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0 INTRODUCTION

The development of a general theory of topological connectedness was started by Preuß
([21]) and by Herrlich ([15]). Afterwards, a considerable number of papers have been
publised on this subject and on possible generalizations of it (e.g. [2], [3], [11], [17],
[19], [20], [22], [23], [25] and [26]). However, most of these papers used the common
approach of first defining a notion of constant morphism and then use it to introduce
the notions of connectedness and disconnectedness, accordingly. So did we in [8], [5]
and [6]. More precisely, let X be an arbitrary category with an (E,M)-factorization

structure for sinks and let N ⊆ M. In [5] an X -morphism X
f

−→ Y was called N -
constant if the direct image of X under f was isomorphic to the direct image under f
of every N -subobject of X. If S(X ) denotes the collection of all subclasses of objects
of X , ordered by inclusion, for every N ⊆ M, the relation: XR

N
Y if and only if every

X -morphism X
f

−→ Y is N -constant yields a Galois connection S(X )
∆N-�
∇N

S(X )op.

Again in [5] it was proved that if N is closed under direct images, we have that
this Galois connection factors through CL(X ,M), i.e., the collection of all closure
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operators on X with respect to M, via two Galois connections S(X )
JN-�
IN

CL(X ,M)

and CL(X ,M)
DN-�
TN

S(X )op.

Recently in [7] we introduced the following definition: an X -morphism X
f

−→ Y
is called N -fixed if for every n ∈ NY we have that f−1(n) ≃ idY . The relation:

XR′
N

Y if and only if every X -morphism X
f

−→ Y is N -fixed yields a Galois connection

S(X )
∆̂N-�
∇̂N

S(X )op that under the assumption of N being closed under the formation of

pullbacks, was shown to factor via the same Galois connections S(X )
JN-�
IN

CL(X ,M)

and CL(X ,M)
DN-�
TN

S(X )op.

This new discovery lead us to think that this factorization could be the appropriate
tool to introduce a notion of connectedness in an arbitrary category and that the two
notions of N -constant and N -fixed morphism could be used to provide additional
descriptions of it depending on whether the class N is closed under the formation of
direct images or under the formation of pullbacks.

Therefore, in Section 2 we use this idea to introduce a notion of connectedness in
an arbitrary category. This notion is given in terms of a closure operator C and a class
of monomorphisms N . Some general results about this notion are presented.

In Section 3 we give up part of the generality by assuming the existence of a terminal
object and that N is closed under the formation of direct images. This allows us to
obtain results that closely resemble classical properties of topological connectedness.

Finally, Section 4 concludes the paper with a number of examples that illustrate
the theory.

We use the terminology of [1] throughout.

1 PRELIMINARIES

Throughout we consider a category X and a fixed class M of X -monomorphisms,
which contains all X -isomorphisms. It is assumed that X is M-complete; i.e.,

(1) M is closed under composition

(2) Pullbacks of M-morphisms exist and belong to M, and multiple pullbacks
of (possibly large) families of M-morphisms with common codomain exist
and belong to M.

One of the consequences of the above assumptions is that there is a uniquely de-
termined class E of sinks in X such that X is an (E,M)-category for sinks, that is:

(a) each of E and M is closed under compositions with isomorphisms;

(b) X has (E,M)-factorizations (of sinks); i.e., each sink s in X has a factor-
ization s = m ◦ e with e ∈ E and m ∈ M, and

(c) X has the unique (E,M)-diagonalization property; i.e., if B
g

−→ D and
C

m
−→ D are X -morphisms with m ∈ M, and e = (Ai

ei−→ B)I and s =
(Ai

si−→ C)I are sinks in X with e ∈ E, such that m ◦ s = g ◦ e, then there
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exists a unique diagonal B
d

−→ C such that for every i ∈ I the following
diagrams commute:

Ai
ei−→ B

si





y ւd

C

and

B

d ւ




y

g

C −→
m

D

That X is an (E,M)-category implies the following features of M and E (cf. [1]
for the dual case):

PROPOSITION 1.1

(0) Every isomorphism is in both M and E (as a singleton sink). Moreover,
every morphism that is in both M and E is an isomorphism.

(1) Every m in M is a monomorphism.

(2) M is closed under M-relative first factors, i.e., if n ◦ m ∈ M, and n ∈ M,
then m ∈ M.

(3) M is closed under composition.

(4) Pullbacks of X -morphisms in M exist and belong to M.

(5) The M-subobjects of every X -object form a (possibly large) complete lat-
tice; suprema are formed via (E,M)-factorizations and infima are formed
via intersections.

If X
f

−→ Y is an X -morphism and M
m
−→ X is an M-subobject, then

X
ef◦m
−→ Mf

mf
−→ Y will denote the (E,M)-factorization of f ◦ m. Mf

mf
−→ Y will

be called the direct image of m along f . If N
n

−→ Y is an M-subobject, then the

pullback f−1(N)
f−1(n)
−→ X of n along f will be called the inverse image of n along f .

Whenever no confusion is likely to arise, to simplify the notation we will denote the
morphism ef◦m simply ef .

DEFINITION 1.2
A closure operator C on X (with respect to M) is a family {( )

C

X
}X∈X of functions

on the M-subobject lattices of X with the following properties that hold for each
X ∈ X :

(a) [expansiveness] m ≤ (m)
C

X
, for every M-subobject M

m
−→ X;

(b) [order-preservation] m ≤ n ⇒ (m)
C

X
≤ (n)

C

X
for every pair of M-subobjects

of X;

(c) [morphism-consistency] If p is the pullback of the M-subobject M
m
−→ Y

along some X -morphism X
f

−→ Y and q is the pullback of (m)
C

Y
along f ,

then (p)
C

X
≤ q, i.e., the closure of the inverse image of m is less than or

equal to the inverse image of the closure of m.
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Condition (a) implies that for every closure operator C on X , every M-subobject
M

m
−→ X has a canonical factorization

M
t

−→ (M)
C

X

m ց




y(m)
C

X

X

where ((M)
C

X
, (m)

C

X
) is called the C-closure of the subobject (M,m).

When no confusion is likely we will write m
C

rather than (m)
C

X
and for notational

symmetry we will denote the morphism t by m
C
.

REMARK 1.3

(1) Notice that in the above definition, under condition (b), the morphism-
consist-ency condition (c) is equivalent to the following statement concern-

ing direct images: if M
m
−→ X is an M-subobject and X

f
−→ Y is a

morphism, then ((m)
C

Y
)f ≤ (mf )

C

Y
, i.e., the direct image of the closure of m

is less than or equal to the closure of the direct image of m; (cf. [12]).

(2) Under condition (a), both order-preservation and morphism-consistency,
i.e., conditions (b) and (c) together are equivalent to the following: given
(M,m) and (N,n) M-subobjects of X and Y , respectively, if f and g are
morphisms such that n ◦ g = f ◦ m, then there exists a unique morphism d
such that the following diagram

M
g - N

@
@
@
m

C

R
@
@
@
n

C

R
M

C d -

n

N
C

	�
�
�

m
C 	�

�
�

n
C

X

m

?

f
- Y

?

commutes.

DEFINITION 1.4
Given a closure operator C, we say that m ∈ M is C-closed if m

C
is an isomor-

phism. An X -morphism f is called C-dense if for every (E,M)-factorization (e,m)

of f we have that m
C

is an isomorphism. We call C idempotent provided that m
C

is
C-closed for every m ∈ M. C is called weakly hereditary if m

C
is C-dense for every

m ∈ M.

Notice that Definition 1.2(c) implies that pullbacks of C-closed M-subobjects are
C-closed.

A special case of an idempotent closure operator arises in the following way. Given
any class A of X -objects and M

m
−→ X in M, define m

A

to be the intersection
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of all equalizers of pairs of X -morphisms r, s from X to some A-object A that satisfy
r◦m = s◦m, and let m

A
∈ M be the unique X -morphism by which m factors through

m
A

. It is easy to see that this gives rise to an idempotent closure operator that we will
denote by SA. This generalizes the Salbany construction of closure operators induced
by classes of topological spaces, cf. [24].

We denote the collection of all closure operators on M by CL(X ,M) pre-ordered

as follows: C ⊑ D if m
C

≤ m
D

for all m ∈ M (where ≤ is the usual order on
subobjects). Notice that arbitrary suprema and infima exist in CL(X ,M), they are
formed pointwise in the M-subobject fibers.

For more background on closure operators see, e.g., [4], [9], [10], [12], [13] and [18].
For a detailed survey on the same topic, one could check [16].

DEFINITION 1.5

For pre-ordered classes X = (X,⊑) and Y = (Y,⊑), a Galois connection X
F-�
G

Y

consists of order preserving functions F and G that satisfy F ⊣ G, i.e., x ⊑ GF (x) for
every x ∈ X and FG(y) ⊑ y for every y ∈ Y. (G is adjoint and has F as coadjoint).

If x ∈ X and y ∈ Y are such that F (x) = y and G(y) = x, then x and y are said
to be corresponding fixed points of the Galois connection (X , F,G,Y).

Properties and many examples of Galois connections can be found in [14].

2 CONNECTEDNESS IN A CATEGORY

The main purpose of this section is to use some already available theory (cf. [5], [6] and
[7]) to introduce a notion of connectedness in a category X . This notion is given with
respect to a closure operator C on X and a class of X -monomorphisms N . Moreover,
we present some general properties of this new concept, some of which can be directly
obtained as a consequence of previous results.

Throughout the paper we will assume that X is an (E,M)-category for sinks.
Unless otherwise specified, C will always denote a closure operator on X with respect
to the given class M of X -monomorphisms and N will be a subclass of M.

We begin by recalling the following two propositions from [5].

PROPOSITION 2.1
Let CL(X ,M)

DN−→ S(X )op and S(X )op TN−→ CL(X ,M) be defined by:

DN (C) = {X ∈ X : every n ∈ NX is C-closed}

TN (A) = Sup{C ∈ CL(X ,M) : DN (C) ⊇ A}.

Then, CL(X ,M)
DN-�
TN

S(X )op is a Galois connection.

PROPOSITION 2.2
Let CL(X ,M)

IN−→ S(X ) and S(X )
JN−→ CL(X ,M) be defined by:

IN (C) = {X ∈ X : every n ∈ NX is C-dense}

JN (B) = Inf{C ∈ CL(X ,M) : IN (C) ⊇ B}.
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Then, S(X )
JN-�
IN

CL(X ,M) is a Galois connection.

As a consequence of the above propositions, in [7] we gave the following:

DEFINITION 2.3

The Galois connection S(X )
DN ◦JN-�
IN ◦TN

S(X )op is called the connectedness-disconnec-

tedness Galois connection.
In [5] we presented some characterizations of the functions TN and JN . For refer-

ence purposes we collect them under the following:

PROPOSITION 2.4
For every A ∈ S(X )op and M-subobject M

m
−→ X, with X ∈ X , we have that

mTN (A) = ∩{f−1(n) : Y ∈ A,X
f

−→ Y,N
n

−→ Y ∈ NY and m ≤ f−1(n)}.

Moreover, for every B ∈ S(X ) and M-subobject M
m
−→ Y , with Y ∈ X , we have

that

mJN (B) = sup

(

{m} ∪ {(idX )f : X ∈ B,X
f

−→ Y and ∃n ∈ NX with nf ≤ m}

)

.

As we already mentioned in [7], the Galois connection S(X )
DN ◦JN-�
IN ◦TN

S(X )op can be

used to provide a notion of connectedness that does not require a notion of constant
morphism. More precisely we can give the following:

DEFINITION 2.5
An X -object X is called (C,N )-connected if X ∈ IN (TN (DN (C))).

In [5, Theorem 2.8] an appropriate description of the connectedness-disconnectedness
Galois connection was provided under the hypothesis of N being closed under the for-
mation of direct images. In [7, Theorem 2.13] a further description of the same Galois
connection was presented under the assumption of N closed under the formation of
pullbacks. These theorems can be used to provide alternative descriptions of the notion
of (C,N )-connectedness under the appropriate closedness conditions as follows.

PROPOSITION 2.6

(a) If N is closed under the formation of direct images, then an X -object X

is (C,N )-connected if every morphism X
f

−→ A with A ∈ DN (C) is N -
constant; i.e., f factors through nf for every n ∈ NX .

(b) If N is closed under the formation of pullbacks, then an X -object X is

(C,N )-connected if every morphism X
f

−→ A with A ∈ DN (C) is N -fixed;
i.e., f−1(n) ≃ idX for every n ∈ NA.

As a consequence of Proposition 2.5 of [7], we obtain the following:

PROPOSITION 2.7
Let N be closed under the formation of pullbacks along morphisms in E. If X

f
−→ Y

belongs to E and X is (C,N )-connected, then so is Y .
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COROLLARY 2.8
Let N be closed under the formation of pullbacks along morphisms in E and let

X
f

−→ Y be an X -morphism. If X is (C,N )-connected, so is Xf .

REMARK 2.9
Suppose that the category X has products and that each projection belongs to E.

Moreover, assume that N is closed under the formation of pullbacks along morphisms
in E. Then from Proposition 2.7 we obtain that if the product of a family of X -objects
is (C,N )-connected, so is each of its factors. However, the converse is not true. As
a counterexample, it is enough to consider in the category Ab of abelian groups,
the subcategory T consisting of all torsion abelian groups. Clearly, Ab satisfies our
assumptions. As Example 4.3(a) shows, this subcategory is the connectedness class of
a certain closure operator, but it is not closed under products.

Proposition 2.6 of [7] yields the following:

PROPOSITION 2.10
Let N be closed under the formation of pullbacks and let (Xi)i∈I be a family

of (C,N )-connected X -objects. If the coproduct ∐Xi exists, then it is also (C,N )-
connected.

REMARK 2.11
It may be interesting to observe that in the case that X is well-powered and has

coproducts, if N is closed under the formation of pullbacks, Corollary 2.8 and Propo-
sition 2.10 imply that for any closure operator C, the (C,N )-connected objects form
an M-coreflective subcategory of X (cf. [1, Theorem 16.8], dual).

PROPOSITION 2.12

(a) Let M
m
−→ X be a C-dense M-subobject of X ∈ X and let N be closed

under the formation of pullbacks along morphisms in M. If M is (C,N )-
connected, then so is X.

(b) Let C be weakly hereditary, let N be closed under the formation of pullbacks
along morphisms in M and let M

m
−→ X be an M-subobject. If M is

(C,N )-connected then so is M
C
.

Proof:
(a). We recall from Proposition 2.4 that for A ∈ S(X )op and any N -subobject

N
n

−→ X, we have that nTN (A) = ∩{f−1(p) : A ∈ A,X
f

−→ A,P
p

−→ A ∈ NAand n ≤
f−1(p)}. Now, set A = DN (C). We need to show that nTN (A) ≃ idX . From our hy-
pothesis, m−1(n) ∈ N and since M is (C,N )-connected, we have that (m−1(n))TN (A) ≃
idM . By considering the morphisms f and the N -subobjects p that occur in the con-
struction of nTN (A), we obtain that (m−1(n))TN (A) ≤ ∩{(f◦m)−1(p)} ≃ ∩{m−1(f−1(p))} ≃
m−1(∩{f−1(p)}). Clearly we conclude that idM ≃ m−1(∩{f−1(p)}). Consequently we
have that m ≃ (idM )m ≃ (m−1(∩{f−1(p)}))m ≤ ∩{f−1(p)} ≃ nTN (A). Now, by taking

the C-closure we obtain idX ≃ m
C
≤ (∩{f−1(p)})

C
≃ ∩{f−1(p))} ≃ nTN (A). Notice

that here we have used the fact that each N -subobject of A ∈ DN (C) is C-closed
and that the intersection of C-closed subobjects is C-closed. Thus, we conclude that
nTN (A) ≃ idX , and so X is (C,N )-connected.
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(b). Just observe that since C is weakly hereditary, m
C

is C-dense and apply part
(a).

PROPOSITION 2.13
Assume that N is closed under the formation of pullbacks along morphisms in

M and let (Mi −→
mi

X)i∈I be a family of M-subobjects of X ∈ X . If each Mi is
(C,N )-connected then so is their supremum ∨Mi.

Proof:
Again we recall from Proposition 2.4 that for A ∈ S(X ) and any N -subobject

N
n

−→ ∨Mi, we have that nTN (A) = ∩{f−1(p) : A ∈ A,∨Mi
f

−→ A,P
p

−→ A ∈

NAand n ≤ f−1(p)}. Now, set A = DN (C). For each i ∈ I, let Mi
ti−→ ∨Mi

be such that ∨mi ◦ ti = mi. Since ∨mi and mi both belong to M, so does ti, for
each i ∈ I (cf. Proposition 1.1(2)). Consequently from our hypothesis, t−1

i (n) ∈ N .
Since Mi is (C,N )-connected for every i ∈ I, by considering the morphisms f and
the N -subobjects p that appear in the expression of nTN (A), we obtain that idMi

≃
(t−1

i (n))TN (A) ≤ ∩{(f ◦ ti)
−1(p)} ≃ ∩{t−1

i (f−1(p))} ≃ t−1
i (∩{f−1(p)}) ≃ t−1

i (nTN (A)).
Consequently we have that ti ≃ (idMi

)ti ≃ (t−1
i (nTN (A)))ti ≤ nTN (A). Thus we have

that ti ≤ nTN (A), for every i ∈ I and consequently mi = ∨mi ◦ ti ≤ ∨mi ◦nTN (A). The
universal property of suprema implies that ∨mi ≤ ∨mi ◦nTN (A). Since ∨mi ◦nTN (A) ≤
∨mi, we obtain that ∨mi ◦ nTN (A) ≃ ∨mi ≃ ∨mi ◦ id∨Mi

. The fact that ∨mi is a
monomorphism implies that nTN (A) ≃ id∨Mi

. Thus, ∨Mi is (C,N )-connected.

We conclude this section by observing that Clementino and Tholen ([11]) recently
introduced a notion of connectedness with respect to a closure operator on an arbitrary
category X . They call an object X ∈ X connected with respect to a closure operator

C if the diagonal morphism X
δX−→ X ×X is C-dense. This definition is quite different

from ours and actually we could not find any relationship between the two of them.

3 CONNECTEDNESS IN CATEGORIES WITH A TER-
MINAL OBJECT

In Example 4.1(a) we obtain the usual notion of connectedness in the category of topo-
logical spaces by choosing as closure operator C, the closure induced by the topology
and as N , the class of all extremal monomorphisms (embeddings) with nonempty do-
main. Clearly N is closed under the formation of direct images but not under the
formation of pullbacks along morphisms in M, so Propositions 2.10 and 2.12 do not
apply to this case. However, independently of this fact, we know that the results
in Proposition 2.12 hold for topological connectedness. Therefore in this section we
present some results that hold in the case that N is closed under the formation of
direct images. These results are less general than the ones in the previous section,
since here we assume the existence of a terminal object. However, this allows us to
generalize most classical results on topological connectedness to arbitrary categories
with a terminal object.

Throughout this section we will make the following assumptions:

(a) X has a terminal object T ;

(b) N is closed under the formation of direct images and any morphism with
domain T belongs to N ;
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(c) T is an M-subobject of every element of N .

Notice that at times we will use the expression X contains T to mean that T is a
subobject of X.

LEMMA 3.1

(a) Let X be an X -object that has T as subobject. Then, for every X -object

Y , we have that a morphism X
f

−→ Y is N -constant if and only if f factors
through T .

(b) Let Y be an X -object that has T as subobject. Then, for every X -object

X, we have that a morphism X
f

−→ Y is N -fixed if and only if f factors
through T .

Proof:
(a). Let T

tX−→ X be an N -subobject of X and let (ef , nf ) be the (E,M)-
factorization of f ◦ t

X
. If f is N -constant, then f factors through nf for every n ∈ NX .

Since t
X
∈ N , there exists a morphism X

d
−→ Tf such that nf ◦ d = f . Now, from the

hypothesis on T , nf ◦ ef ∈ M, and since nf ∈ M, from Proposition 1.1(2), so does ef .
Thus ef ∈ E ∩ M and therefore is an isomorphism. Consequently f factors through
T .

Viceversa, suppose that f factors through T , i.e., there exist morphisms X
tX
−→ T

and T
tY−→ Y such that f = t

Y
◦ t

X
. For every n ∈ NX let (etX , ntX ) and (etY , ntY )

be the (E,M)-factorizations of t
X
◦ n and t

Y
◦ ntX , respectively. Since (ef , nf ) and

(etY ◦ etX , ntY ) are two (E,M)-factorizations of f ◦ n and the fact that (E,M)-
factorizations of the same morphism are unique up to isomorphism, we obtain the
following commutative diagram:

N
n - X

@
@
@
etX

R
@
@
@
t
X

R
NtX

ntX -

f

T

	�
�
�
etY

	�
�
�
t
Y

Nf

ef

?

nf

- Y
?

where we have omitted the isomorphism between nf and ntY . Now, the fact that T

is an M-subobject of NtX implies that there is an M-morphism T
t

−→ NtX . Since T
is a terminal object, we have that ntX ◦ t = idT . So, ntX is a monomorphism and a
retraction and consequently an isomorphism. Thus we have that nf ◦etY ◦(ntX )−1◦t

X
=

t
Y
◦ t

X
= f . Hence f factors through nf , that is, f is N -constant.

(b). Consider the N -subobject T
t

−→ Y and a morphism h such that f ◦ f−1(t) =
t ◦h. Since f is N -fixed, f−1(t) is an isomorphism and consequently f factors through
T .

Viceversa, let k be a morphism such that f = tY ◦ k with T
tY−→ Y . The universal

property of pullbacks implies the existence of a morphism d such that f−1(tY )◦d = idX .
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Thus, f−1(tY ) is a monomorphism and a retraction and so it is actually an isomor-
phism. Now, if n ∈ NY , then tY ≤ n implies idX ≃ f−1(tY ) ≤ f−1(n). Therefore we
conclude that f−1(n) ≃ idX ; that is, f is N -fixed.

PROPOSITION 3.2
Let X ∈ X and let M

m
−→ X be an M-subobject of X that contains T .

(a) If m is C-dense and M is (C,N )-connected, then so is X.

(b) If C is weakly hereditary and M is (C,N )-connected, then so is its C-closure

M
C
.

Proof:
(a). Consider the morphism X

f
−→ A with A ∈ DN (C). From Proposition 2.6(a),

f◦m is N -constant and from Lemma 3.1(a), f◦m factors through T , i.e., f◦m = t
A
◦t

M

with M
tM
−→ T and T

tA−→ A A-morphisms. By hypothesis, t
A

∈ NA and so is C-
closed. Since m is C-dense, the diagonalization property between C-dense and C-closed

morphisms (cf. [12, Proposition 3.1]) implies the existence of a morphism X
d

−→ T

such that d◦m = t
M

and t
A
◦d = f . Thus, f factors through T and again from Lemma

3.1(a) and Proposition 2.6(a), X is (C,N )-connected.
(b). If C is weakly hereditary, then m

C
is C-dense and part (a) applies.

PROPOSITION 3.3

(a) If (Mi −→
mi

X)i∈I is a family of (C,N )-connected M-subobjects of X ∈
X and ∩Mi has T as subobject, then its supremum ∨Mi is also (C,N )-
connected.

(b) If (Mn
mn−→ X)n∈N is a sequence of (C,N )-connected subobjects of X ∈ X

such that Mn−1 ∩Mn contains the terminal object T for every n ∈ N, then
∨Mn is (C,N )-connected.

Proof:
(a). Let ∨Mi

f
−→ A be a morphism with A ∈ DN (C). Let us consider the following

commutative diagram

∩Mi

ri- ∨Mi

�
�

�ti � @
@

@

f

R
Mi

di

?

mi

- X

m

?
A

@
@

@si R �
�

�

hi

�

T

where di, ti and m are the appropriate subobject morphisms, ri = ti ◦ di for every
i ∈ I and hi ◦ si = f ◦ ti is a factorization through T , since Mi is (C,N )-connected

for every i ∈ I (cf. Lemma 3.1(a)). Let ∩Mi
t

−→ X be the morphism that satisfies
mi ◦ di = t for every i ∈ I. Notice that m ◦ ri = m ◦ ti ◦ di = mi ◦ di = t, for every
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i ∈ I. This implies that m ◦ ri = m ◦ rj for every i, j ∈ I. Thus ri = rj, since m is a
monomorphism.

By hypothesis there exists a morphism T
d

−→ ∩Mi. Notice that si◦di ◦d = idT and
f ◦ ri = f ◦ ti ◦ di = hi ◦ si ◦ di for all i ∈ I. Since ri = rj for all i, j ∈ I, we have that
hi◦si◦di = hj ◦sj ◦dj for all i, j ∈ I, and so hi◦si◦di ◦d = hj ◦sj ◦dj ◦d. Consequently,
hi ◦ idT = hj ◦ idT , for all i, j ∈ I, and so hi = hj for all i, j ∈ I. Call this morphism h.

Since (Mi
ti−→ ∨Mi)i∈I ∈ E and h ∈ M, from the (E,M)-diagonalization property the

unique morphism ∨Mi
r

−→ T satisfies h◦ r = f and r ◦ ti = si, for every i ∈ I. Thus, f
factors through T and consequently from Lemma 3.1(a) and Proposition 2.6(a), ∨Mi

is (C,N )-connected.

(b). Consider the sequence (Un
un−→ X)n∈N of M-subobjects of X defined as

follows. U0 = M0 and for n ≥ 1, Un = Un−1 ∨ Mn. From part (a), each Un is (C,N )-
connected and since ∩Un contains T , again from part (a) we have that also ∨Un is
(C,N )-connected. The fact that ∨Mn ≃ ∨Un concludes the proof.

Since the terminal object T is (C,N )-connected for any choice of C and N satisfying
our current hypotheses, the result in Proposition 3.3(a) allows us to give the following:

DEFINITION 3.4

If T
t

−→ X is an X -morphism, then the largest (C,N )-connected M-subobject of
X that has t as subobject will be called the (C,N )-component of t in X.

LEMMA 3.5

Let A be a reflective subcategory of X and for every X ∈ X , let X
rX−→ rX denote

the corresponding reflection morphism. The following are equivalent:

(a) Any morphism with domain X and codomain in A factors through T ;

(b) rX factors through T .

Proof:

(a)⇒(b) follows immediately from the fact that rX ∈ A.

(b)⇒(a). Consider the morphism X
f

−→ Y , with Y ∈ A. Since A is reflective in
X , we have that there is a morphism g such that g ◦ rX = f . By hypothesis rX factors
through T and consequently so does f .

THEOREM 3.6

Let C be such that DN (C) is E-reflective in X such that for every m ∈ M, r(m)
belongs to M. Also assume that E is closed under the formation of pullbacks along

elements of M. Then for any morphism T
t

−→ X, r−1
X (TrX

) is the (C,N )-component
of t.

Proof:

Let us consider the following commutative diagram
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X
rX - rX

I@
@

@

r−1
X (mt) I@

@
@

r(r−1
X (mt))

r−1
X (TrX

)
s -

mt

6

r(r−1
X (TrX

))

�
�

�� @
@

@r′X R �
�

�

d

�

T

t

6

et

- TrX

where (et,mt) is the (E,M)-factorization of rX◦t, r′X is the pullback of rX along mt and
s denotes the reflection morphism r

r−1

X
(TrX

). Moreover, since our assumptions imply

that r′X ∈ E and r(r−1
X (mt)) ∈ M, the morphism d is the one induced by the (E,M)-

diagonalization property. Consequently d satisfies r(r−1
X (mt)) ◦ d = mt and d ◦ r′X = s.

From our hypotheses, et ∈ E∩M and consequently it is an isomorphism. Consequently
s factors through T and so, from Lemma 3.5, Lemma 3.1(a) and Proposition 2.6(a),
r−1
X (TrX

) is (C,N )-connected.
Now let us show that r−1

X (TrX
) is the largest (C,N )-connected subobject of X

that contains t. Let M
m
−→ X be a (C,N )-connected subobject of X that contains

t, i.e., there is a morphism T
α

−→ M such that m ◦ α = t. Then we have that
rX ◦ m = r(m) ◦ rM . By hypothesis rM factors through T , i.e., rM = trM ◦ tM with

morphisms M
tM
−→ T and T

trM−→ rM . Since mt◦et = rX ◦t = rX ◦m◦α = r(m)◦rM ◦α,
the (E,M)-diagonalization property yields a morphism h such that r(m)◦h = mt and
rM ◦ α = h ◦ et. Now we have that rM ◦ α = trM

◦ tM ◦ α = trM
◦ idT = trM

◦ e−1
t ◦ et.

Thus, we have that h ◦ et = trM
◦ e−1

t ◦ et. Since et is an isomorphism, we conclude
that h = trM

◦ e−1
t . Hence we obtain that mt ◦ et ◦ tM = r(m) ◦ h ◦ et ◦ tM =

r(m) ◦ trM
◦ e−1

t ◦ et ◦ tM = r(m) ◦ rM = rX ◦ m. The universal property of pullbacks
implies the existence of a morphism k that in particular satisfies r−1

X (mt) ◦ k = m.
This concludes the proof.

REMARK 3.7
Notice that the hypotheses of Theorem 3.6 are often satisfied in concrete categories.

In particular, if we look at Example 4.3(a) we see that in the case of the pair (torsion,
torsion-free), for every abelian group X, the (C,N )-component of 0 ∈ X is the torsion
subgroup Tor(X). In the case of the pair (divisible, reduced), the (C,N )-component
of 0 in X is the largest divisible subgroup of X, div(X). Also notice that if M is a
(C,N )-connected subgroup of X, since 0 ∈ M , we must have that M is contained in
the (C,N )-component of 0. Consequently, we have that the (C,N )-component of 0 in
X is the largest (C,N )-connected subgroup of X.

PROPOSITION 3.8
If C is weakly hereditary then each (C,N )-component is C-closed.
Proof:
Let X ∈ X and let D

m
−→ X be a (C,N )-component in X. Let us consider the

canonical factorization m = m
C
◦m

C
induced by the C-closure. D is (C,N )-connected

and from Proposition 3.2(b) so is D
C
. By the maximality of (C,N )-components, we

have that D ≃ D
C
. Thus D is C-closed.
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PROPOSITION 3.9

Let X and Y be two (C,N )-connected X -objects that contain the terminal object

T . Consider the family (T
ti−→ X)i∈I that consists of all morphisms with domain

T and codomain X and the family (T
tj
−→ Y )j∈J of all morphisms with domain T

and codomain Y . Then ∨{(X × T
idX×ti−→ X × Y )i∈I ∪ (T × Y

tj×idY
−→ X × Y )j∈J} is

(C,N )-connected.

Proof:

First of all we observe that since X ≃ X × T and Y ≃ T × Y , we have that both
X × T and T × Y are (C,N )-connected.

By assumption on X and Y there exist morphisms T
ti0−→ X and T

tj0−→ Y . For

every morphism T
ti−→ X, the following commutative diagram

X × T
id

X
× tj0- X × Y

�
�

�
�

�

ti × tj0

>

T × T

ti × id
T

6

id
T
× tj0

- T × Y

ti × id
Y

6

shows that T ≃ T × T
ti×tj0−→ X × Y is a subobject of both X × T

idX×tj0−→ X × Y and

T × Y
ti×idY−→ X × Y . Therefore, form Proposition 3.3(a), their supremum is (C,N )-

connected. Let us denote this supremum by Mi
mi−→ X×Y . Now, X×T

idX×tj0−→ X×Y

contains the terminal object T ×T
ti0×tj0−→ X ×Y and is a subobject of each Mi. Thus,

again from Proposition 3.3(a), we have that ∨Mi is (C,N )-connected.

Similarly we can start with a morphism T
ti0−→ X and for every morphism T

tj
−→ Y

construct Nj = (T × Y
ti0×idY
−→ X × Y ) ∨ (X × T

idX×tj
−→ X × Y ). As above we

obtain that ∨Nj is (C,N )-connected. Since T × T
ti0×tj0−→ X × Y is a subobject of

both ∨Mi and ∨Nj we obtain that ∨{∨Mi,∨Nj} is (C,N )-connected. The fact that

∨{∨Mi,∨Nj} ≃ ∨{(X ×T
idX×ti−→ X × Y )i∈I ∪ (T ×Y

tj×idY
−→ X ×Y )j∈J} concludes the

proof.

REMARK 3.10

Notice that in many concrete categories such as Top and Grp for instance, the
supremum in the above proposition actually agrees with X×Y . Therefore in such cases
we obtain that the finite product of non-empty (C,N )-connected objects is (C,N )-
connected. However, we have already observed in Remark 2.9 that this result does not
hold for the product of an arbitrary family of (C,N )-connected objects.

We conclude by observing that if X
f

−→ Y is an X -morphism and X contains T ,
then from our assumptions, so does Y . Consequently, by using Lemma 3.1(b) and
Proposition 2.6(b), all the results presented in this section can be proved under the
assumption of N closed under the formation of pullbacks. This allows us to apply
these results to a wider variety of cases.
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4 EXAMPLES

In this section, we will present some examples to illustrate the above theory.

In what follows, for the category Top of topological spaces and continuous func-
tions, we will choose as M the class of all extremal monomorphisms (embeddings). We
recall that if E is the class of episinks in Top, then Top is an (E,M)-category. For the
category Grp of groups and Ab of abelian groups and corresponding homomorphisms
we will use the (episink,monomorphism)-factorization structure.

EXAMPLE 4.1 (cf. [8])

Let X be the category Top and let N be the class of all extremal monomorphisms
with nonempty domain. Notice that the class of morphisms N is closed under the
formation of direct images, therefore in this case IN (TN (DN (C))) can be described
using Proposition 2.6(a). It is also easy to verify that since N contains all single-
ton monomorphisms (i.e., morphisms with singleton domain), then the N -constant
morphisms are simply the constant functions.

(a). If C is the closure operator induced by the topology, then the class DN (C)
agrees with the class Discr of discrete topological spaces and consequently from the
above observation the (C,N )-connected objects are exactly the classical connected
topological spaces.

(b). Let C be the closure operator that to each M-subobject M
m
−→ X of X ∈ Top

associates the intersection of all clopen subsets of X containing M . Notice that C =
TN (Discr). It is easy to see directly that DN (C) consists of all discrete topological
spaces and therefore also in this case the (C,N )-connected objects turn out to be
exactly the classical connected topological spaces.

(c). Let C be the closure operator that to each M-subobject M
m
−→ X of X ∈ Top

associates the union of M with all connected subsets of X that intersect M . We have
that DN (C) agrees with the subcategory of all totally disconnected topological spaces.
Notice that from Proposition 2.6(a) we obtain that the (C,N )-connected objects are
exactly the classical connected topological spaces.

(d). Let B = Top0, the subcategory of T0 topological spaces and let C be the clo-
sure operator that to each M-subobject M

m
−→ X of X ∈ Top associates c(M) = {y ∈

X : ∃x ∈ M with ¯{x} = ¯{y}}, where ¯{x} denotes the usual topological closure of {x}.
Notice that if X

r0−→ r0X is the Top0-reflection, then MTN (Top0) = c(M) = r−1
0 r0(M).

In [2] it was shown that the class IND of indiscrete topological spaces and Top0

are corresponding fixed points of the connectedness-disconnectedness Galois connec-
tion (cf. [7, Definition 2.3]). Consequently, from [6, Proposition 2.15], we obtain
that Top0 is also a fixed point of the Galois connection in Proposition 2.1. Con-
sequently, Top0 = DN (C) and using again Proposition 2.6(a), we obtain that the
(C,N )-connected objects are exactly the indiscrete topological spaces.

(e). Let C be the closure operator that to each M-subobject M
m
−→ X of X ∈ Top

associates the union of M with all indiscrete subobjects of X that intersect M . We
have that DN (C) = Top0. Again from the observations in part (d) we obtain that the
(C,N )-connected objects are exactly the indiscrete topological spaces.

(f). Let B = Top1 be the subcategory of all T1 topological spaces. Let M
m
−→ X

be an M-subobject of X ∈ Top. We have that MSTop1 ≃ MTN (Top1) ([8, Example
4.3]), i.e., the TN (Top1)-closure agrees with the Salbany closure induced by Top1.
Again from [6, Proposition 2.15] we have that Top1 is also a fixed point of the Galois
connection in Proposition 2.1. Using again Proposition 2.6(a), we have that if C =
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STOP1
, then the class of (C,N )-connected objects consists of all absolutely connected

topological spaces, i.e., B = {X ∈ Top such that X cannot be decomposed into any
disjoint family L of nonempty closed subsets with |L| > 1} (cf. [21]).

(g). Let C be the closure operator that to each M-subobject M
m
−→ X of X ∈ Top

associates the union of M with all absolutely connected subobjects of X that intersect
M . We have that DN (C) = Top1. Again from [21] we obtain that the (C,N )-
connected objects are the absolutely connected topological spaces.

EXAMPLE 4.2
Let X be the category Grp and let N = M be the class of all monomorphisms

in Grp. Clearly, N is closed under the formation of direct images and to say that a

Grp-morphism X
f

−→ Y is N -constant simply means that the image of X under f is
a singleton.

(a). Let A be the subcategory Ab of abelian groups. We have that SAb ≃ TN (Ab)
(cf. [8, Example 4.4]). Moreover, if X ∈ DN (SAb), then its subobject {0} is SAb-

closed. This means that there exist two homomorphisms X
f-
g
- A with A ∈ Ab

such that {0} = equ(f, g) = Ker(f − g) (cf. [4, Proposition 1.6]). Consequently the

morphism X
f−g
−→ A is a monomorphism and therefore X ∈ Ab. Thus we conclude

that Ab = DN (SAb). From Proposition 2.6(a) we obtain that the (SAb,N )-connected
objects are exactly the perfect groups. We recall that a group X is perfect iff X = X ′,
where X ′ denotes the subgroup generated by the commutators.

(b). Let C be the closure operator that to each M-subobject M
m
−→ X of X ∈ Grp

associates the subgroup generated by M and all perfect subgroups of X. We have that
DN (C) is the class of all groups which do not have any non-trivial perfect subgroup.
Since this subcategory and the one of perfect groups are corrresponding fixed points
of the connectedness-disconnectedness Galois connection (cf. [8, Example 4.4]), we
obtain that perfect groups are exactly the (C,N )-connected objects.

Let N be the class of all singleton monomorphisms. Clearly, N is closed under the
formation of direct images and also in this case N -constant simply means constant.

(c). As in part (b), the class B of perfect groups and the class A that consists
of all groups that do not have any non-trivial perfect subgroup form a pair (B,A) of
corresponding fixed points of the connectedness-disconnectedness Galois connection.
For every M ≤ X, mTN (A) is the intersection of all normal subgroups of X containing
M such that X/M ∈ A. Since A = DN (TN (A)), we have that the (TN (A),N )-
connected groups are precisely the perfect groups.

Let N consist of all inclusions of normal subgroups. Clearly N is closed under the
formation of pullbacks but not under the formation of direct images. Now, Proposition

2.6(b) can be used. Notice that in this case, X
f

−→ Y is N -fixed if and only if f is
constant in the classical sense.

(d). Let Sim denote the subcategory of simple groups, i.e., all those groups that
have no nontrivial normal subgroups and let Simfree denote the subcategory of all
groups that have no simple subgroup different from zero. Using Proposition 2.4 it
is easy to see that for every subgroup M ≤ Y , MJN (Sim) is the subgroup generated
by M and all simple subgroups of Y . It was proved in [7, Example 2.24(a)] that
DN (JN (Sim)) = Simfree.

Let Simquo consist of all groups X such that if K is a normal subgroup of X,
then X/K has a simple subgroup different from zero. It was also shown in [7] that
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Simquo = IN (TN (Simfree)). Consequently if C = JN (Sim), then Simquo is the
class of all (C,N )-connected objects.

EXAMPLE 4.3
Let X be the category Ab and let N = M be the class of all monomorphisms in

Ab. N is closed under the formation of direct images and N -constant means constant.
(a). Let (T ,F) be a torsion theory in Ab. Clearly, T and F are corresponding fixed

points of the connectedness-disconnectedness Galois connection. Let X ∈ Ab and let
X

rX−→ rX be its F-reflection. For every subobject M
m
−→ X we have that MTN (F) ≃

r−1
X (rX(M)) ≃ M + Ker(rX). In particular, if (T ,F) = (Torsion,Torsion-free), then

MTN (F) ≃ M + Tor(X), where Tor(X) denotes the torsion subgroup of X. Since
F = DN (TN (F)), we have that the (TN (F),N )-connected objects are precisely the
torsion abelian groups. If (T ,F) = (Divisible,Reduced), then MTN (F) ≃ M +Div(X),
where Div(X) denotes the largest divisible subgroup of X. Since also in this case
F = DN (TN (F)), we have that the (TN (F),N )-connected objects are precisely the
divisible abelian groups.

Let N be the class of all inclusions of divisible subgroups. N is closed under the
formation of direct images and again N -constant means constant.

(b). As above, if (T ,F) is a torsion theory, then T and F are corresponding
fixed points of the connectedness-disconnectedness Galois connection. If Red is the
subcategory of reduced abelian groups, then for every subgroup M

m
−→ X, MTN (Red)

is the intersection of all subgroups of X containing M such that X/M is reduced. As
it is easily seen, this agrees with the Salbany closure SRed. Obviously we have that
Red ⊆ DN (TN (Red)) = DN (SRed). Now let X ∈ DN (SRed). The fact that {0} is

SRed-closed in X implies that there exist two morphisms X
f-
g
- Y with Y ∈ Red

such that {0} = equ(f, g) = Ker(f − g) (cf. [4, Proposition 1.6]). Consequently f − g
is a monomorphism and so X is reduced since it is isomorphic to a subgroup of Y .
Therefore, Red = DN (TN (Red)) and consequently Div is the class of (SRed,N )-
connected objects.

Let N is the class of all inclusions of torsion subgroups. N is closed under the
formation of direct images and again N -constant means constant.

(c). If we consider the torsion theory (T,Tf) where T is the subcategory of all
torsion abelian groups and Tf is the subcategory of all torsion free abelian groups,
then for every subgroup M

m
−→ X, MTN (Tf) is the intersection of all subgroups of

X containing M such that X/M is torsion free. As it is easily seen, this agrees with
the Salbany closure STf . A similar arguement used in part (b) shows that Tf =
DN (TN (Tf)). Consequently T is the class of (STf ,N )-connected objects.
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