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0 INTRODUCTION

The development of a general theory about topological connectedness was started by Preuß (cf.

[P1], [P2], [P3]) and by Herrlich ([H]). Further literature on this topic can be found in [AW], [CC],

[Cl], [HP], [L], [T] and [SV]. In this paper we present a notion of connectedness with respect to a

closure operator on a construct X . This notion generalizes the classical concept of connectedness

in topology, extending the concept to categories whose objects are structured sets that do not

necessarily carry a topological structure. Because of the relationship with closure operators,

our notion yields a much closer analog of topological connectedness than the one introduced by

Preuß. In fact, many classical results about connectedness in topology can be generalized.

A Galois connection between classes of connectedness and classes of disconnectedness of a

given category was presented in [H]. In this paper we show that this Galois connection factors

through the collection of all closure operators on the construct X . As a consequence of this

factorization, every connectedness class can be seen as the class of indiscrete objects of a closure

operator and every class of disconnectedness can be seen as the class of discrete objects of some

closure operator.

On first impression, our definition of connectedness with respect to a closure operator might

appear to be a special case of Preuß’s definition. However, our factorization of Herrlich’s Galois

connection enables us to see any connectedness class in the sense of Preuß as a connectedness
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The common address of the authors is: Department of Mathematics, University of Puerto Rico,

P.O. Box 5000, Mayagüez, PR 00681-5000, U.S.A.
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class with respect to a closure operator, i.e., in our sense. Therefore, with our approach we

gain the advantage of having a closure operator on the category X with all its nice implications,

without losing anything from Preuß’s definition.

We use the terminology of [AHS] throughout the paper.

1 PRELIMINARIES

The symbol X will denote a construct, that is, a concrete category whose objects are structured

sets and whose morphisms are structure preserving functions (cf. [AHS]).

We begin by recalling the following

DEFINITION 1.1

X is called an (E,M)-category for sinks, if there exists a collection E of X -sinks, and a class

M of X -morphisms such that:

(a) each of E and M is closed under compositions with isomorphisms;

(b) X has (E,M)-factorizations (of sinks); i.e., each sink s in X has a factorization s = m ◦ e

with e ∈ E and m ∈M, and

(c) X has the unique (E,M)-diagonalization property; i.e., if B
g
−→ D and C

m
−→ D are X -

morphisms with m ∈ M, and e = (Ai
ei−→ B)I and s = (Ai

si−→ C)I are sinks in X with

e ∈ E, such that m ◦ s = g ◦ e, then there exists a unique diagonal B
d
−→ C such that for

every i ∈ I the following diagrams commute:

Ai
ei−→ B

si





y
ւd

C

and

B

dւ




y

g

C −→
m

D

These requirements yield the following features of the classM (cf. [AHS] for the dual case):

PROPOSITION 1.2

(a) Every m in M is a monomorphism.

(b) M is closed under M-relative first factors; i.e., if n ◦m ∈M, and n ∈M, then m ∈M.

(c) M is closed under composition.

(d) M is closed under intersections

(e) Pullbacks of X -morphisms in M exist and belong toM.
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(f) The M-subobjects of every X -object form a (possibly large) complete lattice; suprema are

formed via (E,M)-factorizations

(g) If in addition we require X to have equalizers andM to contain all regular monomorphisms,

then E consists of episinks.

Since (E,M)-factorizations are unique up to isomorphism, we will be talking about “the

(E,M)-factorization” of a sink.

A pre-order (i.e., a reflexive and transitive relation) on theM-subobjects of every X -object

is defined as follows: given two M-subobjects M
m
−→ X and N

n
−→ X , we say that m ≤ n if

there exists an X -morphism M
t
−→ N such that n ◦ t = m.

Notice that whenever no confusion is likely to arise we use the object-oriented notation

M ≤ N with the same meaning as m ≤ n.

We regardM as a full subcategory of the arrow category of X , with the codomain functor

from M to X denoted by U . Since U is faithful, M is concrete over X .

DEFINITION 1.3 ([DG2])

A closure operator on X (with respect toM) is a pair C = (γ, F ), where F is an endofunctor

on M that satisfies UF = U , and γ is a natural transformation from idM to F that satisfies

(idU )γ = idU .

REMARK 1.4

The following characterization of the above definition will be used throughout the paper.

Given a closure operator C = (γ, F ), every morphism M
m
−→ X in M has a canonical

factorization

M
]m[X

C−→ [M ]
X

C

mց




y

[m]X
C

X

where [m]
X

C
= F (m) is called the C-closure of m, and ]m[

X

C
is the domain of the m-component

of γ. The functor [ ]
C
, that is the endofunctor F , induces an order-preserving expansive function

[ ]
X

C
on theM-subobject lattice of every X -object, and these functions are related in the following

sense: if p is the pullback of an M-morphism M
m
−→ Y along some X -morphism X

f
−→ Y , and

q is the pullback of [m]
Y

C
along f , then [p]

X

C
≤ q.

Conversely, any family {φ
X
}

X∈X
of order-preserving expansive functions on theM-subobject

lattices with the property: if p is the pullback of an M-morphism M
m
−→ Y along some X -
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morphism X
f
−→ Y , and q is the pullback of φ

Y
(m) along f , then φ

X
(p) ≤ q, uniquely determines

a closure operator.

Notice that to denote the C-closure of the M-subobject M
m
−→ X we normally write [m]

X

C

instead of the more complete expression [M ]
X

C

[m]XC−→ X . We might simply write [M ]
X

C
whenever

we want to focus on the object part and the morphism [m]
X

C
is an obvious one.

DEFINITION 1.5

Given a closure operator C, we say that a morphism m ∈M, M
m
−→ X is C-closed if ]m[

X

C

is an isomorphism. In this case, M will also be called C-closed. An X -morphism X
f
−→ Y is

called C-dense if for every (E ,M)-factorization (e, m) of f we have that [m]
Y

C
is an isomorphism.

We call C idempotent (weakly hereditary) provided that that [m]
X

C
is C-closed (]m[

X

C
is C-dense)

for everyM-subobject M
m
−→ X . Furthermore, C is said to be hereditary if whenever M

m
−→ X ,

M
t
−→ N and N

n
−→ X are morphisms in M with n ◦ t = m, we have that [t]

N

C
is the pullback

of [m]
X

C
along n. This is often expressed as: [M ]

N

C
≃ [M ]

X

C
∩N .

A special case of an idempotent closure operator arises in the following way. Given any class

A of X -objects and M
m
−→ X in M, define [m]

X

A
to be the intersection of all equalizers of pairs

of X -morphisms r, s from X to some A-object A that satisfy r ◦m = s ◦m, and let ]m[
X

A
∈ M be

the unique X -morphism by which m factors through [m]
X

A
. It is easy to see that the functor [ ]

A

induces an idempotent closure operator CA. This generalizes the Salbany construction of closure

operators induced by classes of topological spaces; cf. [S]. To simplify the notation, instead of

“CA-dense” we usually write “A-dense”.

We denote the collection of all closure operators onM by CL(X ,M) pre-ordered as follows:

C ⊑ D if [m]
X

C
≤ [m]

X

D
for allM-subobjects M

m
−→ X and for all X ∈ X . We say that C and D

are equivalent if both C ⊑ D and D ⊑ C hold. Notice that arbitrary suprema and infima exist

in CL(X ,M), they are formed pointwise in the M-subobject fibers.

For more background on closure operators see, e.g., [C1], [CKS], [DG2], [DGT] and [K].

DEFINITION 1.6

For pre-ordered classes X = (X,⊑) and Y = (Y,⊑), a Galois connection X ←−−→
F

G
Y consists

of order preserving functions F and G that satisfy F ⊣ G; i.e., x ⊑ GF (x) for every x ∈ X and

FG(y) ⊑ y for every y ∈ Y. (G is adjoint and has F as coadjoint.)

x ∈ X (resp. y ∈ Y) is called a fixed point of the Galois connection X ←−−→
F

G
Y if GF (x) = x

(resp. FG(y) = y).
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2 GENERAL RESULTS ABOUT C-CONNECTEDNESS

The main purpose of this section is to introduce a notion of connectedness with respect to a

closure operator C on the construct X and show that most classical results about topological

connectedness can be generalized to this setting.

Throughout the paper we will make the following

ASSUMPTIONS 2.1

(a) The construct X is an (E,M)-category for sinks;

(b) X has a superstrong2 and minimal3 terminal object T that is a singleton;

(c) X has equalizers;

(d) M contains all regular monomorphisms and all morphisms that have T as domain.

Unless otherwise specified, C will always denote a closure operator on X with respect to the

given classM of X -monomorphisms.

DEFINITION 2.2

(a) An X -object X is called C-discrete if X 6= ∅ and for every M-subobject M
m
−→ X , m is

C-closed.

(b) An X -object X is called C-indiscrete if X 6= ∅ and for every M-subobject M
m
−→ X with

M 6= ∅, m is C-dense.

If X
f
−→ Y is an X -morphism then f(X) will denote the middle object of the (E,M)-

factorization (ef , mf ) of f and f−1(f(X)) will denote the corresponding pullback.

DEFINITION 2.3

An X -morphism X
f
−→ Y is called constant if f(X) ≃ T .

Notice that since E and M are closed under composition with isomorphisms, a constant

morphism always has an (E,M)-factorization with T as middle object.

2 We call a terminal object T superstrong if Hom(T, X) 6= ∅ for every X -object X 6= ∅ and for

every epimorphism Y
f
−→ X and morphism T

t
−→ X , there exists a morphism T

k
−→ Y such that

f ◦ k = t.

3 We call a terminal object T minimal if for every M-subobject M
m
−→ X with M 6= ∅, M ≤ T

implies M ≃ T .
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DEFINITION 2.4

An X -object X is called C-connected iff for every C-discrete X -object D, any X -morphism

X
f
−→ D is constant.

PROPOSITION 2.5

Let X
f
−→ Y be an epimorphism in X . If X is C-connected, then so is Y .

Proof:

Let D be a C-discrete X -object and let Y
d
−→ D be an X -morphism. Since X is C-connected,

d ◦ f must be constant. Let (tX , g) be its (E,M)-factorization with X
tX−→ T being the unique

morphism and let (ed, md) be the (E,M)-factorization of d. Since md ◦ ed ◦ f = g ◦ tX , the

diagonalization property gives a morphism T
k
−→ d(Y ) such that k ◦ tX = ed ◦ f and md ◦ k = g.

Let d(Y )
t
−→ T be the unique morphism. Clearly t ◦ k = idT . Now, k ◦ t ◦ ed ◦ f = k ◦ t ◦ k ◦ tX =

k◦idT ◦tX = k◦tX = ed◦f = idd(Y )◦ed◦f . By our assumptions, ed and f are both epimorphisms

(cf. Proposition 1.2(g)), which implies that k ◦ t = idd(Y ). Thus, d(Y ) ≃ T , i.e., d is constant.

REMARK 2.6

Suppose that the category X has products and that the projections are epimorphisms. Then

from the above proposition we obtain that if the product of a family of X -objects is C-connected,

so is each of its factors. However, the converse is not true. As a counterexample, it is enough

to consider in the category Ab of Abelian Groups, the subcategory Tor consisting of all Torsion

Abelian Groups. As Example 4.5 shows, this subcategory is the connectedness class of a certain

closure operator, but it is not closed under products.

PROPOSITION 2.7

(a) Let C be idempotent and let M
m
−→ X be a C-dense M-subobject of X ∈ X . If M is

C-connected, then so is X .

(b) Let C be weakly hereditary and idempotent and let M
m
−→ X be an M-morphism. If M is

C-connected then so is [M ]
X

C
.

Proof:

(a). Let X
d
−→ D be a morphism into the C-discrete object D. Since M is C-connected,

there is an (E,M)-factorization (tM , h) of d ◦m with middle object T . Now let d−1(T )
h̄
−→ X

be the pullback of T
h
−→ D along d. Clearly we have that M ≤ d−1(T ). The C-denseness of m

and the idempotency of C imply that X ≃ [M ]
X

C
≤ [d−1(T )]

X

C
≃ d−1(T ). Notice that this is true,

since T
h
−→ D is C-closed and so is its pullback d−1(T )

h̄
−→ X . Now, d(X) ≃ (d◦h̄)(d−1(T )) ≤ T .

Since d(X) 6= ∅ and T is minimal, we obtain that T ≃ d(X). Thus, X is C-connected.
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(b). Just observe that since C is weakly hereditary, ]m[
X

C
is C-dense and apply part (a).

PROPOSITION 2.8

Let (Mi −→
mi

X)i∈I be a family of M-subobjects of X ∈ X . If each Mi is C-connected and

∩Mi 6= ∅, then the supremum ∨Mi of the family {Mi}i∈I is also C-connected.

Proof:

Let us consider the following commutative diagram

∩Mi
ri−→ ∨Mi

ni





y
րei





y

m

Mi −→
mi

X

where ni and m are the appropriate subobject morphisms and ri = ei ◦ ni for every i ∈ I. Let

∩Mi
t
−→ X be the morphism that satisfies mi ◦ ni = t for every i ∈ I and let ∨Mi

d
−→ D be a

morphism into the C-discrete object D. Since Mi is C-connected for every i ∈ I, we have that

d ◦ ei is constant for every i ∈ I, i.e., the following diagram commutes for every i ∈ I

Mi
ei−→ ∨Mi

ti





y





y
d

T −→
hi

D

with (ti, hi) being the (E,M)-factorization of d ◦ ei.

Notice that m◦ri = m◦ei◦ni = mi ◦ni = t, for every i ∈ I. This implies that m◦ri = m◦rj

for every i, j ∈ I. Thus ri = rj , since m is a monomorphism.

Since x ∈ ∩Mi 6= ∅, there exists a morphism T
f
−→ ∩Mi. Note that ti ◦ ni ◦ f = idT and

d◦ei◦ni = hi◦ti◦ni for all i ∈ I. Thus d◦ei◦ni = hi◦ti◦ni = d◦ri. Since ri = rj for all i, j ∈ I,

we have that hi ◦ ti ◦ ni ◦ f = hj ◦ tj ◦ nj ◦ f for all i, j ∈ I. Consequently, hi ◦ idT = hj ◦ idT ,

for all i, j ∈ I, and so hi = hj for all i, j ∈ I. Call this morphism h.

Now let (ed, md) be the (E,M)-factorization of d and let d(∨Mi)
q
−→ T be the unique

morphism. The diagonalization property yields a morphism T
k
−→ d(∨Mi) such that md ◦ k = h

and k ◦ ti = ed ◦ ei, for every i ∈ I. Clearly, q ◦ k = idT . Now, k ◦ q ◦ ed ◦ ei = k ◦ q ◦ k ◦ ti =

k ◦ idT ◦ ti = k ◦ ti = ed ◦ ei = idd(∨Mi) ◦ ed ◦ ei, for every i ∈ I. Since by our assumptions

(Mi
ei−→ ∨Mi) is an episink and ed is an epimorphism (cf. Proposition 1.2(f), (g)), we obtain

that k ◦ q = idd(∨Mi). Therefore d(∨Mi) ≃ T , i.e., d is constant.

Notice that in view of the above proposition, for every singleton C-connectedM-subobject
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{x} of X ∈ X , there exists a largest C-connected M-subobject of X that has {x} as subobject.

Therefore we can give the following

DEFINITION 2.9

Let X ∈ X and let {x} be a C-connected M-subobject of X . The largest C-connected

M-subobject of X that has {x} as subobject will be called the C-component of {x} in X .

REMARK 2.10

Notice that Proposition 2.8 implies that distinct C-components of the same X -object X

must be disjoint.

PROPOSITION 2.11

If C is weakly hereditary and idempotent, then C-components are C-closed.

Proof:

Let X ∈ X and let CX be a C-component in X . Let us consider the commutative diagram

CX

]m[
X

C−→ [CX ]
X

C

mց




y
[m]

X

C

X

We know that CX is C-connected and from Proposition 2.7(b) so is [CX ]
X

C
. By the maximality

of C-components, we have that CX ≃ [CX ]
X

C
. Thus CX is C-closed.

COROLLARY 2.12

Let C be weakly hereditary and idempotent. Every C-indiscrete X -object X is C-connected.

Proof:

Since X 6= ∅, there exists an X -morphism T
f
−→ X . Let T

d
−→ D be a morphism into the

C-discrete object D. Since (idT , d) is an (E,M)-factorization of d, we have that T is a singleton

C-connected M-subobject of X . From the above proposition, the C-component of T in X is

C-closed and so it must be isomorphic to X . Thus X is C-connected.
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3 A FACTORIZATION OF THE CONNECTEDNESS-
DISCONNECTEDNESS GALOIS CONNECTION

In this section we present a factorization of Herrlich’s ([H]) connectedness-disconnectedness Ga-

lois connection and we show that any connectedness class in Preuß’s sense can be seen as a

connectedness class with respect to a closure operator, i.e., in our sense.

Let S(X ) denote the collection of all full subcategories of X whose objects are nonempty,

ordered by inclusion.

PROPOSITION 3.1

Let CL(X ,M)
D
−→ S(X )op and S(X )op T

−→ CL(X ,M) be defined as follows:

D(C) is the full subcategory with objects all X ∈ X such that X is C-discrete

T (A) = Sup{C ∈ CL(X ,M) : D(C) ⊇ A}.

Then, CL(X ,M)←−−→
D

T
S(X )op is a Galois connection.

Proof:

First of all, we recall that suprema exist in CL(X ,M), so T is well defined.

Clearly, both D and T preserve the order.

It is immediate to see that C ⊑ TD(C). Now, let X ∈ A ∈ S(X )op. Since the supremum in

CL(X ,M) is taken pointwise on the M-subobject fibers, for every M-subobject M
m
−→ X , we

have that [M ]
X

T (A) ≃M . Therefore DT (A) ≤ A.

Similarly we can prove the following

PROPOSITION 3.2

Let CL(X ,M)
I
−→ S(X ) and S(X )

J
−→ CL(X ,M) be defined as follows:

I(C) is the full subcategory with objects all X ∈ X such that X is C-indiscrete

J(B) = Inf{C ∈ CL(X ,M) : I(C) ⊇ B}.

Then, S(X )←−−→
J

I
CL(X ,M) is a Galois connection.

The following two results provide a description of how to construct the closure operators

T (A) and J(B) defined in Propositions 3.1 and 3.2, respectively. A special case of the construction

of T (A) appears in [C2].

PROPOSITION 3.3

Let A ∈ S(X )op. For every X ∈ X , we associate to every M-subobject M
m
−→ X the

M-subobject
X

A[M ]
X
A [m]
−−−−→ X , where

X

A[M ] = ∩{f−1((f ◦m)(M)) : X
f
−→ Y, Y ∈ A} and

X

A[m] is
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the corresponding morphism. For every A ∈ S(X )op we have that
X

A[ ] defines a closure operator

AC on X and AC ≃ T (A).

Proof:

Since (f ◦m)(M) is the middle object of the (E,M)-factorization of f ◦m, using the diag-

onalization property, it is easy to show that
X

A[ ] is expansive and order-preserving. To show the

remaining property, let us consider the following commutative diagram

g−1(M)
ḡ
−→ M

e1−→ (f ◦m)(M)

m̄





y





y

m





y

m1

Z −→
g

X −→
f

Y

where (e1, m1) is the (E,M)-factorization of f ◦m, g−1(M)
m̄
−→ Z is the pullback of M

m
−→ X

along g and Y ∈ A. The diagonalization property yields (f ◦ g ◦ m̄)(g−1(M)) ≤ (f ◦ m)(M).

Therefore f−1((f ◦g◦m̄)(g−1(M))) ≤ f−1((f ◦m)(M)) and so, g−1(f−1((f ◦g◦m̄)(g−1(M)))) ≤

g−1(f−1((f ◦ m)(M))). Now, by taking the intersection indexed by all morphisms X
f
−→ Y

with Y ∈ A, we obtain that ∩g−1(f−1((f ◦ g ◦ m̄)(g−1(M)))) ≤ ∩g−1(f−1((f ◦ m)(M))) ≃

g−1(∩f−1((f ◦ m)(M))) ≃ g−1(
X

A[M ]), since pullbacks and intersections commute. However,
Z

A[g−1(M)] ≤ ∩g−1(f−1((f ◦ g ◦ m̄)(g−1(M)))). Thus,
Z

A[g−1(M)] ≤ g−1(
X

A[M ]). Hence, AC is a

closure operator.

Now, let X ∈ A. The existence of X −→
idX

X implies that for every M-subobject M
m
−→ X

we have that
X

A[M ] ≃M , i.e., X is AC-discrete. Thus, AC ⊑ T (A).

Finally, let M
m
−→ X be an M-subobject of X ∈ X and let X

f
−→ Y be an X -morphism

with Y ∈ A. From M ≤ f−1((f ◦m)(M)), we obtain that [M ]
X

T (A) ≤ [f−1((f ◦m)(M))]
X

T (A) ≃

f−1((f ◦m)(M)), since (f ◦m)(M) is T (A)-closed and so is its pullback f−1((f ◦m)(M)) (cf.

Proposition 3.1). Therefore, by considering all morphisms X
f
−→ Y with Y ∈ A, we obtain that

[M ]
X

T (A) ≤ ∩f
−1((f ◦m)(M)) =

X

A[M ]. Thus, T (A) ⊑ AC. Hence AC ≃ T (A).

PROPOSITION 3.4

Let A ∈ S(X ). For every Y ∈ X , we associate to every M-subobject M
m
−→ Y the

M-subobject A

Y
[M ]

A

Y
[m]

−−−−→ Y = sup(Mi
mi−→ Y )i∈I , where (Mi

mi−→ Y )i∈I consists of the M-

subobject M
m
−→ Y and all the M-subobjects of the form f(X)

mf

−→ Y , for every morphism

X
f
−→ Y with X ∈ A and f(X) ∩M 6= ∅. To simplify this expression we will write: A

Y
[M ] =

sup
(

{M} ∪ {f(X) : X ∈ A, X
f
−→ Y, f(X) ∩M 6= ∅}

)

.

For every A ∈ S(X ), A

Y
[ ] defines a closure operator AC on X . Moreover, we have that

AC ≃ J(A).

10



Proof:

It is easily seen that A

Y
[ ] is expansive and order-preserving. Let us consider the following

diagram

g−1(M)
ḡ

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ M

m̄





y

ց ւ

[g−1(M)]
Y

C(A) −→ [M ]
Z

C(A)

ւ ց





y

m

X −−−−→
f

Y −−−−−−−−−−−−−−−−−−−−−−−−−−−→
g

Z

where the morphism m̄ is the pullback of m along g. Since f(X) ≤ g−1((g ◦ f)(X)), we have

that f(X) ∩ g−1(M) 6= ∅ implies that g−1((g ◦ f)(X)) ∩ g−1(M) 6= ∅. Now, let X
h
−→ Z be an

X -morphism. We have that

A

Y
[g−1(M)] = sup

(

{g−1(M)} ∪ {f(X) : X ∈ A, X
f
−→ Y, f(X) ∩ g−1(M) 6= ∅}

)

≤

sup
(

{g−1(M)} ∪ {g−1((g ◦ f)(X)) : X ∈ A, X
f
−→ Y, g−1((g ◦ f)(X)) ∩ g−1(M) 6= ∅}

)

≤

sup
(

{g−1(M)} ∪ {g−1(h(X)) : X ∈ A, X
h
−→ Z, g−1(h(X)) ∩ g−1(M) 6= ∅}

)

≤

g−1
(

sup({M} ∪ {h(X) : X ∈ A, X
h
−→ Z, h(X) ∩M 6= ∅})

)

= g−1(A
Z

[M ])

Notice that in the last inequality we have used the fact that g−1(h(X)) ∩ g−1(M) 6= ∅ implies

that h(X) ∩M 6= ∅.

This shows that, for every A ∈ S(X ), AC is a closure operator.

Let M
m
−→ Y be an M-subobject of Y ∈ A with M 6= ∅. The existence of the identity

morphism yields that A
Y

[M ] ≃ Y . Therefore we obtain that J(A) ⊑ AC.

Now, let M
m
−→ Y be anM-subobject with M 6= ∅ and let X

f
−→ Y be an X -morphism with

X ∈ A and f(X) ∩M 6= ∅. By our assumptions on M and T , we have that f−1(M) 6= ∅. Since

X is J(A)-indiscrete, we obtain that f(X) ≃ f([f−1(M)]
X

J(A)) ≤ [f(f−1(M))]
Y

J(A ≤ [M ]
Y

J(A) (cf.

[DG2]). Therefore, A
Y

[M ] ≤ [M ]
Y

J(A). If M = ∅, then this last inequality is clearly true. Hence,
AC ⊑ J(A) and consequently AC ≃ J(A).

PROPOSITION 3.5 (cf. [H], [P2])

Let S(X )
∆
−→ S(X )op and S(X )op ∇

−→ S(X ) be defined as follows:

∆(B) is the full subcategory with objects all Y ∈ X such that X
f
−→ Y is constant for every

X ∈ B,
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∇(A) is the full subcategory with objects all X ∈ X such that X
f
−→ Y is constant for every

Y ∈ A.

Then, S(X )←−−→
∆

∇
S(X )op is a Galois connection.

LEMMA 3.6

Let C be a closure operator on X and let X, Y ∈ X . If X is C-indiscrete and Y is C-discrete,

then any morphism X
f
−→ Y is constant.

Proof:

Let (ef , mf ) be the (E,M)-factorization of f . Clearly, X 6= ∅ implies that f(X) 6= ∅.

Since T is a superstrong terminal object, there exists a morphism T
k
−→ f(X) with k ∈ M.

Let t = mf ◦ k. Since Y is C-discrete, T is C-closed and so is its pullback f−1(T ). By our

assumptions on M and T , we have that f−1(T ) 6= ∅. Since X is C-indiscrete, we have that

f−1(T ) ≃ [f−1(T )]
X

C
≃ X . This implies that f(X) ≃ f(f−1(T )) ≤ T . Since T is minimal, we

have that T ≃ f(X). Thus, f is constant.

THEOREM 3.7

The Galois connection S(X )←−−→
∆

∇
S(X )op factors through CL(X ,M) via the Galois connec-

tions S(X )←−−→
J

I
CL(X ,M) and CL(X ,M)←−−→

D

T
S(X )op.

Proof:

First of all, it is easy to see that the two compositions D ◦ J and I ◦ T give rise to a Galois

connection between S(X ) and S(X )op.

Next we must show that I ◦ T = ∇. Let A ∈ S(X )op and let X ∈ (I ◦ T )(A). Since

X 6= ∅ and any object Y ∈ A is T (A)-discrete (cf. Proposition 3.1), Lemma 3.6 gives us that

any morphism X
f
−→ Y is constant. Thus X ∈ ∇(A).

Now, let X ∈ ∇(A) and let X
f
−→ Y be a morphism with Y ∈ A. Consider anM-subobject

M
m
−→ X with M 6= ∅. Let (ef , mf ) and (ef◦m, mf◦m) be the (E,M)-factorizations of f and

f ◦m, respectively. Clearly, mf ◦ ef ◦m = mf◦m ◦ ef◦m. Since f is constant, the diagonalization

property yields a morphism (f ◦m)(M)
t
−→ T such that mf ◦ t = mf◦m. Since T is minimal we

obtain that (f ◦m)(M) ≃ T . Therefore we have that f−1((f ◦m)(M)) ≃ f−1(T ) ≃ f−1(f(X)) ≃

X . Proposition 3.3 implies that [M ]
X

T (A) ≃ X , i.e., X ∈ (I ◦ T )(A). Thus I ◦ T = ∇.

Now we show that ∆ = D◦J . Let Y ∈ ∆(B) and let M
m
−→ Y be anM-subobject. For every

X ∈ B consider all those X -morphisms X
f
−→ Y such that f(X) ∩M 6= ∅. Since f is constant,

f(X) ≃ T . Thus T ∩M ≃ f(X) ∩M 6= ∅ is anM-subobject of T . The minimality of T implies

that T ∩M ≃ T . From Proposition 3.4 we obtain that [M ]
Y

J(B) ≃M . Thus, Y ∈ (D ◦ J)(B).

Finally, let Y ∈ (D ◦ J)(B) and let X
f
−→ Y be an X -morphism with X ∈ B. Consider the

12



(E,M)-factorization (ef , mf ) of f . Since f(X) 6= ∅, there exists a morphism T
k
−→ f(X). Let

t = mf ◦ k. Clearly from T ≤ f(X) we obtain that f(X)∩ T ≃ T 6= ∅. Since Y is J(B)-discrete,

we must have that [T ]
f(X)

J(B) ≃ T . From Proposition 3.4, this implies that f(X) ≤ T . Therefore,

f(X) ≃ T , i.e., f is constant. Thus Y ∈ ∆(B) and hence ∆ = D ◦ J .

Next we show that if A is a full reflective subcategory of X , then the closure operator

T (A) can be described in a rather simple form. This turns out to be very useful in constructing

examples.

PROPOSITION 3.8

Let A be a full reflective subcategory of X , let X ∈ X and let X
rX−→ rX be the reflection

morphism. The assignment X [ ]A that to each M-subobject M
m
−→ X associates the M-

subobject of X , X [M ]A
X [m]A

−−−−→ X , where X [M ]A = r−1
X ((rX ◦m)(M)) and X [m]A is the induced

morphism, defines a closure operator CA on X .

Proof:

It is rather easy to show that X [ ]A is expansive and order-preserving. Let us consider the

following commutative diagram

(rX ◦ m̄)(f−1(M))
e2←− f−1(M)

f̄
−→ M

e1−→ (rY ◦m)(M)

m2





y





y
m̄





y

m





y

m1

rX ←−
rX

X −→
f

Y −→
rY

rY

where, (e1, m1) is the (E,M)-factorization of rY ◦m, m̄ is the pullback of m along f and (e2, m2)

is the (E,M)-factorization of rX ◦ m̄. Since A is reflective in X , there exists a unique morphism

rX
f ′

−→ rY such that f ′ ◦ rX = rY ◦ f . Therefore, we have that f ′ ◦m2 ◦ e2 = f ′ ◦ rX ◦ m̄ =

rY ◦ f ◦ m̄ = rY ◦m ◦ f̄ = m1 ◦ e1 ◦ f̄ . From the (E,M)-diagonalization property, there exists a

morphism (rX ◦ m̄)(f−1(M))
d
−→ (rY ◦m)(M) such that d ◦ e2 = e1 ◦ f̄ and m1 ◦ d = f ′ ◦m2.

Let us consider the following two pullback squares

(rX ◦ m̄)(f−1(M))
r̄X←− r−1

X ((rX ◦ m̄)(f−1(M)))

m2





y





y

m̄2

rX ←−
rX

X

r−1
Y ((rY ◦m)(M))

r̄Y−→ (rY ◦m)(M)

m̄1





y





y

m1

Y −→
rY

rY

Now, m1 ◦d◦ r̄X = f ′ ◦m2 ◦ r̄X = f ′ ◦rX ◦m̄2 = rY ◦f ◦m̄2, i.e., the following diagram commutes
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r−1
X ((rX ◦ m̄)(f−1(M)))

r̄X−→ (rX ◦ m̄)(f−1(M))
d
−→ (rY ◦m)(M)

m̄2





y





y

m1

X −−−−→
f

Y −−−−→
rY

rY

As a consequence of the universal property of pullbacks we obtain the existence of a unique

morphism r−1
X ((rX ◦m̄)(f−1(M)))

d′

−→ r−1
Y ((rY ◦m)(M)) such that r̄Y ◦d

′ = d◦ r̄X and m̄1 ◦d
′ =

f ◦ m̄2. Therefore, the following diagram commutes

r−1
X ((rX ◦ m̄)(f−1(M)))

d′

−→ r−1
Y ((rY ◦m)(M))

m̄2





y





y

m̄1

X −−−−→
f

Y

Again, as a consequence of the universal property of pullbacks we obtain the desired morphism

r−1
X ((rX ◦ m̄)(f−1(M)))

d′′

−→ f−1(r−1
Y ((rY ◦m)(M))). Therefore, we have that X [f−1(M)]A ≤

f−1(X [M ]A). This completes the proof.

PROPOSITION 3.9

Let A be a full reflective subcategory of X . If M
m
−→ X is an M-subobject of an A-object

X , then X [M ]A ≃M , i.e., each nonempty object X ∈ A is CA-discrete.

Proof:

Let us consider the following commutative diagram

M
m

−−−−−−−−−−−−−−−−−−→ X

e1





y

m̄1 ր
r−1
X ((rX ◦m)(M))

ւr̄X





y

rX

(rX ◦m)(M) −−−−−−−−−−−−−−−−−−→
m1

rX

Since X ∈ A, we have that rX is an isomorphism and consequently so is its pullback r̄X along

m1. Since M is closed under composition with isomorphisms, we have that rX ◦m ∈ M. This

implies that e1 is an isomorphism. Therefore we have that M ≃ r−1
X ((rX ◦m)(M)) = X [M ]A.

COROLLARY 3.10

Let A be a full reflective subcategory of X . Then CA ≃ AC.
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Proof:

From Proposition 3.3, it is straightforward to see that T (A) ≃ AC ⊑ CA. However, from

the definition of T (A) (cf. Proposition 3.1) and from Proposition 3.9, we have that CA ⊑ T (A).

Thus, CA ≃ AC.

4 EXAMPLES

We now present some examples to illustrate the general theory.

EXAMPLE 4.1

Let X be the category Top of topological spaces and letM be the class of all embeddings.

If C is the closure operator induced by the topology, then the class of C-discrete objects agrees

with the class DISCR of nonempty discrete topological spaces and the C-connected objects are

exactly the classical nonempty connected topological spaces.

Let M
m
−→ X be an M-subobject of X ∈ TOP. Clearly, [M ]

X

T (DISCR) equals the intersec-

tion of all clopen subsets of X containing M . If M is a singleton subobject, then [M ]
X

T (DISCR)

is exactly the quasicomponent of M . From Theorem 3.7, connected nonempty topological spaces

form the indiscrete class of such a closure operator.

Now, let A be the class of all connected nonempty topological spaces. From Proposition 3.4,

[M ]
X

J(A) is the union of M with all connected subsets of X which intersect M . It is easy to check

that the subcategory of all Totally Disconnected nonempty topological spaces form the discrete

class of J(A). Thus from Theorem 3.7, Connected nonempty topological spaces and Totally

Disconnected nonempty topological spaces are fixed points of the Galois connection (∆,∇) of

Proposition 3.5 (cf. [H]).

EXAMPLE 4.2

Let X be the category Top of topological spaces and letM be the class of all embeddings.

Let A = TOP0 ∈ S(X )op and let B = IND ∈ S(X ). IND and TOP0 are corresponding fixed

points of the Galois connection (∆,∇) of Proposition 3.5 (cf. [AW]).

Let M
m
−→ X be anM-subobject of X ∈ TOP and let

c(M) = {y ∈ X : ∃x ∈M with ¯{x} = ¯{y}}

.

where, ¯{x} denotes the usual topological closure of {x}. If X
r0−→ r0X is the TOP0-reflection,

then c(M) = r−1
0 ((r0 ◦m)(M)). Thus, from Corollary 3.10, [M ]

X

T (TOP0) = c(M). It is easy to
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see that [M ]
X

T (TOP0) ⊆ b(M), where b(M) is the b-closure of M . We recall that b(M) consists

of all those points x ∈ X such that for every neighborhood U of x, M ∩ Cl(x) ∩ U 6= ∅, where

Cl(x) denotes the topological closure of the subset {x} (cf. [B], [NW]).

If Y ∈ IND and Y
f
−→ X is continuous, then f(Y ) ∈ IND. Thus [M ]

X

J(IND) is the union

of M with all indiscrete subobjects of X which intersect M .

If Z is an object of (D◦J)(IND), then the only indiscrete subspaces of Z are the singletons.

This means that Z ∈ TOP0. Clearly, if Z ∈ TOP0, then it cannot have indiscrete subspaces

with more than one point. Therefore, J is discrete on TOP0, i.e., (D ◦ J)(IND) = TOP0, as

we expected.

EXAMPLE 4.3

Let X be the category Top of topological spaces and letM be the class of all embeddings.

Suppose that A = TOP1 ∈ S(X )op and let B be the full subcategory whose objects are all

absolutely connected nonempty topological spaces, i.e., B = {X ∈ TOP such that X cannot be

decomposed into any disjoint family L of nonempty closed subsets with |L| > 1} (cf. [P1]). A

and B are corresponding fixed points of the Galois connection (∆,∇) of Proposition 3.5. Let

X ∈ TOP and let M
m
−→ X be an M-subobject. Since every topological space in TOP1 is

CTOP1
-discrete (cf. [G]), by definition of T (A), we have that [M ]

X

TOP1
≤ [M ]

X

T (TOP1). Now,

let X
r1−→ r1X be the TOP1-reflection morphism. Then, from Corollary 3.10, [M ]

X

T (TOP1) ≃

r−1
1 ((r1 ◦ m)(M)). However, [M ]

X

TOP1
≃ r−1

1 ((r1 ◦ m)(M)) (cf. [DGT, Proposition 3.11]).

Therefore, [M ]
X

TOP1
≃ [M ]

X

T (TOP1), i.e., the T (TOP1)-closure agrees with the Salbany closure

induced by TOP1. So, from Theorem 3.7, B is the class of indiscrete objects of CTOP1
.

EXAMPLE 4.4

Let X be the category Grp and let M be the class of all monomorphisms. Consider the

full subcategory A = Ab. Since Ab is closed under quotients, every X ∈ Ab is CAb-discrete.

Therefore, by the definition of the functor T , we have that CAb ⊑ T (Ab). Let M
m
−→ X be a

monomorphism in Grp and let X −→−→
f

g
Y be two homomorphisms such that f ◦m = g ◦m, with

Y ∈ A. Since equ(f, g) = ker(f − g) = (f − g)−1(f − g)(M), we have that [M ]
X

T (Ab) ≤ [M ]
X

Ab.

This, together with the above inequality gives that CAb ≃ T (Ab). Consequently, the subcategory

∇(Ab) of all CAb-connected objects agrees with the subcategory of all CAb-indiscrete objects

which is equal to the subcategory of all groups G such that G has no proper normal subgroup N

with G/N abelian. Notice that ∇(Ab) is the subcategory of perfect groups, i.e., X ∈ ∇(Ab) iff

X = X ′, where X ′ denotes the subgroup generated by the commutators.

If Y ∈ ∇(Ab) and Y
f
−→ X is a homomorphism, then f(Y ) ∈ ∇(Ab). Thus [M ]

X

J(∇(Ab))

is the subgroup generated by M and all perfect subgroups of X . Finally, it is easy to see that
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(D ◦ J)(∇(Ab)) is the class of all groups which do not have any non-trivial perfect subgroup.

EXAMPLE 4.5

Let X be the category Ab and let M be the class of all monomorphisms. Let T and F be

corresponding fixed points of the Galois connection (∆,∇) of Proposition 3.5. (The pair (T ,F)

is normally called a torsion theory.) Let X ∈ Ab and let X
rX−→ rX be its F -reflection. For

every subobject M
m
−→ X we have that M + Ker(rX) ≃ r−1

X (rX(M)). This, together with

Corollary 3.10, gives us that [M ]
X

T (F) ≃ r−1
X (rX(M)) ≃ M + Ker(rX). Clearly, T is the class

of T (F)-indiscrete objects (cf. Theorem 3.7). Also notice that T (F) ⊑ CF (cf. Example 4.4).

In particular, if (T ,F) =(Torsion,Torsion-free), then [M ]
X

T (F) ≃ M + Tor(X), where Tor(X)

denotes the torsion subgroup of X . If (T ,F) = (Divisible,Reduced), then [M ]
X

T (F) ≃M+Div(X),

where Div(X) denotes the largest divisible subgroup of X . It is interesting to notice that in both

cases, [M ]
X

J(T ) = [M ]
X

T (F). Therefore, the subcategory Tor (Div) of Torsion Abelian Groups

(Divisible Abelian Groups) is the connectedness class with respect to the closure operator T (T ),

where T denotes the subcategory of Torsion-free Abelian Groups (Reduced Abelian Groups).

We would like to thank Temple Fay for some helpful conversations about these last two

examples.

We do appreciate the referee’s comments and suggestions that lead to a substantial improve-

ment of this paper.
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