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Abstract: Let X be an arbitrary category with an (E,M)-factorization structure for sinks.

A notion of constant morphism that depends on a chosen class of monomorphisms is intro-

duced. This notion yields a Galois connection that can be seen as a generalization of the clas-

sical connectedness-disconnectedness correspondence (also called torsion-torsion free in algebraic

contexts). It is shown that this Galois connection factors through the collection of all closure

operators on X with respect to M.
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Introduction

This paper presents in the setting of an arbitrary category some ideas that were
introduced by D. Hajek and the author in a category whose objects were structured
sets (cf. [3]).

Let X be an arbitrary category with an (E,M)-factorization structure for

sinks and let N ⊆ M. An X -morphism X
f

−→ Y is called N -constant if its direct
image is isomorphic to the direct image under f of every N -subobject of X. So,
if S(X ) denotes the class of all subclasses of objects of X , ordered by inclusion,

for every N ⊆ M, the relation: XR
N

Y if and only if every X -morphism X
f

−→ Y

is N -constant yields a Galois connection S(X )
∆N-�
∇N

S(X )op. If N is closed under

direct images, we have that this Galois connection factors through CL(X ,M), i.e.,
the collection of all closure operators on X with respect to M, via two Galois

connections CL(X ,M)
DN-�
TN

S(X )op and S(X )
JN-�
IN

CL(X ,M).

The development of a general theory of topological connectedness was started
by Preuß (cf. [15-17]) and by Herrlich [10]. We recently became aware that an
introduction to the study of connectedness and disconnectedness in an arbitrary
category, using an approach similar to ours was made by Petz (cf. [14]).

We would like to point out that the definition of N -constant morphism that
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appears in this paper was not chosen with the intention of developing a general
theory of connectedness and disconnectedness, but rather to support certain con-
structions with closure operators in an arbitrary setting. A general theory of
connectedness and disconnectedness was recently presented by Clementino in [6],
where she extends results in [12] to an arbitrary category.

Examples and further study of the Galois connections mentioned in this paper
will appear in a subsequent paper (cf. [2]).

We use the terminology of [1] throughout the paper. We also acknowledge that
Paul Taylor’s commutative diagrams macro package was used to typeset most of
the diagrams in this paper.

1. Preliminaries

Throughout we consider a category X together with a fixed class M of X -monomor-
phisms and a class E of X -sinks such that X is an (E,M)-category for sinks, (cf.
[1] for the dual case), that is:

(a) each of E and M is closed under compositions with isomorphisms;

(b) X has (E,M)-factorizations (of sinks); i.e., each sink s in X has a factorization
s = m ◦ e with e ∈ E and m ∈ M, and

(c) X has the unique (E,M)-diagonalization property; i.e., if B
g

−→ D and C
m
−→ D

are X -morphisms with m ∈ M, and e = (Ai
ei−→ B)I and s = (Ai

si−→ C)I are
sinks in X with e ∈ E, such that m ◦ s = g ◦ e, then there exists a unique

diagonal B
d

−→ C such that m ◦ d = g and for every i ∈ I, d ◦ ei = si.

DEFINITION 1.1. A closure operator C on X (with respect to M) is a fam-

ily {( )
C

X
}X∈X of functions on the M-subobject lattices of X with the following

properties that hold for each X ∈ X :

(a) [expansiveness] m ≤ (m)
C

X
, for every M-subobject M

m
−→ X;

(b) [order-preservation] m ≤ n ⇒ (m)
C

X
≤ (n)

C

X
for every pair of M-subobjects of

X;

(c) [morphism-consistency] If p is the pullback of the M-subobject M
m
−→ Y along

some X -morphism X
f

−→ Y and q is the pullback of (m)
C

Y
along f , then (p)

C

X
≤ q,

i.e., the closure of the inverse image of m is less than or equal to the inverse
image of the closure of m.

Condition (a) implies that for every closure operator C on X , every M-

subobject M
m
−→ X has a canonical factorization m = (m)

C

X
◦ t, where (M)

C

X

(m)
C

X−→ X

is called the C-closure of the subobject (M, m).

When no confusion is likely we will write m
C

rather than (m)
C

X
and for nota-

tional symmetry we will denote the morphism t by m
C
.



Connectedness, disconnectedness and closure operators, a more general approach 3

If X
f

−→ Y is an X -morphism and M
m
−→ X is an M-subobject, then the

(E,M)-factorization of f ◦ m will be denoted by X
ef◦m

−→ Mf

mf

−→ Y . Mf

mf

−→ Y

will be called the direct image of m along f . If N
n

−→ Y is an M-subobject, the

pullback f−1(N)
f−1(n)
−→ X of n along f will be called the inverse image of n along f .

Whenever no confusion is likely to arise, to simplify the notation we will denote
the morphism ef◦m simply ef .

REMARK 1.2. Notice that in the above definition, under condition (b), the
morphism-consistency condition (c) is equivalent to the following statement con-

cerning direct images: if M
m
−→ X is an M-subobject and X

f
−→ Y is a morphism,

then ((m)
C

Y
)f ≤ (mf )

C

Y
, i.e., the direct image of the closure of m is less than or equal

to the closure of the direct image of m; (cf. [7]).

DEFINITION 1.3. Given a closure operator C, we say that m ∈ M is C-closed

(C-dense) if m
C

(m
C

) is an isomorphism. We call C idempotent provided that m
C

is C-closed for every m ∈ M. C is called weakly hereditary if m
C

is C-dense for
every m ∈ M.

Notice that Definition 1.1(c) implies that pullbacks of C-closed M-subobjects
are C-closed.

We denote the collection of all closure operators on M by CL(X ,M) pre-
ordered as follows: C ⊑ D if m

C

≤ m
D

for all m ∈ M (where ≤ is the usual order
on subobjects). Notice that arbitrary suprema and infima exist in CL(X ,M), they
are formed pointwise in the M-subobject fibers.

For more background on closure operators see, e.g., [4], [5], [7], [8] and [13].
For a detailed survey on the same topic one could check [11].

DEFINITION 1.4. For pre-ordered classes X = (X,⊑) and Y = (Y,⊑), a Galois

connection X
F-�
G

Y consists of order preserving functions F and G that satisfy

F ⊣ G, i.e., x ⊑ GF (x) for every x ∈ X and FG(y) ⊑ y for every y ∈ Y . (G is adjoint
and has F as coadjoint).

If x ∈ X and y ∈ Y are such that F (x) = y and G(y) = x, then x and y are said
to be corresponding fixed points of the Galois connection (X , F, G,Y).

Properties and many examples of Galois connections can be found in [9].

2. General results

Throughout the paper we assume that X is an (E,M)-category for sinks.

Let S(X ) be the collection of all subcategories of X , ordered by inclusion and
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let N be a fixed subclass of M. For every X ∈ X , we denote by NX all the
N -subobjects that have X as codomain.

DEFINITION 2.1. Let N ⊆ M. An X -morphism X
f

−→ Y is called N -constant if
for every N -subobject N

n
−→ X, we have that nf ≃ (idX)f .

As a consequence we have the following

PROPOSITION 2.2. (cf. [10]) Let N ⊆ M. Define S(X )
∆N−→ S(X )op and

S(X )op ∇N−→ S(X ) as follows:

∇N (A) = {X ∈ X : ∀Y ∈ A, X
f

−→ Y is N -constant}

∆N (B) = {Y ∈ X : ∀X ∈ B, X
f

−→ Y is N -constant}

Then, S(X )
∆N-�
∇N

S(X )op is a Galois connection.

As in [3], with some minor modifications we have the following two Galois
connections.

PROPOSITION 2.3. Let CL(X ,M)
DN−→ S(X )op and S(X )op TN−→ CL(X ,M) be

defined by:

DN (C) = {X ∈ X : every n ∈ NX is C-closed}

TN (A) = Sup{C ∈ CL(X ,M) : DN (C) ⊇ A}.

Then, CL(X ,M)
DN-�
TN

S(X )op is a Galois connection.

PROPOSITION 2.4. Let CL(X ,M)
IN−→ S(X ) and S(X )

JN−→ CL(X ,M) be defined
by:

IN (C) = {X ∈ X : every n ∈ NX is C-dense}

JN (B) = Inf{C ∈ CL(X ,M) : IN (C) ⊇ B}.

Then, S(X )
JN-�
IN

CL(X ,M) is a Galois connection.

Clearly, we have the following

COROLLARY 2.5. The composition functions DN ◦ JN and IN ◦ TN give rise to
a Galois connection between S(X ) and S(X )op.

The following result provides a description of how to construct the closure
operator TN (A) defined in Proposition 2.3.

PROPOSITION 2.6. Let A ∈ S(X )op and let N be a subclass of M. For every
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X ∈ X and for every M-subobject M
m
−→ X, we define

Am = ∩{f−1(n) : Y ∈ A, X
f

−→ Y, N
n

−→ Y ∈ NY and m ≤ f−1(n)}.

For every A ∈ S(X )op we have that the function A( ) that to every M-subobject
M

m
−→ X associates Am is an idempotent closure operator on X and Am ≃ mTN (A).

Proof: We first observe that as a consequence of X being an (E,M)-category
for sinks, M is closed under the formation of pullbacks and intersections and so
Am ∈ M.

We begin by showing that A( ) is a closure operator on X . It is straightfor-
ward to show that A( ) is expansive and order-preserving. To show the remaining
property, let us consider the following commutative diagram

Z
g - X

f - Y

I@
@

@
@

f−1(n) I@
@

@
@

n

g−1(M)

g−1(m)

6

- M

m

6

- f−1(N) - N

where Y ∈ A, n ∈ NY and m ≤ f−1(n).

Now, g−1(m) ≤ g−1(Am) = g−1(∩f−1(n)) ≃ ∩g−1(f−1(n)) ≃ ∩(f ◦ g)−1(n), since
pullbacks and intersections commute. Now since not all the morphisms from Z to
Y are of the form f ◦ g we obtain that A(g−1(m)) ≤ ∩(f ◦ g)−1(n) ≃ g−1(f−1(n)) ≃
g−1(Am). Hence, A( ) is a closure operator.

To show idempotency it is enough to observe that if n ∈ NY and Am ≤ f−1(n)
then clearly m ≤ f−1(n). On the other hand, if m ≤ f−1(n), then by definition of
Am we also have that Am ≤ f−1(n). Thus we obtain that Am ≃ A(Am)

Now, let X ∈ A. The existence of X −→
idX

X implies that for every N -subobject
N

n
−→ X we have that An ≃ n. Thus, A( ) ⊑ TN (A).

Finally, let X ∈ X , let X
f

−→ Y be an X -morphism with Y ∈ A and let M
m
−→ X

be an M-subobject. Consider the N -subobject N
n

−→ Y with m ≤ f−1(n). Then,
we obtain that mTN (A) ≤ (f−1(n))TN (A) ≃ f−1(n), since n is TN (A)-closed and so is

its pullback f−1(n). Therefore, by considering all morphisms X
f

−→ Y with Y ∈ A
and n ∈ NY with m ≤ f−1(n), we obtain that mTN (A) ≤ ∩f−1(n) = Am. Thus,
TN (A) ⊑ A( ). Hence A( ) ≃ TN (A).

Next we provide a description of how to construct the closure operator JN (B)
defined in Proposition 2.4.

PROPOSITION 2.7. Let B ∈ S(X ) and let N ⊆ M. For every Y ∈ X and for
every M-subobject M

m
−→ Y , we define

CBN
(m) = sup

(

{m} ∪ {(idX)f : X ∈ B, X
f

−→ Y and ∃n ∈ NX with nf ≤ m}
)

.
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For every B ∈ S(X ), the function CBN
is a weakly hereditary closure operator

on X . Moreover, we have that CBN
(m) ≃ mJN (B).

Proof: We first notice that due to the fact that X is an (E,M)-category for
sinks, suprema are formed via (E,M)-factorizations. Therefore, CBN

(m) ∈ M.

It is easily seen that CBN
is expansive and order-preserving. Let us consider

the following commutative diagram

X
f - Y

g - Z

I@@@
(g−1(m))CBN I@@@

mCBN

(g−1(M))CBN -

6

MCBN

���
(g−1(m))CBN

�
��

�
mCBN

�

g−1(M)

g−1(m)

6

- M

m

Let X
h

−→ Z be an X -morphism. We have that (g−1(m))CBN=

sup
(

{g−1(m)} ∪ {(idX)f : X ∈ B, X
f

−→ Y and ∃n ∈ NX with nf ≤ g−1(m)}
)

≃

sup
(

{g−1(m)} ∪ {(idX)f : X ∈ B, X
f

−→ Y and ∃n ∈ NX with ng◦f ≤ m}
)

≤

sup
(

{g−1(m)} ∪ {g−1((idX)g◦f ) : X ∈ B, X
f

−→ Y and ∃n ∈ NX with ng◦f ≤ m}
)

≃

g−1
(

sup({m} ∪ {(idX)g◦f : X ∈ B, X
f

−→ Y and ∃n ∈ NX with ng◦f ≤ m}
)

≤

g−1
(

sup({m} ∪ {(idX)h : X ∈ B, X
h

−→ Z and ∃n ∈ NX with nh ≤ m}
)

=g−1(mCBN ).

Notice that above we have used the fact that pullbacks and suprema commute.

This shows that, for every B ∈ S(X ), CBN
is a closure operator.

To see that CBN
is weakly hereditary, let M

m
−→ Y be an M-subobject and let

X
f

−→ Y , with X ∈ B, be such that there exists N
n

−→ X ∈ NX with nf ≤ m. Let
us consider the following commutative diagram

X
f - Y

�
�

�
�n � @

@
@

@ef R �
�

�
�(idX)f
� I@

@
@

@

mCBN

N Xf

t -

6

MCBN

@
@

@
@ef◦n R �

�
�

��

�
�

�
�

mCBN

�

Nf
- M

m
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Notice that the morphism t exists by construction of mCBN .

Consider the (E,M)-factorization of t◦ef , (et◦ef
, (idX)t◦ef

). Due to the (E,M)-
diagonaliza-tion property, from the following commutative diagram

N
et◦ef- Nt◦ef

MCBN

?
nt◦ef

Nf

ef◦n

?

nf

- Y
?
mCBN

we obtain that nt◦ef
≤ nf ≤ m and so (idX)t◦ef

occurs in the construction of
(mCBN

)CBN . However, since (idX)f and CBN
(m) both belong to M, a property of

(E,M)-categories implies that also t ∈ M. Therefore, we have that t ≃ (idX)t◦ef
.

We conclude that (idX)f ≤ (mCBN
)CBN , which implies mCBN ≤ (mCBN

)CBN . Conse-

quently, mCBN ≃ (mCBN
)CBN , i.e.; CBN

is weakly hereditary.

If Y ∈ B and N
n

−→ Y ∈ NY , the identity morphism yields that nCBN ≃ idY .
Therefore we obtain that JN (B) ⊑ CBN

.

Now, let M
m
−→ Y be an M-subobject of Y and let X

f
−→ Y be an X -morphism

with X ∈ B and such that there exists N
n

−→ X ∈ NX with nf ≤ m. By definition
of JN (B), we have that nJN (B) ≃ idX . This implies that (idX)f ≃ (nJN (B))f ≤
(nf )JN (B) ≤ mJN (B) (cf. Remark 1.2). Therefore, CBN

(m) ≤ mJN (B). Thus, JN (B) ≃
CBN

.

THEOREM 2.8. Let N be a subclass of M closed under the formation of direct

images. Then the Galois connection S(X )
∆N-�
∇N

S(X )op factors through CL(X ,M)

via the two Galois connections S(X )
JN-�
IN

CL(X ,M) and CL(X ,M)
DN-�
TN

S(X )op.

Proof: Let A ∈ S(X )op and let X ∈ (IN ◦ TN )(A). Consider X
f

−→ Y with
Y ∈ A and let N

n
−→ X belong to NX . From the properties of closure operators, we

have that (nTN (A))f ≤ (nf )TN (A). Since n is TN (A)-dense, we have that (nTN (A))f ≃
(idX)f . From Proposition 2.3, we have that every N -subobject of Y is TN (A)-
closed, and since N is closed under direct images, we obtain that (nf )TN (A) ≃ nf .
Therefore we have that (idX)f ≤ nf . However, the reverse inequality always holds,
thus we have that nf ≃ (idX)f , i.e., X ∈ ∇N (A). Thus (IN ◦ TN )(A) ⊆ ∇N (A).

Now, let X ∈ ∇N (A). Let us consider X
f

−→ Y with Y ∈ A and an N -subobject
N

n
−→ X. By hypothesis we have that nf ≃ (idX)f . Since N is closed under

direct images, we have that nf belongs to NY . Consequently, idX ≃ f−1((idX)f ) ≃



8 G. Castellini

f−1(nf ). Notice that, due to the existence of a Galois connection between direct
and inverse images, we have that if n ≤ f−1(n′) then nf ≤ n′ and so idX ≃ f−1(nf ) ≤
f−1(n′), for every n′ ∈ NY satisfying n ≤ f−1(n′). Therefore we obtain that nTN (A) ≃

idX , for every N
n

−→ X in NX . So, X ∈ (IN ◦ TN )(A). Thus IN ◦ TN = ∇N .

Let B ∈ S(X ) and let Y ∈ (DN ◦ JN )(B). Consider X
f

−→ Y with X ∈ B. If
N

n
−→ X belongs to NX , then from Proposition 2.4 we have that n is JN (B)-dense,

i.e., nJN (B) ≃ idX . This implies that (nJN (B))f ≃ (idX)f . ¿From the properties of
closure operators, we have that (nJN (B))f ≤ (nf )JN (B). Since every N -subobject of
Y is JN (B)-closed and N is closed under direct images, we have that (nf )JN (B) ≃ nf .
Therefore, we obtain that (idX)f ≤ nf . Since we always have that nf ≤ (idX)f , we
conclude that nf ≃ (idX)f . Thus, X ∈ ∆N (B) and so (DN ◦ JN )(B) ⊆ ∆N (B).

Now, let Y ∈ ∆N (B) and let M
m
−→ Y ∈ NY . Consider X

f
−→ Y with X ∈ B and

n ∈ NX such that nf ≤ m. Since f is N -constant, we have that (idX)f ≃ nf ≤ m.
Consequently, from Proposition 2.7 we have that mJN (B) ≃ m for every M

m
−→ X

in NY . So, X ∈ (DN ◦ JN )(B). Thus DN ◦ JN = ∆N .

REMARK 2.9. (1) Notice that, since (DN ◦JN , IN ◦TN ) is an adjoint situation, we
could have proved either of the two equalities IN ◦TN = ∇N or DN ◦ JN = ∆N and
obtain the other one (up to isomorphism) by the uniqueness of adjoint situations
(cf. [1, Proposition 19.9] and [9, Proposition 1.04]).

(2) Also notice that in the case that X is a construct satisfying all the as-
sumptions of [3] and N = M, then our present notion of N -constant morphism
falls short of agreeing with the one of constant morphism in [3]. The only difference
being the fact that in this case, morphisms with constant domain are M-constant
but they are not constant morphisms according to [3]. However, in the category
Top of topological spaces (resp. Ab of abelian groups), by taking M={ all ex-
tremal monomorphisms} and N={ all extremal monomorphisms with nonempty
domain} (obviously in Ab N=M), Proposition 2.2 produces connectedness and
disconnectedness (resp. torsion theories). More detailed examples that illustrate
Theorem 2.8 can be found in [2].

We conclude with some results that show how the various constructions pre-
sented above interact with each other.

PROPOSITION 2.10. Let N ⊆ M and let B ∈ S(X ) and A ∈ S(X )op be two
corresponding fixed points of the Galois connection (S(X ), ∆N ,∇N , S(X )op). Then,
the following hold:

(a) If Y ∈ A and m ∈ MY , then m is JN (B)-closed;

(b) Let N be closed under the formation of pullbacks. If X ∈ B and m ∈ MX ,
then m is TN (A)-dense;

(c) JN (B) ⊑ TN (A);

(d) If N is closed under direct images, then for every C ∈ CL(X ,M), we have that
DN (C) ⊆ (∆N ◦ IN )(C);
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(e) If N is closed under direct images, then for every C ∈ CL(X ,M), we have that
IN (C) ⊆ (∇N ◦ DN )(C).

Proof: (a). Let Y ∈ A and let X
f

−→ Y be an X -morphism. Let M
m
−→ Y

be an M-subobject and let N
n

−→ X be an N -subobject such that X ∈ B and
nf ≤ m. Then, f is N -constant and therefore we have that (idX)f ≃ nf ≤ m. Thus,
mJN (B) ≃ m, i.e.; m is JN (B)-closed.

(b). Let X ∈ B and let M
m
−→ X be an M-subobject. Suppose that X

f
−→ Y is

an X -morphism with Y ∈ A and let N
n

−→ Y be an N -subobject with m ≤ f−1(n).
Since N is closed under the formation of pullbacks, then f−1(n) ∈ NX . Now, f

is N -constant and so we have that (idX)f ≃ (f−1(n))f ≤ n. This implies that
idX ≤ f−1((idX)f ) ≤ f−1(n). Thus, mTN (A) ≃ idX . Hence, m is TN (A)-dense.

(c). It is a direct consequence of (a).

(d). Let X ∈ IN (C), let Y ∈ DN (C) and let X
f

−→ Y be a morphism. From the
properties of closure operators and the fact that N is closed under direct images,
we have that for every N

n
−→ X ∈ N , (idX)f ≃ (nC)f ≤ (nf )C ≃ nf . Thus we obtain

that Y ∈ (∆N ◦ IN )(C).

(e). Similarly to (d).
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