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0 INTRODUCTION

This paper is a continuation of the work started in [C2].

Let X be an arbitrary category with an (E,M)-factorization structure for sinks and let N ⊆

M. An X -morphism X
f

−→ Y is called N -constant if the direct image of X under f is isomorphic

to the direct image under f of every N -subobject of X . If S(X ) denotes the collection of all

subclasses of objects of X , ordered by inclusion, for every N ⊆ M, the relation: XR
N

Y if and

only if every X -morphism X
f

−→ Y is N -constant yields a Galois connection S(X )
∆N-�
∇N

S(X )op.

It was proved in [C2] that if N is closed under direct images, we have that this Galois connection

factors through CL(X ,M), i.e., the collection of all closure operators on X with respect to M,

via two Galois connections S(X )
JN-�
IN

CL(X ,M) and CL(X ,M)
DN-�
TN

S(X )op.

The development of a general theory of topological connectedness was started by Preuß (cf.

[P1-P3]) and by Herrlich [H]. However, our definition of N -constant morphism was not chosen

with the intention of developing a general theory of connectedness and disconnectedness, but

rather to support certain constructions with closure operators. A general theory of connectedness

and disconnectedness was recently presented by Clementino in [Cl], where she extends results in

[HP] to an arbitrary category.

1 This paper was partially supported by the Research Office of the Faculty of Arts and Sciences of

the University of Puerto Rico – Mayagüez campus.
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In this paper we present some closedness properties of the Galois closed classes of the Galois

connection S(X )
∆N-�
∇N

S(X )op. We show that if A is a reflective subcategory of X and B is core-

flective in X , then a simpler characterization of the closure operators TN (A) and JN (B) can be

given. Moreover, following some ideas introduced in [CKS2], we bring more insight into the the-

ory by showing that the Galois connections S(X )
JN-�
IN

CL(X ,M) and CL(X ,M)
DN-�
TN

S(X )op

can also be factored.

Section 3 includes a number of examples that illustrate the theory.

We use the terminology of [AHS] throughout the paper2.

1 PRELIMINARIES

Throughout we consider a category X and a fixed class M of X -monomorphisms, which contains

all X -isomorphisms. It is assumed that X is M-complete; i.e.,

(1) M is closed under composition

(2) Pullbacks of M-morphisms exist and belong to M, and multiple pullbacks of (possibly large)

families of M-morphisms with common codomain exist and belong to M.

One of the consequences of the above assumptions is that there is a uniquely determined

class E of sinks in X such that X is an (E,M)-category for sinks, that is:

(a) each of E and M is closed under compositions with isomorphisms;

(b) X has (E,M)-factorizations (of sinks); i.e., each sink s in X has a factorization s = m ◦ e

with e ∈ E and m ∈ M, and

(c) X has the unique (E,M)-diagonalization property; i.e., if B
g

−→ D and C
m
−→ D are X -

morphisms with m ∈ M, and e = (Ai
ei−→ B)I and s = (Ai

si−→ C)I are sinks in X with

e ∈ E, such that m ◦ s = g ◦ e, then there exists a unique diagonal B
d

−→ C such that for

every i ∈ I the following diagrams commute:

Ai
ei−→ B

si





y
ւd

C

and

B

d ւ




y

g

C −→
m

D

That X is an (E,M)-category implies the following features of M and E (cf. [AHS] for the

dual case):

2 Paul Taylor’s commutative diagrams macro package was used to typeset most of the diagrams in

this paper.
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PROPOSITION 1.1

(0) Every isomorphism is in both M and E (as a singleton sink).

(1) Every m in M is a monomorphism.

(2) M is closed under M-relative first factors, i.e., if n ◦ m ∈ M, and n ∈ M, then m ∈ M.

(3) M is closed under composition.

(4) Pullbacks of X -morphisms in M exist and belong to M.

(5) The M-subobjects of every X -object form a (possibly large) complete lattice; suprema are

formed via (E,M)-factorizations and infima are formed via intersections.

Notice that in the above proposition, the word “lattice” is to be understood in a generalized

sense for not necessarily antisymmetric pre-orders. Moreover, throughout the paper we will use

the expression M-subobject for both m ∈ M and the corresponding equivalence class of elements

of M.

If X
f

−→ Y is an X -morphism and M
m
−→ X is an M-subobject, then M

ef◦m

−→ Mf

mf

−→ Y

will denote the (E,M)-factorization of f ◦ m. Mf

mf
−→ Y will be called the direct image of m

along f . If N
n

−→ Y is an M-subobject, then the pullback f−1(N)
f−1(n)
−→ X of n along f will be

called the inverse image of n along f . Whenever no confusion is likely to arise, to simplify the

notation we will denote the morphism ef◦m simply ef .

DEFINITION 1.2

A closure operator C on X (with respect to M) is a family {( )
C

X
}X∈X of functions on the

M-subobject lattices of X with the following properties that hold for each X ∈ X :

(a) [expansiveness] m ≤ (m)
C

X
, for every M-subobject M

m
−→ X ;

(b) [order-preservation] m ≤ n ⇒ (m)
C

X
≤ (n)

C

X
for every pair of M-subobjects of X ;

(c) [morphism-consistency] If p is the pullback of the M-subobject M
m
−→ Y along some X -

morphism X
f

−→ Y and q is the pullback of (m)
C

Y
along f , then (p)

C

X
≤ q, i.e., the closure

of the inverse image of m is less than or equal to the inverse image of the closure of m.

Condition (a) implies that for every closure operator C on X , every M-subobject M
m
−→ X

has a canonical factorization

M
t

−→ (M)
C

X

m ց




y
(m)

C

X

X

where ((M)
C

X
, (m)

C

X
) is called the C-closure of the subobject (M, m).
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When no confusion is likely we will write m
C

rather than (m)
C

X
and for notational symmetry

we will denote the morphism t by m
C
.

REMARK 1.3

(1) Notice that in the above definition, under condition (b), the morphism-consistency condition

(c) is equivalent to the following statement concerning direct images: if M
m
−→ X is an M-

subobject and X
f

−→ Y is a morphism, then ((m)
C

Y
)f ≤ (mf )

C

Y
, i.e., the direct image of the

closure of m is less than or equal to the closure of the direct image of m; (cf. [DG]).

(2) Under condition (a), both order-preservation and morphism-consistency, i.e., conditions (b)

and (c) together are equivalent to the following: given (M, m) and (N, n) M-subobjects of

X and Y , respectively, if f and g are morphisms such that n ◦ g = f ◦ m, then there exists

a unique morphism d such that the following diagram

M
g - N

@@@
m

C

R
@@@

n
C

R
M

C d -

n

N
C

	��
�
m

C 	���
n

C

X

m

?

f
- Y

?

commutes.

(3) If we regard M as a full subcategory of the arrow category of X , with the codomain functor

from M to X denoted by U , then the above definition can also be stated in the following

way: A closure operator on X (with respect to M) is a pair C = (γ, F ), where F is an

endofunctor on M that satisfies UF = U , and γ is a natural transformation from idM to F

that satisfies (idU )γ = idU (cf. [DG]).

DEFINITION 1.4

Given a closure operator C, we say that m ∈ M is C-closed if m
C

is an isomorphism. An

X -morphism f is called C-dense if for some (and hence every) (E,M)-factorization (e, m) of f

we have that m
C

is an isomorphism. We call C idempotent provided that m
C

is C-closed for

every m ∈ M. C is called weakly hereditary if m
C

is C-dense for every m ∈ M. Furthermore, if

M′ ⊆ M, then C is said to be hereditary with respect to M′ if whenever M
m
−→ X , M

t
−→ N

and N
n

−→ X are morphisms in M with n ◦ t = m and n ∈ M′, we have that t
C

is the pullback

of m
C

along n (cf. [CG]). If M′ = M, then C is simply called hereditary.

Notice that Definition 1.2(c) implies that pullbacks of C-closed M-subobjects are C-closed.
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A special case of an idempotent closure operator arises in the following way. Given any class

A of X -objects and M
m
−→ X in M, define m

A

to be the intersection of all equalizers of pairs

of X -morphisms r, s from X to some A-object A that satisfy r ◦ m = s ◦ m, and let m
A

∈ M

be the unique X -morphism by which m factors through m
A

. It is easy to see that this gives

rise to an idempotent closure operator that we will denote by SA. This generalizes the Salbany

construction of closure operators induced by classes of topological spaces, cf. [S].

We denote the collection of all closure operators on M by CL(X ,M) pre-ordered as follows:

C ⊑ D if m
C

≤ m
D

for all m ∈ M (where ≤ is the usual order on subobjects). Notice that

arbitrary suprema and infima exist in CL(X ,M), they are formed pointwise in the M-subobject

fibers.

For more background on closure operators see, e.g., [C1], [CKS1], [CKS2], [DG], [DGT] and

[K]. For a detailed survey on the same topic, one could check [Ho].

DEFINITION 1.5

For pre-ordered classes X = (X,⊑) and Y = (Y,⊑), a Galois connection X
F-�
G

Y consists

of order preserving functions F and G that satisfy F ⊣ G, i.e., x ⊑ GF (x) for every x ∈ X and

FG(y) ⊑ y for every y ∈ Y. (G is adjoint and has F as coadjoint).

If x ∈ X and y ∈ Y are such that F (x) = y and G(y) = x, then x and y are said to be

corresponding fixed points of the Galois connection (X , F, G,Y) (we may use at times the shorter

notation (F, G)). To be more precise, we may sometimes make use of the expressions “left fixed

point” and “right fixed point” for x and y, respectively.

Properties and many examples of Galois connections can be found in [EKMS].

2 GENERAL RESULTS

Throughout the paper we assume that X is an (E,M)-category for sinks.

Let S(X ) denote the collection of all subcategories of X , ordered by inclusion and let N be

a fixed subclass of M. Throughout, for every X ∈ X , MX (NX) will denote the “lattice” of all

M-subobjects (N -subobjects) of X . We begin by recalling the following definition and results

from [C2].

DEFINITION 2.1

Let N ⊆ M. An X -morphism X
f

−→ Y is called N -constant if for every N -subobject

N
n

−→ X , we have that nf ≃ (idX)f .
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PROPOSITION 2.2 (cf. [H])

Let N ⊆ M. Define S(X )
∆N−→ S(X )op and S(X )op ∇N−→ S(X ) as follows:

∇N (A) = {X ∈ X : ∀Y ∈ A, every X
f

−→ Y is N -constant}

∆N (B) = {Y ∈ X : ∀X ∈ B, every X
f

−→ Y is N -constant}

Then, S(X )
∆N-�
∇N

S(X )op is a Galois connection.

PROPOSITION 2.3

Let CL(X ,M)
DN−→ S(X )op and S(X )op TN−→ CL(X ,M) be defined by:

DN (C) = {X ∈ X : every n ∈ NX is C-closed}

TN (A) = Sup{C ∈ CL(X ,M) : DN (C) ⊇ A}.

Then, CL(X ,M)
DN-�
TN

S(X )op is a Galois connection.

PROPOSITION 2.4

Let CL(X ,M)
IN−→ S(X ) and S(X )

JN−→ CL(X ,M) be defined by:

IN (C) = {X ∈ X : every n ∈ NX is C-dense}

JN (B) = Inf{C ∈ CL(X ,M) : IN (C) ⊇ B}.

Then, S(X )
JN-�
IN

CL(X ,M) is a Galois connection.

PROPOSITION 2.5

Let A ∈ S(X )op. For every X ∈ X and for every M-subobject M
m
−→ X , we define

Am = ∩{f−1(n) : Y ∈ A, X
f

−→ Y, N
n

−→ Y ∈ NY and m ≤ f−1(n)}.

For every A ∈ S(X )op we have that the function A( ) that to every M-subobject M
m
−→ X

associates Am is an idempotent closure operator on X and Am ≃ mTN (A).

PROPOSITION 2.6

Let B ∈ S(X ). For every Y ∈ X and for every M-subobject M
m
−→ Y , we define

CBN
(m) = sup

(

{m} ∪ {(idX)f : X ∈ B, X
f

−→ Y and ∃n ∈ NX with nf ≤ m}
)

.

For every B ∈ S(X ), the function CBN
is a weakly hereditary closure operator on X . More-

over, we have that CBN
(m) ≃ mJN (B).
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THEOREM 2.7

Let N be a subclass of M closed under the formation of direct images. Then the Galois

connection S(X )
∆N-�
∇N

S(X )op factors through CL(X ,M) via the two Galois connections

S(X )
JN-�
IN

CL(X ,M) and CL(X ,M)
DN-�
TN

S(X )op.

PROPOSITION 2.8

Let N ⊆ M and let X
f

−→ Y be an X -morphism. The following are equivalent:

(a) For every N -subobject N
n

−→ X we have that nf ≃ (idX)f ;

(b) f factors through nf , for every N -subobject N
n

−→ X .

Proof:

(a) ⇒ (b). Consider the N -subobject N
n

−→ X and let (e, (idX)f ) and (ef , nf) be

(E,M)-factorizations of f and f ◦n, respectively. From the hypothesis, there is an isomorphism

Xf
i

−→ Nf such that nf ◦ i = (idX)f . Consequently we have that f = (idX)f ◦ e = nf ◦ i ◦ e.

Thus (b) holds.

(b) ⇒ (a). We will use here the same notation as in the first part of the proof. From the

hypothesis we obtain a morphism X
d

−→ Nf such that nf ◦ d = f . Now we have the following

two commutative diagrams

X
e

−→ Xf

d





y





y

(idX)f

Nf −→
nf

Y

and

N
ef

−→ Nf

e◦n





y





y

nf

Xf −→
(idX )f

Y

.

The (E,M)-diagonalization property yields a morphism r such that nf ◦ r = (idX)f and a

morphism s such that (idX)f ◦ s = nf . Therefore we obtain that (idX)f ◦ s ◦ r = (idX)f =

(idX)f ◦ idXf
. Since (idX)f is a monomorphism, we conclude that s ◦ r = idXf

. This shows that

s is a retraction and a monomorphism and consequently is actually an isomorphism.

REMARK 2.9

Part (b) of Proposition 2.8 provides an alternative formulation of Definition 2.1. Since this

formulation of the definition of N -constant morphism simplifies the writing of the proofs, we will

be using it throughout the paper.

Next we examine the behavior of the Galois closed classes of S(X )
∆N-�
∇N

S(X )op with respect

to some classical constructions.
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PROPOSITION 2.10

For every subcategory B ∈ S(X ), ∆N (B) is closed under M-subobjects.

Proof:

Let M
m
−→ Y be an M-subobject with Y ∈ ∆N (B), let X ∈ B, let N

n
−→ X be an N -

subobject of X and let X
f

−→ M be an X -morphism. If (ef , nf ) and (em◦f , nm◦f ), denote the

(E,M)-factorizations of f ◦n and m◦f ◦n, respectively, then we obtain the following commutative

diagram

X
f - M

@
@

@
m

R
N

n
6

ef - Nf

nf

6

Y

@
@

@em◦f R �
�

�
nm◦f

�

Nm◦f

We first observe that since Y ∈ ∆N (B), from Remark 2.9, there is a morphism X
d

−→ Nm◦f

such that nm◦f ◦ d = m ◦ f .

Now we have that m ◦ nf ◦ ef = m ◦ f ◦ n = nm◦f ◦ em◦f . The (E,M)-diagonalization

property implies the existence of a unique morphism Nm◦f
t

−→ Nf that satisfies t ◦ em◦f = ef

and m ◦ nf ◦ t = nm◦f . So, we have that m ◦ nf ◦ t ◦ d = nm◦f ◦ d = m ◦ f . Since m is a

monomorphism, we obtain that nf ◦ t◦d = f . Thus f factors through nf and again from Remark

2.9, M ∈ ∆N (B).

PROPOSITION 2.11

Let X have a terminal object T and assume that any morphism with T as domain belongs

to M. If E is contained in the class of episinks and N consists of all morphisms having T as

domain, then for every subclass B ∈ S(X ), we have that ∆N (B) is closed under monosources.

Proof:

Let us consider the following commutative diagram
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X
f - Y

pi- Yi

Tf

6
nf

�
�

�
ef

�

T

tX

6

ei

- Ti

6

mi

where (ei, mi) and (ef , nf ) are the (E,M)-factorizations of pi ◦ f ◦ tX and f ◦ tX , respectively

and (Y
pi
−→ Yi)i∈I is a monosource with Yi ∈ ∆N (B) for every i ∈ I. Let X

dX−→ T be the

unique morphism with codomain T . By hypothesis, for every i ∈ I, there exists a morphism

X
ti−→ Ti such that pi ◦ f = mi ◦ ti. Notice that since epimorphisms with terminal domain are

already isomorphisms, we have that ei is an isomorphism for every i ∈ I. Since T is a terminal

object, we have that dX = e−1
i ◦ ti for every i ∈ I and so ti = ei ◦ dX , for every i ∈ I. Now,

pi ◦ f = mi ◦ ti = mi ◦ ei ◦ dX = pi ◦ f ◦ tX ◦ dX = pi ◦nf ◦ ef ◦ dX for every i ∈ I. Since (pi)i∈I is

a monosource, we have that f = nf ◦ ef ◦ dX . Thus, f factors through nf and so Y ∈ ∆N (B).

We recall that an X -morphism X
q

−→ Q is called an E-quotient if the singleton sink q

belongs to E.

PROPOSITION 2.12

If N is closed under pullbacks along E-morphisms, then for every A ∈ S(X )op, ∇N (A) is

closed under E-quotients.

Proof:

Let us consider the following commutative diagram

X
q - Q

f- Y

q−1(N)

q−1(n)
6

t
- N

n
6

ef

- Nf

6
nf

where q ∈ E, Y ∈ A, X ∈ ∇N (A) and q−1(n) is the pullback of n ∈ N along q. Notice that by

hypothesis q−1(n) ∈ N . Since f ◦ q is N -constant, it factors through (q−1(n))f◦q via a morphism

X
d

−→ (q−1(N))f◦q. Now let us consider the commutative diagram

9



X
q - Q

(q−1(N))f◦q

d
?

(q−1(n))f◦q

- Y
?
f

q−1(N)

ef◦q

6

ef ◦ t
- Nf

6
nf

From the (E,M)-diagonalization property we obtain a morphism d′ such that d′ ◦ q = d and

(q−1(n))f◦q ◦ d′ = f and a morphism t′ such that t′ ◦ ef◦q = ef ◦ t and nf ◦ t′ = (q−1(n))f◦q.

Therefore we obtain that f = nf ◦ t′ ◦ d′, and so Q ∈ ∇N (A).

PROPOSITION 2.13

Let N be closed under pullbacks and let Xi ∈ ∇N (A) for every i ∈ I. If the coproduct ∐Xi

exists, then it also belongs to ∇N (A).

Proof:

Let us consider the following commutative diagram

Xi

ki- ∐Xi

f- Y

k−1
i (N)

k−1
i (n)

6

hi

- N

n
6

ef

- Nf

6
nf

where (ef , nf ) is an (E,M)-factorization of f ◦ n, k−1
i (n) is the pullback of n ∈ N along ki and

Y ∈ A.

Now, let (ei, ni) be an (E,M)-factorization of f ◦ ki ◦ k−1
i (n). Since, for every i ∈ I,

Xi ∈ ∇N (A) and k−1
i (n) ∈ N , we have that for every i ∈ I there exists a morphism ti having

Xi as domain such that ni ◦ ti = f ◦ ki. Since for every i ∈ I we have that ni ◦ ei = nf ◦ ef ◦ hi,

then the (E,M)-diagonalization property implies that for every i ∈ I there exists a morphism di

with codomain Nf , such that nf ◦ di = ni and di ◦ ei = ef ◦ hi. Therefore, there exists a unique

∐Xi
t

−→ Nf such that t ◦ ki = di ◦ ti. Now we have that f ◦ ki = ni ◦ ti = nf ◦ di ◦ ti = nf ◦ t ◦ ki,

for every i ∈ I. The uniqueness condition in the definition of coproduct implies that nf ◦ t = f .

Thus, we have that ∐Xi ∈ ∇N (A).
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REMARK 2.14

Notice that if in the category TOP of topological spaces (Grp of groups), we choose for

instance the (episink, extremal monomorphism)-factorization structure, and N consists of all

inclusions of singleton subobjects, then Propositions 2.10 and 2.11 imply that for any subcategory

B of TOP (Grp), ∆N (B) is an epireflective subcategory of TOP (Grp). Moreover, if we choose

as N any class of extremal monomorphisms that is closed under pullbacks, then Propositions 2.12

and 2.13 imply that for any subcategory A of TOP (Grp), ∇N (A) is a coreflective subcategory

of TOP (Grp).

PROPOSITION 2.15

Let N be a subclass of M closed under the formation of direct images. Then the following

hold:

(a) Suppose that A ∈ S(X )op is a right fixed point of the Galois connection (∆N ,∇N ). Then,

A is also a right fixed point of the Galois connection (DN , TN ).

(b) Suppose that B ∈ S(X ) is a left fixed point of the Galois connection (∆N ,∇N ). Then, B is

also a left fixed point of the Galois connection (JN , IN ).

(c) If C ∈ CL(X ,M) satisfies C = TN (A) = JN (B), for some A ∈ S(X )op that is a right fixed

point of the Galois connection (DN , TN ) and for some B ∈ S(X ) that is a left fixed point of

the Galois connection (JN , IN ), then A and B are corresponding fixed points of the Galois

connection (∆N ,∇N ).

Proof:

(a). Suppose that A ∈ S(X )op is a right fixed point of the Galois connection (∆N ,∇N ).

In [C2], Proposition 2.10, we proved that under the assumption of N being closed under direct

images, we have that for every C ∈ CL(X ,M), DN (C) ⊆ (∆N ◦ IN )(C). So, we have that

A ⊆ DN (TN (A)) ⊆ ∆N (IN (TN (A))) = (∆N ◦ ∇N )(A) = A. Thus, A = (DN ◦ TN )(A).

(b). Similarly to (a).

(c). Under our hypotheses we have that C = TN (A) = JN (B). Then we have that ∆N (B) =

DN (JN (B)) = DN (TN (A)) = A. Analagously we obtain that ∇N (A) = B.

PROPOSITION 2.16

Let N be a subclass of M closed under composition and let M′ ⊆ M. If C is a closure

operator that is hereditary with respect to M′ and M′ satisfies the condition that for every

n ∈ N and m′ ∈ M′, the morphism m′ ◦n belongs to N , then DN (C) and IN (C) are both closed

under the formation of M′-subobjects.
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Proof:

Let X ∈ DN (C) and let N
n

−→ X be an M′-subobject of X . If M
t

−→ N is an N -subobject

of N then, by our assumption on M′, we have that m = n ◦ t ∈ N . Let us consider the following

commutative diagram

MC
X

mC

- X

�������
m

*

M

mC
6

t
- N

6
n

@@@tC R ���
tC
�

MC
N

The fact that C is hereditary with respect to M′ implies that t
C

is the pullback of m
C

along n.

However, since X ∈ DN (C), we have that m
C

is an isomorphism, i.e., m is C-closed. Now, since

n is a monomorphism, t is the pullback of m along n and so t is also C-closed. Thus N ∈ DN (C).

Let X ∈ IN (C), and let N
n

−→ X be an M′-subobject of X . If M
t

−→ N is an N -subobject

of N then, by our assumption on M′, we have that m = n ◦ t ∈ N . Let us consider again

the commutative diagram in the proof of part (a). Since X ∈ IN (C), we have that m
C

is an

isomorphism. Again, the hereditary property of C with respect to M′ implies that t
C

is the

pullback of m
C

along n. Since t
C

, as a pullback of an isomorphism, is an isomorphism, we can

conclude that N ∈ IN (C).

Next we show that under some additional assumptions on the subclass A, the descriptions

of the closure operators TN (A) and JN (A) given in Propositions 2.5 and 2.6 can be further

simplified. First we need the following

LEMMA 2.17

Let N ⊆ M and let A ⊆ X . Denote by N pb
A the union of N with all inverse images

(pullbacks) of elements of N along all X -morphisms having codomain in A. Then, we have that

TN (A) ≃ T
N

pb

A

(A).

Proof:

Clearly, since N ⊆ N pb
A , from Proposition 2.5 we have that T

N
pb

A

(A) ⊑ TN (A). On the other

hand, since pullbacks of C-closed subobjects are C-closed, any closure operator C that satisfies

DN (C) ⊇ A also satisfies D
N

pb

A

(C) ⊇ A. Thus, TN (A) ⊑ T
N

pb

A

(A). This, together with the

previous inequality yields that TN (A) ≃ T
N

pb

A

(A).
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PROPOSITION 2.18

Let A be a full, reflective subcategory of X and for X ∈ X , let X
rX−→ rX denote the

reflection morphism. If N is closed under the formation of pullbacks along X -morphisms with

codomain in A then, for every M-subobject M
m
−→ X , we have that

mTN (A) ≃ ∩{r−1
X (n) : N

n
−→ rX ∈ Nand m ≤ r−1

X (n)}.

Proof:

First of all, it is straightforward to notice that mTN (A) ≤ ∩{r−1
X (n) : N

n
−→ rX ∈ Nand m ≤

r−1
X (n)} (cf. Proposition 2.5). Now, let X

f
−→ Y be an X -morphism with Y ∈ A and let N

n
−→ Y

be an N -subobject of Y . Since A is reflective in X , there exists a unique X -morphism rX
g

−→ Y

such that g ◦ rX = f . Clearly, if the M-subobject M
m
−→ X satisfies m ≤ f−1(n), then we have

that m ≤ f−1(n) ≃ (g ◦ rX)−1(n) ≃ r−1
X (g−1(n)). From the hypothesis, g−1(n) ∈ N . Thus we

have that mTN (A) ≥ ∩{r−1
X (n) : N

n
−→ rX ∈ Nand m ≤ r−1

X (n)}. This, together with the other

inequality proves the result.

COROLLARY 2.19

Let A be a full, reflective subcategory of X and for X ∈ X , let X
rX−→ rX denote the

reflection morphism. Then, for every N ⊆ M and for every M-subobject M
m
−→ X , we have

that

mTN (A) ≃ ∩{r−1
X (n) : N

n
−→ rX ∈ Nand m ≤ r−1

X (n)}.

Proof:

From Lemma 2.17 we can replace N by N pb
A

and apply the previous proposition.

PROPOSITION 2.20

Let A be a full, coreflective subcategory of X and for Y ∈ X , let cY
cY−→ Y denote the

coreflection morphism. If N is closed under the formation of direct images then, for every M-

subobject M
m
−→ Y , we have that

mJN (A) ≃ sup ({m} ∪ {(idcY )cY : ∃n ∈ NcY with ncY
≤ m}) .

Proof:

Clearly we have that mJN (A) ≥ sup ({m} ∪ {(idcY )cY : ∃n ∈ NcY with ncY
≤ m}) (cf. Pro-

position 2.6).

Now, let M
m
−→ Y be an M-subobject and let X

f
−→ Y be such that X ∈ A and there

exists an N -morphism N
n

−→ X with nf ≤ m. Since A is a coreflective subcategory of X ,

there exists a unique morphism X
g

−→ cY such that cY ◦ g = f . Let (e1, m1) and (e2, m2)
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be the (E,M)-factorizations of f and cY , respectively. Clearly, m2 ◦ e2 ◦ g = m1 ◦ e1, from

the (E,M)-diagonalization property, we obtain a monomorphism (idX)f
d

−→ (idcY )cY
such that

m2 ◦d = m1. Again, using the (E,M)-diagonalization property, from the following commutative

diagram

X
f - Y

@@@
g
R ���

cY �

cY

Ng

6
ng

���
eg

�

N

n

6

ef

- Nf

?
- M

6

m

we obtain that (ng)cY
≤ m. Notice that since N is closed under direct images, we have that

ng ∈ N . Therefore every (idX)f that occurs in the formation of mJN (A) is dominated by some

(idcY )cY that satisfies the condition that there exists a morphism n ∈ NcY such that ncY
≤ m.

Thus, we have that mJN (A) ≤ sup ({m} ∪ {(idcY )cY : ∃n ∈ NcY with ncY
≤ m}) This, together

with the previous inequality, gives the wanted result.

Now, following the ideas presented in [CKS2], we would like to show how the two Galois

connections S(X )
JN-�
IN

CL(X ,M) and CL(X ,M)
DN-�
TN

S(X )op can each be factored via three

other Galois connections.

Let S(M) denote the collection of all subclasses of M, ordered by inclusion. We begin with

the following result.

PROPOSITION 2.21

Let N ⊆ M and let S(X )
HN−→ S(M) and S(M)

KN−→ S(X ) be defined by:

HN (A) = {n ∈ NX : X ∈ A}

KN (M′) = {X ∈ X : n ∈ NX ⇒ n ∈ M′}.

Then S(X )
HN-�
KN

S(M) is a Galois connection.

Proof:

Clearly both HN and KN are order-preserving.

Now, if X ∈ A, then every n ∈ NX also belongs to HN (A). Consequently we have that

X ∈ (KN ◦ HN )(A).
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On the other hand, if n ∈ (HN ◦ KN )(M′), then n ∈ NX with X ∈ KN (M′). This implies

that n ∈ M′.

As a consequence we obtain that S(M)op
K

op

N-�
H

op

N

S(X )op is also a Galois connection.

We recall the following definition and the next three results from [CKS2].

DEFINITION 2.22

(1) A subclass N of M is called E-sink stable, if for every commutative square

M
f

−→ N

m





y





y

n

X −→
g

Y

with n ∈ M and the 2-sink (g, n) ∈ E we have that m ∈ N implies n ∈ N .

(2) Pes(M) denotes the collection of all E-sink stable subclasses of M, ordered by inclusion.

(3) Ppb(M) denotes the collection of all pullback-stable subclasses of M, ordered by inclusion.

THEOREM 2.23 [CKS2, Theorem 2.3]

(1) Let N ∈ Ppb(M). If for every M-subobject M
m
−→ X , we define:

mSN = inf{m′ ∈ N : M ′ m′

−→ X and m ≤ m′}

then SN is an idempotent closure operator with respect to M.

(2) Let N ∈ Pes(M). If for every M-subobject M
m
−→ X , we define:

mCN = sup{(N
n

−→ X) ∈ M : ∃(M
t

−→ N) ∈ N with n ◦ t = m}

then CN is a weakly hereditary closure operator with respect to M.

THEOREM 2.24 [cf. CKS2, Theorem 2.4]

(1) Let CL(X ,M)
R∗−→ Ppb(M)op and Ppb(M)op R∗

−→ CL(X ,M) be defined by:

R∗(C) = {m ∈ M : m is C-closed}

R∗(N ) = PN .

Then, CL(X ,M)
R∗-�
R∗

Ppb(M)op is a Galois connection;

(2) Let CL(X ,M)
K∗

−→ Pes(M) and Pes(M)
K∗−→ CL(X ,M) be defined by:

K∗(C) = {m ∈ M : m is C-dense}
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K∗(N ) = CN .

Then, Pes(M)
K∗-�
K∗

CL(X ,M) is a Galois connection.

PROPOSITION 2.25 [CKS2, Proposition 2.7]

(1) Let Ppb(M)op Q∗
−→ S(M)op and S(M)op Q∗

−→ Ppb(M)op be defined by:

Q∗(M′) = M′

Q∗(M′′) = {m ∈ M : m is a pullback of some n ∈ M′′}.

Then, Ppb(M)op
Q∗-�
Q∗

S(M)op is a Galois connection.

(2) Let S(M)
L∗−→ Pes(M) and Pes(M)

L∗

−→ S(M) be defined by:

L∗(M′) = {n ∈ M : n ◦ f = g ◦ m′ for some m′ ∈ M′ and some X -morphisms f and g

with (g, n) ∈ E}

L∗(M′′) = M′′.

Then, S(M)
L∗-�
L∗

Pes(M) is a Galois connection.

Now we can prove the following

THEOREM 2.26

For every N ⊆ M, we have the following two commutative diagrams of Galois connections

S(X )
JN-�
IN

CL(X ,M)

KN ↑↓ HN K∗ ↑↓ K∗

S(M)
L∗-�
L∗

Pes(M)

CL(X ,M)
DN-�
TN

S(X )op

R∗ ↑↓ R∗ Kop
N ↑↓ Hop

N

Ppb(M)op
Q∗-�
Q∗

S(M)op

Proof:

Let us start with the left diagram. Given C ∈ CL(X ,M), K∗(C) = {m ∈ M : m is C-dense}

and so L∗(K∗(C)) = K∗(C). Thus, KN (L∗(K∗(C))) = KN (K∗(C)) = {X ∈ X : n ∈ NX ⇒ n

is C-dense} = IN (C).

Now let B ∈ S(X ). Then, HN (B) = {n ∈ NX : X ∈ B} and therefore we have that

L∗(HN (B)) = {t ∈ M : t ◦ f = g ◦ m′ for some m′ ∈ NX , X ∈ B and (g, t) ∈ E}. Now, notice

that IN (K∗(L∗(HN (B)))) = (KN ◦L∗ ◦K∗)(K∗ ◦L∗ ◦HN )(B) ⊇ B. Thus, from Proposition 2.4

we have that JN (B) ⊑ K∗(L∗(HN (B))).

To show that K∗(l∗(HN (B))) ⊑ JN (B), consider the M-subobject M
m
−→ Y . Let m′ ∈ MY

be such that there exists t ∈ L∗(HN (B)) with m = m′ ◦ t. Therefore we obtain the following
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commutative diagram

X
g - M ′

m′

- Y

�
�

�
m

�

M

6
t

�
�

�
h

�

N

n

6

ef

- Nf

6

nf

where n ∈ N , (g, t) ∈ E, X ∈ B and nf is the direct image of n along the morphism f = m′ ◦ g.

Now, since m◦h = nf ◦ef , the (E,M)-diagonalization property yields the existence of a morphism

Nf
d

−→ M such that m ◦ d = nf and d ◦ ef = h. This implies that the morphism Xf

(idX )f
−−−−→ Y

occurs in the construction of mJN (B) (cf. Proposition 2.6). Let Xf ∨M
γ

−→ Y be the supremum

of (idX)f and m, and let iM and iXf
be the morphisms with codomain Xf ∨ M induced by the

supremum construction. Notice that γ ≤ mJN (B). From the following commutative diagram

X
m′ ◦ g - Y � γ

Xf ∨ M

@
@

@e R �
�

�(idX)f � I@
@

@
m

�
�

�
iM

�

Xf M

	�
�

�t

M ′

g

?

idM ′

- M ′

6

m′

it is easily seen that m′ ◦ t = γ ◦ iM and m′ ◦ g = (idX)f ◦ e = γ ◦ iXf
◦ e. Again the (E,M)-

diagonalization property yields a morphism d′ that makes the following diagram commute

•
(g, t) - M ′

	�
�

�
�

�
d′

Xf ∨ M

(iXf
◦ e, iM )

?

γ
- Y

?

m′

Notice that the bullet in the above diagram represents the objects X and M . Thus, m′ ≤

γ ≤ mJN (B) and so K∗(l∗(HN (B))) ⊑ JN (B).
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Now let us prove the commutativity of the diagram on the right. If C ∈ CL(X ,M), then

R∗(C) = {m ∈ M : m is C-closed}. From the properties of closure operators, R∗(C) is pullback-

stable. Consequently, Q∗(R∗(C)) = R∗(C) and Kop
N (Q∗(R∗(C))) = {X ∈ X : n ∈ NX ⇒ n ∈

R∗(C)} = {X ∈ X : n ∈ NX ⇒ n is C-closed} = DN (C).

Now let A ∈ S(X )op. Hop
N (A) = {n ∈ NY : Y ∈ A}. Q∗(Hop

N (A)) = {m ∈ MX :

m is a pullback of some n ∈ Hop
N (A) along some X -morphism X

f
−→ Y } = {m ∈ MX :

m is a pullback of some n ∈ NY along some X -morphism X
f

−→ Y, Y ∈ A}. Consequently,

given the M-subobject M
m
−→ X , we have that mR∗(Q∗(Hop

N
(A))) = inf{m′ ∈ Q∗(Hop

N (A)) : m ≤

m′} = inf{m′ ∈ MX : m ≤ m′ and m′ = f−1(n), n ∈ NY , X
f

−→ Y, Y ∈ A} = mTN (A). This

concludes the proof.

PROPOSITION 2.27

(a) Let X have squares and equalizers and let M contain all regular subobjects. Assume that

N is the class of diagonal morphisms, i.e., morphisms of the form Y
δY−→ Y ×Y , with Y ∈ X ,

where δY is the equalizer of the projections of the square Y × Y into Y . Then for every

subcategory A of X that is closed under squares and M-subobjects, TN (A) agrees with SA,

that is the Salbany closure induced by A.

(b) Let X have squares and equalizers and let M contain all regular subobjects. If A is closed

under squares and N consists of all A-regular subobjects, then TN (A) agrees with SA.

Proof:

(a). Let M
m
−→ X be an M-subobject and let E

e
−→ X be the equalizer of a pair of morphims

f, g with codomain Y ∈ A such that f ◦m = g ◦m. It is easy to see that e is the pullback of the

diagonal morphism Y
δY−→ Y × Y along the morphism X

<f,g>
−−−−→Y × Y . Since m ≤ e, N contains

all diagonal morphisms and Y × Y ∈ A, we have that e occurs in the construction of TN (A).

Therefore, mTN (A) ≤ mSA .

Now, let X
f

−→ Y ×Y be an X -morphism with Y ×Y ∈ A. Notice that, since M contains all

regular subobjects and A is closed under M-subobjects, we have that Y ∈ A. If m ≤ f−1(δY ),

then since f−1(δY ) = equ(π1 ◦ f, π2 ◦ f) and Y ∈ A, we have that f−1(δY ) occurs in the

construction of SA. Thus, we have that mSA ≤ mTN (A) and therefore we can conclude that

TN (A) ≃ SA.

(b). Let M
m
−→ X be an M-subobject, let X

f
−→ Y be an X -morphism with Y ∈ A and let

n ∈ NY . Since pullbacks of equalizers are equalizers, we have that if m ≤ f−1(n) then f−1(n) is

the equalizer of a pair of morphisms with codomain in A that agree on m. Thus, f−1(n) occurs

in the construction of SA. This implies that mSA ≤ mTN (A).

On the other hand, since δY ∈ N , exactly as in part a), we can show that mTN (A) ≤ mSA .

Consequently SA ≃ TN (A).
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3 EXAMPLES

EXAMPLE 3.1

Let N be the class of all X -isomorphisms.

For every A ∈ S(X )op, it follows from Propositions 2.3 and 2.4 that TN (A) is the indiscrete

closure operator and (IN ◦ TN )(A) = X . Moreover, for every B ∈ S(X ), JN (B) is the discrete

closure operator and clearly (DN ◦ JN )(B) = X .

Notice that, although N does not satisfy the hypotheses of Theorem 2.7, we still have that

∇N = IN ◦ TN and ∆N = DN ◦ JN . This is due to the fact that in this case every X -morphism

is N -constant.

In what follows, for the category Top of topological spaces we will choose as M the class of

all extremal monomorphisms (embeddings). We recall that if E is the class of episinks in Top,

then Top is an (E,M)-category. For the category Grp of groups and Ab of abelian groups we

will use the (episink,monomorphism)-factorization structure.

EXAMPLE 3.2 (cf. [CH])

Let X be the category Top and let N be the class of all extremal monomorphisms with

nonempty domain. Notice that since N contains all singleton monomorphisms (i.e., morphisms

with singleton domain), to say that a morphism X
f

−→ Y is N -constant simply means that f(X)

is a singleton.

(a). If C is the closure operator induced by the topology, then the class DN (C) agrees with

the class Discr of discrete topological spaces and ∇N (Discr) consists of the classical connected

topological spaces.

If M
m
−→ X be an M-subobject of X ∈ Top, then MTN (Discr) equals the intersection of

all clopen subsets of X containing M . Since M satisfies the conditions of Theorem 2.7, we have

that the class (IN ◦ TN )(Discr) consists of all connected topological spaces.

Now, let B be the class of all connected topological spaces. From Proposition 2.6, MJN (B)

is the union of M with all connected subsets of X which intersect M and the subcategory of all

totally disconnected topological spaces agrees with (DN ◦ JN )(B). Thus, again from Theorem

2.7, connected topological spaces and totally disconnected topological spaces are fixed points of

the Galois connection (∆N ,∇N ) of Proposition 2.2.

(b). Let A = Top0 ∈ S(X )op. Ind and Top0 are corresponding fixed points of the Galois

connection (∆N ,∇N ) of Proposition 2.2 (cf. [AW]).

Let M
m
−→ X be an M-subobject of X ∈ Top and let c(M) = {y ∈ X : ∃x ∈ M with ¯{x} =

¯{y}}. where, ¯{x} denotes the usual topological closure of {x}. If X
r0−→ r0X is the Top0-
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reflection, then MTN (Top0) = c(M) = r−1
0 r0(M). Moreover, MTN (Top0) ⊆ b(M), where b(M) is

the b-closure of M (cf. [B], [NW]). MJN (Ind) is the union of M with all indiscrete subobjects of

X which intersect M and (DN ◦ JN )(Ind) = Top0.

(c). Let A = Top1 ∈ S(X )op and let B be the class of all absolutely connected topological

spaces, i.e., B = {X ∈ Top such that X cannot be decomposed into any disjoint family L of

nonempty closed subsets with |L| > 1} (cf. [P1]). A and B are corresponding fixed points of the

Galois connection (∆N ,∇N ) of Proposition 2.2. Let M
m
−→ X be an M-subobject of X ∈ Top.

We have that MSTop1 ≃ MTN (Top1) ([CH, Example 4.3]), i.e., the TN (Top1)-closure agrees with

the Salbany closure induced by Top1. So, from Theorem 2.7, we have that B = IN (STop1
).

From Proposition 2.6 one can see that MJN (B) is the union of M with all absolutely connected

subsets of X that intersect M . Theorem 2.7 implies that Top1 = (DN ◦ JN )(B). This can be

also easily verified directly.

We observe that, from Proposition 2.15, Top0, Top1 and all totally disconnected topological

spaces are fixed points of the Galois connection (DN , TN ). Moreover, Ind, connected topological

spaces and absolutely connected topological spaces are fixed points of the Galois connection

(JN , IN ).

EXAMPLE 3.3

Let X be the category Top and let N be the the class of all singleton monomorphisms.

Let A = Top1 ∈ S(X )op and let B be the class of all absolutely connected topological

spaces, i.e., B = {X ∈ Top such that X cannot be decomposed into any disjoint family L of

nonempty closed subsets with |L| > 1}. Since N -constant in this case simply means constant,

A and B are corresponding fixed points of the Galois connection (∆N ,∇N ) of Proposition 2.2

(cf. [P1]). Let X ∈ Top1 and let M
m
−→ X be an M-subobject.First notice that MTN (A) is

closed in the usual topology of X . Now let C be a closed subspace of X and let Xc denote the

topological spaces with underlying set |X | endowed with the cofinite topology. Choose x ∈ C

and define X
f

−→ Xc by f(C) = {x} ⊆ C and f |X−C = idX |X−C . Clearly f is continuous and

C = f−1f(C). Therefore, MTN (A) is the intersection of all closed sets containing M , i.e., it is the

closure of M in the topology of X . However, notice that if X 6∈ Top1, then the TN (A)-closure

might be larger then the topological closure of X . For example if X = {0, 1} with {0} open and

{1} closed (Sierpinski space) and M = {1} then, clearly MTN (A) = X .

Since N satisfies the conditions of Theorem 2.2, we obtain that B = (IN ◦ TN )(Top1). As

in Example 3.2(c), MJN (B) is the union of M with all absolutely connected subsets of X that

intersect M .
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EXAMPLE 3.4

Let X be the category Top of topological spaces and let N be the class of all diagonal

morphisms. If A is any epireflective subcategory of Top, then it satisfies the hypotheses of

Proposition 2.27(a) and so TN (A) = SA. Therefore if A = Top0, then TN (A) is the b-closure

([B], [NW]). If A = Top1 or any bireflective subcategory of Top, then TN (A) is discrete inside

A ([G]). If A = Top2, then TN (A) agrees with the usual topological closure inside Top2.

EXAMPLE 3.5

Let X be the category Grp and let N = M be the class of all monomorphisms in Grp.

Clearly, to say that a Grp-morphism X
f

−→ Y is N -constant simply means that the image of X

under f is a singleton.

(a). If A = Grp ∈ S(Grp)op, the category Sng of singleton groups and Grp are cor-

responding fixed points of the Galois connection (∆N ,∇N ). Now, from Proposition 2.27 b)

TN (Grp) = SGrp, which is the discrete operator. Actually, in this case, JN (Sng) = TN (Grp).

On the other side, if we take A = Grp ∈ S(Grp), then again Grp and Sng are corresponding

fixed points of the same Galois connection. Moreover, JN (Grp) and TN (Sng) both agree with

the indiscrete operator.

(b). Let A be the subcategory Ab of abelian groups. We have that SAb ≃ TN (Ab) (cf.

[CH, Example 4.4]). N satisfies the hypotheses of Theorem 2.7 and consequently, ∇N (Ab) agrees

with IN (SAb) which is equal to the class of perfect groups, i.e., X ∈ ∇N (Ab) iff X = X ′, where

X ′ denotes the subgroup generated by the commutators. Thus MJN (∇(Ab)) is the subgroup

generated by M and all perfect subgroups of X . and (DN ◦ JN )(∇N (Ab)) is the class of all

groups which do not have any non-trivial perfect subgroup.

EXAMPLE 3.6

Let X=Grp, let N be the class of all singleton monomorphisms. Clearly in this case N -

constant simply means constant.

(a). (Sng,Grp) is a pair of corresponding fixed points of (∆N ,∇N ). It is easy to see that

TN (Grp) is the normal closure and JN (Sng) is the discrete operator. On the other side, if we

consider the pair of corresponding fixed points (Grp,Sng), then both JN (Grp) and TN (Sng)

agree with the indiscrete operator.

(b). As in Example 3.5(b), the class B of perfect groups and the class A that consists of

all groups that do not have any non-trivial perfect subgroup form a pair (B,A) of corresponding

fixed points of (∆N ,∇N ). For every M ≤ X , mTN (A) is the intersection of all normal subgroups

of X containing M such that X/M ∈ A. Moreover, MJN (B) is the subgroup generated by M

and all perfect subgroups of X .

21



(c). Part b) can be generalized as follows. Let A ∈ S(Grp). If A is closed under subgroups,

then TN (A) agrees with the A-normal closure (cf. [FJ], [FW]). B = (IN ◦ TN )(A) consists of

all those groups X that do not have any proper normal subgroup N such that X/N ∈ A. For

every subgroup M of Y , MJN (B) is the subgroup generated by M and by those subgroups S of

Y which do not have any proper normal subgroup N such that S/N ∈ A.

EXAMPLE 3.7

(a). Let X be the category Ab and let N = M be the class of al monomorphisms in Ab.

Let (T ,F) be a torsion theory. Clearly, T and F are corresponding fixed points of the Galois

connection (∆N ,∇N ) of Proposition 2.2. Let X ∈ Ab and let X
rX−→ rX be its F -reflection.

For every subobject M
m
−→ X we have that MTN (F) ≃ r−1

X (rX(M)) ≃ M +Ker(rX). Since T is

closed under quotients, MJN (T ) is the subgroup generated by M and all subgroups S ≤ X such

that S ∈ T . In particular, if (T ,F) = (Torsion,Torsion-free), then MTN (F) ≃ M+Tor(X), where

Tor(X) denotes the torsion subgroup of X . If (T ,F) = (Divisible,Reduced), then MTN (F) ≃

M + Div(X), where Div(X) denotes the largest divisible subgroup of X . It is interesting to

notice that in both cases, MJN (T ) = MTN (F) (cf. [CH]).

(b). Now let N be the class of all inclusions of divisible subgroups. Again N -constant means

constant. As above, if (T ,F) is a torsion theory, then T and F are corresponding fixed points

of the Galois connection (∆N ,∇N ) of Proposition 2.2. If Red is the subcategory of reduced

abelian groups, then for every subgroup M
m
−→ X , MTN (Red) is the intersection of all subgroups

of X containing M such that X/M is reduced. As it is easily seen, this agrees with the Salbany

closure SRed. Moreover, if Div is the subcategory of divisible abelian groups, then for every

subgroup M
m
−→ X , MJN (Div) ≃ M + Div(X).

(c). If N is the class of all inclusions of torsion subgroups, then also in this case N -constant

means constant. If we consider the torsion theory (T,Tf ) where T is the subcategory of all

torsion abelian groups and Tf is the subcategory of all torsion free abelian groups, then for every

subgroup M
m
−→ X , MTN (Tf) is the intersection of all subgroups of X containing M such that

X/M is torsion free. As it is easily seen, this agrees with the Salbany closure STf . Moreover, for

every subgroup M
m
−→ X , MJN (T) ≃ M + Tor(X).

(d). Let N consist of all singleton monomorphisms and let (T ,F) be a torsion theory. Then,

for every subgroup M ≤ X , MTN (F) = SF and MJN (T ) is the subgroup generated by M and all

subgroups S ≤ X such that S ∈ T .

(e). Notice that if N consists of all diagonal morphisms and (T ,F) is a torsion theory then,

from Proposition 2.27(a), for every subgroup M ≤ X , MTN (F) = SF .
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[EKMS] M. Erné, J. Koslowski, A. Melton, G. Strecker, “A primer on Galois connections,” Proceed-
ings of the 1991 Summer Conference on General Topology and Applications in Honor of
Mary Ellen Rudin and Her Work, Annals of the New York Academy of Sciences, Vol. 704
(1993), 103-125.

[FJ] T.H. Fay, S.V. Joubert, Categorical compactness for rings, preprint.

[FW] T.H. Fay, G.L. Walls, Regular and normal closure operators and categorical compactness for
groups, preprint.

[G] E. Giuli, “Bases of topological epireflections,” Topology and its Appl., 27 (1980), 265-273.

[H] H. Herrlich, “Topologische Reflexionen und Coreflexionen,” L.N.M. 78, Springer, Berlin,
1968.

[Ho] D. Holgate, Closure operators in categories, Master Thesis, University of Cape Town, 1992.
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