the monotonicity follows from the fact that both c and h̄ are monotone.
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Let A
f

−→ B be an A-morphism, we need to show that for every U -subobject
m of A, we have that Uf(ch

A
(m)) ≤ ch

B
(Uf(m)) = U(c

B
(h̄

B
(Uf(m)))).

Now, we have that Uf(ch
A
(m)) = UfU(c

A
(h̄

A
(m))) = U(f(c

A
(h̄

A
(m)))) ≤

U(c
B
(f(h̄

A
(m)))). We also have that f(h̄

A
(m)) = f(∧{p ∈ N : m ≤

U(p)}) ≤ ∧{f(p) : p ∈ N and m ≤ U(p)} and h̄
B
(Uf(m)) = ∧{p′ ∈ N :

Uf(m) ≤ U(p′)}. Now let p′ be such that Uf(m) ≤ Up′ and let p = f−1(p′).
Since U preserves inverse images, i.e., U(f−1(p′)) = (Uf)−1(Up′), we have
that U(p) = (Uf)−1(Up′) ≥ (Uf)−1((Uf)(m)) ≥ m. Finally, this to-
gether with f(p) = f(f−1(p′)) ≤ p′ implies that ∧{f(p) : p ∈ N and m ≤
U(p)} ≤ ∧{p′ ∈ M′ : U(f(m)) ≤ U(p′)}. Consequently we can conclude
that f(h̄

A
(m)) ≤ h̄

B
(Uf(m)). Thus, by applying c

B
and the functor U to

this last inequality we obtain the wanted result.

To show idempotency let A ∈ A and let m be a U -subobject of A. Consider
the set S = {n ∈ N : m ≤ U(n)}. Its meet, h̄

A
(m) belongs to N and so does

c
A
(h̄

A
(m)). Now, let us consider the set S′ = {n ∈ N : ch

A
(m) ≤ U(n)}.

Since m ≤ ch
A
(m) = U(c

A
(h̄

A
(m))), we have that c

A
(h̄

A
(m))) ∈ S′. Conse-

quently, we obtain that ∧S′ ≤ c
A
(h̄

A
(m))) and c

A
(∧S′) ≤ c

A
(c

A
(h̄

A
(m)))) =

c
A
(h̄

A
(m))). Notice that in this last equality we have used the idempotency

of c. Thus, we have that ch
A
(ch

A
(m)) = U(c

A
(∧S′)) ≤ U(c

A
(h̄

A
(m))) =

ch
A
(m). This together with ch

A
(m) ≤ ch

A
(ch

A
(m)) yields the idempotency

of ch.

2.3. DEFINITION. A U -closure operator a is called standard if there is
a factorization structure (F ,N ) of A and a closure operator c on A (with
respect to N ) such that a = ch.

It is clear that a U -closure operator a will be non-standard if there is
an a-closed U -subobject m of A for which there is no monomorphism n in A
with U(n) = m.

Of course every hull operator is standard (e.g., the algebra generated by
a subset of a given algebra, the convex hull of a subset of a (totally) convex
space (see Example 3.5 below), the direct closure of a subset of a directed-
complete partially ordered set (see Example 2.5 below)). Here are less trivial
examples of standard operators.

2.4. EXAMPLE. A projection space is a set X equipped with a sequence
of functions (X

αn−→ X)n∈N such that αn ◦ αm = αmin(n,m). A morphism

(X, (αn)n∈N)
f

−→ (X, (βn)n∈N), that is a function X
f

−→ Y such that for ev-
ery n ∈ N, βn◦f = f◦αn will be called a projection function. Pro will denote

the category of projection spaces with projection functions. Let Pro
U
−→ Set

be the obvious forgetful functor and let us consider the (surjective,injective)-
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factorization structure in Set.

A U -closure operator of Pro is defined as follows:

s
X

(M) = {x ∈ X : ∀n ∈ N,∃p ∈ N and a ∈ M with αn(x) = αp(a)}.

The U -closure operator s is standard. Let, in fact, F and N denote the class
of all surjective projection functions and the class of all injective projection
functions, respectively. Then (F ,N ) is a proper factorization structure of the
category Pro and U(N ) ⊂ M. An explicit description of the hull operator
h defined by N is

hX(M) = {x ∈ X : x ∈ M or x = αn(a) for some n ∈ N and a ∈ M}

Let now c∞ be the closure operator of Pro with respect to N studied in [12,
Section 4]:

c∞(M) = {x ∈ X : αn(x) ∈ M,∀n ∈ N}

Then, it is easy to verify that s
X

(M) = c∞(hXM).

2.5. EXAMPLE. A partially ordered set is directed-complete if every directed
subset has a supremum. DCPO will denote the category of all directed-
complete partially ordered sets and functions preserving directed joins. Let

DCPO
U
−→ Set be the obvious forgetful functor and let us consider the

(surjective,injective)-factorization structure in Set, say (E ,M), and the
(surjective,injective)-factorization structure, (F ,N ), in DCPO. The oper-
ator s which associates to every subset of any directed-complete partially
ordered set the smallest Scott closed subset containing it (a subset is said to
be Scott-closed if it is closed under directed joins and it is down closed (cf.
[9, p. 63], [20] and Example 3.6 below)) is a standard U -closure operator of
DCPO with respect to M. In fact it can be considered as the composition of
the hull operator induced by N , which associates to every subset the smallest
directed-complete subset containing it, and the closure operator of DCPO

with respect to (E ,M) (denoted by scott in [9]), which associates to every
directed-complete subset the smallest Scott-closed subset containing it.

The next section is dedicated to examples of non-standard U -closure
operators.

3. Examples of non-standard U-closure operators

3.1. EXAMPLE. In the category TopGrp of topological groups let (F ,N )

be the usual (surjective,embedding)-factorization structure, let TopGrp
U
−→
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Top the functor that forgets the algebraic structure and let (E ,M) be the
usual (surjective,embedding)-factorization structure of Top. The Kuratowski
closure induced by the topology is clearly a non-standard U -closure operator
of TopGrp with respect to (E ,M). The hull operator h defined by N gives
the topological subgroup generated by a subspace (= subset). On the other
hand, the Kuratowski closure k induced by the topology, when restricted
to topological subgroups, is a closure operator of TopGrp with respect to
(F ,N ). The combination of h followed by k gives the standard U -closure
operator kh. This U -closure strongly differs from the Kuratowski closure
induced by the topology, which is clearly non-standard.

3.2. EXAMPLE. Let Rng be the category of unitary rings and ring-homo-

morphisms, let Rng
U
−→ Set be the usual forgetful functor and let (E ,M)

be the (surjective, injective)-factorization structure of Set. The class M′ of
all inclusions of ideals is closed under U -pullbacks, then for every ring A and
for every subset M

m
−→ UA, the operator which associates to every subset M

of a ring A the (underlying set) of the ideal generated by M is an idempotent
U -closure operator and it is non-standard since no proper ideal is a subring.

3.3. EXAMPLE. Let Vec be the category of real vector spaces and lin-

ear transformations, let Vec
U
−→ Set be the usual forgetful functor and let

(E ,M) be the (surjective,injective)-factorization structure of Set. If M is a
subset of a vector space V , let us define:

r
V
(M) = {x ∈ V : αx ∈ M for some α ∈ (0, 1]}.

Since 1v ∈ M for every v ∈ M , we have that M ⊆ r
V
(M). Also, it is

straightforward that if M ⊆ N , then r
V
(M) ⊆ r

V
(N). Now, let V

f
−→ W

be a linear transformation and let M be a subset of V . If αx ∈ M , then
α(f(x)) = f(αx) ∈ f(M). Therefore, f(r

V
(M)) ⊆ r

W
(f(M)). The U -

closure operator r is the identity on linear subspaces and it is clearly non-
standard. As a matter of fact, if 0 6∈ M , then we also have that 0 6∈ r

V
(M).

Therefore, in this case r
V
(M) is not the underlying set of a linear subspace.

Another non-standard U -closure operator can be defined by:

c
V
(M) = {x ∈ V : x = αa + (1 − α)b for some 0 ≤ α ≤ 1 and a, b ∈ M}

This U -closure operator is the identity on linear subspaces. It is neither
idempotent nor additive. As a matter of fact, the c-closure of three linearly
independent vectors is the border of the triangle having the three vectors as
vertices but the c-closure of this border includes also the inside of the triangle.
Moreover, the c-closure of a point is the point itself but the c-closure of two
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points is the segment that joins them. The idempotent hull ĉ of c is clearly
the convex hull construction, that is, ĉ

V
(M) is the smallest convex subset of

V containing M .

3.4. EXAMPLE. For each subset M of a projection space (X, (αn)n∈N), (cf.
Example 2.4) let us define

t
X

(M) = {x ∈ X : x ∈ M, or αn(x) ∈ M,∀n ∈ N}

Trivially t
X

is extensive and monotone. For the continuity property, assume
that y ∈ f(t

X
(M)), i.e., assume that y = f(x) for some x ∈ t

X
(M). If x ∈ M ,

then y = f(x) ∈ f(M) ⊆ f(t
X

(M)). If x ∈ t
X

(M)−M , then for every n ∈ N,
αn(x) ∈ M . This implies that βn(y) = βn(f(x)) = f(αn(x)) ∈ f(M),
for every n ∈ N. Thus, we have that y ∈ tY (f(M)). Notice that the
above closure coincides with s and consequently with c∞ on subprojection
spaces. Moreover, t ≤ s and they differ on subsets that are not subprojection
spaces. In fact, x ∈ t

X
(M) − M , i.e., αn(x) ∈ M for every n ∈ N, implies

that for every n ∈ N, αn(x) = αn(αn(x)) = αn(y), with y ∈ M . So,
x ∈ sX(M). If M is not a subprojection space and y ∈ M is such that
z = αm(y) is not in M for some m ∈ N, then z 6∈ t

X
(M) since αm(z) =

αm(αm(y)) = αm(y) = z 6∈ M . However, z ∈ sX(M), since for every n ∈ N,
αn(z) = αn(αm(y)) = αmin(n,m)(y) and y ∈ M . The U -closure operator
t is clearly non-standard since closures of non-subprojection spaces are not
subprojection spaces.

The last two examples show that non-standard U -closure operators may
be useful to describe, with the help of hull operators, classical closure oper-
ators.

3.5. EXAMPLE. Consider the set Ω = {(αn)n∈N ∈ ℜN :
∑

n |αn| ≤ 1}.
A totally convex space in the sense of [18] is a nonempty set X with an
“operation” induced by Ω. The result of this “operation” is written as a
formal sum

∑

n αnxn with xn ∈ X and the operations are required to satisfy
the axioms:

(TC1)
∑

n δm
n xn = xm

(TC2)
∑

n αn(
∑

m βn
mxm) =

∑

m(
∑

n αnβn
m)xm.

The morphisms in the category TC of totally convex spaces are functions

X
f

−→ Y that satisfy f(
∑

n αnxn) =
∑

n αn(f(xn)).

The pair (F ,N ) =(surjective,injective) is a factorization structure of
TC. A subspace M of a totally convex space X is called radially closed in
X if for each x ∈ X and real number α such that 0 < |α| ≤ 1, αx ∈ M

implies x ∈ M . Pumplün and Röhrl considered in [18] the closure opera-
tor of TC with respect to N that to each subspace M of a totally convex
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space X, associates the smallest radially closed subspace M̂ containing M .
They used this operator to describe the epimorphisms of the subcategory
of separated totally convex spaces. In [17], M̂ is characterized as being the
smallest subspace of X containing M that for every x ∈ X has the following
property: if for every 0 < ǫ < 1, there exist a ∈ M , y ∈ X and 0 < α < 1
with αx = α(ǫy) + (1 − α)a, then x ∈ M̂ .

Let us consider now the forgetful functor TC
U
−→ Set. If (E ,M) is the

usual (surjective, injective)-factorization structure in Set, a non-standard
U -closure operator of TC is defined for every subset M of a totally convex
space X by:

r
X

(M) = {x ∈ X : ∃α with 0 < |α| ≤ 1 and αx ∈ M}

In fact, by (TC1), r is extensive and it is clearly monotone. Also the
continuity property is trivially verified (cf. also [19, Propositions 1.2 and
1.4]). The U -closure operator r need not preserve subspaces. So, in particular
it is non-standard. However, this operator is useful to describe the closure
operator radial hull. In fact, it was shown in [19, 1.7] that the radial hull
operator is obtained by alternatively iterating r and the hull operator with
respect to N (i.e., the usual convex-hull operator).

3.6. EXAMPLE. Let us consider the category DCPO as in Example 2.5,

let DCPO
U
−→ Set be the usual forgetful functor and let (E ,M) be the

(surjective,injective)-factorization structure in Set. For every subset M of a
dcpo X set

↓
X

M = {x ∈ X : x ≤ m, for some m ∈ M}.

It is easy to see that the above down closure is a U -closure operator of DCPO

and that it is non-standard (in general ↓
X

M is not a sub-dcpo even if M

is). However, the U -closure scott in Example 2.5 is obtained by iterating the
direct-hull closure (which to every subset associates the smallest directed-
complete subset containing it) and the down closure described above.

We would like to thank the referee whose comments and suggestions led
to a substantial improvement of this paper.
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