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ABSTRACT: Let X be an (E,M)-category for sinks. A recently introduced notion of
connectedness with respect to a closure operator C on X and to a class of X -monomorphisms
N is further analyzed. The notion of N -connectedness hull of a class of X -objects is introduced
and a characterization of it is presented under the assumption of N being closed under the
formation of pullbacks. Moreover, a characterization of the related notion of N -connectedness
class is presented under the assumption that X contains a terminal object. Some examples are
provided.
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0 INTRODUCTION

The development of a general theory about topological connectedness was started by Preuß (cf.

[Pr1]) and by Herrlich ([H]). Further literature on this topic can be found in [AW], [CC], [Cl],

[CT], [HP], [L], [Pr2], [Pr3], [T] and [SV].

Let X be an arbitrary category with an (E,M)-factorization structure for sinks and let

N ⊆ M. An X -morphism X
f

−→ Y is called N -dependent if for any N -subobject n of X and

any N -subobject p of Y , nf ≤ p implies f−1(p) ≃ idX (where nf is the direct image of n along f

and f−1(p) is the pullback of p along f [see §1]). Let S(X ) denote the collection of all subclasses

of objects of X , ordered by inclusion. For every N ⊆ M, the relation: XR
N

Y if and only

if every X -morphism X
f

−→ Y is N -dependent yields a Galois connection S(X )
∆′

N-�
∇

′
N

S(X )op.

It is proved that this Galois connection factors through CL(X ,M), i.e., the collection of all

closure operators on X with respect to M, via two previously introduced Galois connections

S(X )
JN-�
IN

CL(X ,M) and CL(X ,M)
DN-�
TN

S(X )op.

Notice that the notion of N -constant morphism introduced in [C2] and the notion of N -

fixed morphism introduced in [C4] yielded similar factorizations under the assumption of N

being closed under the formation of pullbacks in the first case or direct images in the second

case. The advantage of the notion of N -dependent morphism is that neither of these two closure

assumptions on N are needed to obtain the above factorization.

1 The author acknowledges support from the Research Office of the Faculty of Arts and Sciences of

the University of Puerto Rico – Mayagüez campus.
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The notion of (C,N )-connectedness presented in [C5] is used to introduce the concept of

N -connectedness class and the one of N -connectedness hull of a subcategory A of X . A charac-

terization of this last notion is presented in section 2, under the assumption of N being closed

under the formation of pullbacks.

In section 3, the assumption of the existence of a terminal object in X is added. This allowed

us to obtain a characterization of N -connectedness classes that in the category of topological

spaces yields as a special case the one given by Arhangel’skii and Wiegandt, [AW, Theorem

3.10].

The paper ends with some examples that illustrate the Galois conection S(X )
∆′

N-�
∇

′
N

S(X )op

in familiar categories. The examples are based on some choices of N for which N -dependent

does not mean constant in the classical sense.

We use the terminology of [AHS] throughout the paper.

1 PRELIMINARIES

Throughout we consider a category X and a fixed class M of X -monomorphisms, which contains

all X -isomorphisms. It is assumed that X is M-complete; i.e.,

(1) M is closed under composition

(2) Pullbacks of M-morphisms exist and belong to M, and multiple pullbacks of (possibly large)

families of M-morphisms with common codomain exist and belong to M.

One of the consequences of the above assumptions is that there is a uniquely determined

class E of sinks in X such that X is an (E,M)-category for sinks. This implies the following

features of M and E (cf. [AHS] for the dual case):

PROPOSITION 1.1

(0) Every isomorphism is in both M and E (as a singleton sink).

(1) Every m in M is a monomorphism.

(2) M is closed under M-relative first factors, i.e., if n ◦ m ∈ M, and n ∈ M, then m ∈ M.

(3) M is closed under composition.

(4) Pullbacks of X -morphisms in M exist and belong to M.

(5) The M-subobjects of every X -object form a (possibly large) complete lattice; suprema are

formed via (E,M)-factorizations and infima are formed via intersections.

If X
f

−→ Y is an X -morphism and M
m
−→ X is an M-subobject, then M

ef◦m

−→ Mf

mf

−→ Y

will denote the (E,M)-factorization of f ◦ m. Mf

mf
−→ Y will be called the direct image of m
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along f . If N
n

−→ Y is an M-subobject, then the pullback f−1(N)
f−1(n)
−→ X of n along f will be

called the inverse image of n along f . Whenever no confusion is likely to arise, to simplify the

notation we will denote the morphism ef◦m simply ef .

DEFINITION 1.2

A closure operator C on X (with respect to M) is a family {( )
C

X
}X∈X of functions on the

M-subobject lattices of X with the following properties that hold for each X ∈ X :

(a) [expansiveness] m ≤ (m)
C

X
, for every M-subobject M

m
−→ X ;

(b) [order-preservation] m ≤ n ⇒ (m)
C

X
≤ (n)

C

X
for every pair of M-subobjects of X ;

(c) [morphism-consistency] If p is the pullback of the M-subobject M
m
−→ Y along some X -

morphism X
f

−→ Y and q is the pullback of (m)
C

Y
along f , then (p)

C

X
≤ q, i.e., the closure

of the inverse image of m is less than or equal to the inverse image of the closure of m.

Condition (a) implies that for every closure operator C on X , every M-subobject M
m
−→ X

has a canonical factorization

M
t

−→ (M)
C

X

m ց




y
(m)

C

X

X

where ((M)
C

X
, (m)

C

X
) is called the C-closure of the subobject (M, m).

When no confusion is likely we will write m
C

rather than (m)
C

X
and for notational symmetry

we will denote the morphism t by m
C
.

REMARK 1.3

(1) Notice that in the above definition, under condition (b), the morphism-consistency condition

(c) is equivalent to the following statement concerning direct images: if M
m
−→ X is an M-

subobject and X
f

−→ Y is a morphism, then ((m)
C

Y
)f ≤ (mf )

C

Y
, i.e., the direct image of the

closure of m is less than or equal to the closure of the direct image of m; (cf. [DG]).

(2) Under condition (a), both order-preservation and morphism-consistency, i.e., conditions (b)

and (c) together are equivalent to the following: given (M, m) and (N, n) M-subobjects of

X and Y , respectively, if f and g are morphisms such that n ◦ g = f ◦ m, then there exists

a unique morphism d such that the following diagram
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M
g - N

@@@
m

C

R
@@@

n
C

R
M

C d -

n

N
C

	��
�
m

C 	���
n

C

X

m

?

f
- Y

?

commutes.

DEFINITION 1.4

Given a closure operator C, we say that m ∈ M is C-closed if m
C

is an isomorphism. An

X -morphism f is called C-dense if for every (E,M)-factorization (e, m) of f we have that m
C

is an isomorphism. We call C idempotent provided that m
C

is C-closed for every m ∈ M. C is

called weakly hereditary if m
C

is C-dense for every m ∈ M.

Notice that Definition 1.2(c) implies that pullbacks of C-closed M-subobjects are C-closed.

We denote the collection of all closure operators on M by CL(X ,M) pre-ordered as follows:

C ⊑ D if m
C

≤ m
D

for all m ∈ M (where ≤ is the usual order on subobjects). Notice that

arbitrary suprema and infima exist in CL(X ,M), they are formed pointwise in the M-subobject

fibers.

For more background on closure operators see, e.g., [C1], [CKS1], [CKS2], [DG], [DGT] and

[K]. For a detailed survey on the same topic, one could check [Ho].

DEFINITION 1.5

For pre-ordered classes X = (X,⊑) and Y = (Y,⊑), a Galois connection X
F-�
G

Y consists

of order preserving functions F and G that satisfy F ⊣ G, i.e., x ⊑ GF (x) for every x ∈ X and

FG(y) ⊑ y for every y ∈ Y. (G is adjoint and has F as coadjoint).

If x ∈ X and y ∈ Y are such that F (x) = y and G(y) = x, then x and y are said to be

corresponding fixed points of the Galois connection (X , F, G,Y).

Properties and many examples of Galois connections can be found in [EKMS].

2 GENERAL RESULTS ABOUT C-CONNECTEDNESS

Throughout the paper we will assume that X is an (E,M)-category for sinks.
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Unless otherwise specified, C will always denote a closure operator on X with respect to the

given class M of X -monomorphisms and N will be a subclass of M. If X is an X -object, NX

denotes the set of morphisms in N with codomain X .

We begin by recalling the following two propositions from [C2].

PROPOSITION 2.1

Let CL(X ,M)
DN−→ S(X )op and S(X )op TN−→ CL(X ,M) be defined by:

DN (C) = {X ∈ X : every n ∈ NX is C-closed}

TN (A) = Sup{C ∈ CL(X ,M) : DN (C) ⊇ A}.

Then, CL(X ,M)
DN-�
TN

S(X )op is a Galois connection.

PROPOSITION 2.2

Let CL(X ,M)
IN−→ S(X ) and S(X )

JN−→ CL(X ,M) be defined by:

IN (C) = {X ∈ X : every n ∈ NX is C-dense}

JN (B) = Inf{C ∈ CL(X ,M) : IN (C) ⊇ B}.

Then, S(X )
JN-�
IN

CL(X ,M) is a Galois connection.

In [C2] we presented some characterizations of the functions TN and JN that will be often

used throughout the paper. For reference purposes we collect them under the following:

PROPOSITION 2.3

For every A ∈ S(X )op and M-subobject M
m
−→ X , with X ∈ X , we have that

mTN (A) = ∩{f−1(n) : Y ∈ A, X
f

−→ Y, N
n

−→ Y ∈ NY and m ≤ f−1(n)}.

Moreover, for every B ∈ S(X ) and M-subobject M
m
−→ Y , with Y ∈ X , we have that

mJN (B) = sup
(

{m} ∪ {(idX)f : X ∈ B, X
f

−→ Y and ∃n ∈ NX with nf ≤ m}
)

.

DEFINITION 2.4 (cf. [C2], [C4])

(a) A morphism X
f

−→ A is N -constant if f factors through nf for every n ∈ NX .

(b) A morphism X
f

−→ A is N -fixed if f−1(n) ≃ idX for every n ∈ NA.

REMARK 2.5

Notice that Definition 2.4(a) yields a Galois connection S(X )
∆N-�
∇N

S(X )op where for A ∈
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S(X ), ∆N (A) = {Y ∈ X : ∀X ∈ A, each X
f

−→ Y is N -constant} and for B ∈ S(X )op,

∇N (B) = {X ∈ X : ∀Y ∈ B, each X
f

−→ Y is N -constant}. In [C2, Theorem 2.8] it was shown

that under the assumption of N being closed under the formation of direct images, one has that

DN ◦ JN = ∆N and IN ◦ TN = ∇N .

Similarly Definition 2.4(b) yields a Galois connection S(X )
∆̂N-�
∇̂N

S(X )op where for A ∈

S(X ), ∆̂N (A) = {Y ∈ X : ∀X ∈ A, each X
f

−→ Y is N -fixed} and for B ∈ S(X )op, ∇̂N (B) =

{X ∈ X : ∀Y ∈ B, each X
f

−→ Y is N -fixed}. In [C4, Theorem 2.13] it was shown that under

the assumption of N being closed under the formation of pullbacks, one has that DN ◦JN = ∆̂N

and IN ◦ TN = ∇̂N .

Next we introduce a new notion that will allow us to prove a result similar to the two

theorems mentioned in the previous remark without any closedness condition on N .

DEFINITION 2.6

A morphism X
f

−→ Y is called N -dependent if for every n ∈ NX and every p ∈ NY , nf ≤ p

implies f−1(p) ≃ idX .

The above notion is strongly related to those in Definition 2.4 as the following proposition

shows:

PROPOSITION 2.7

For a morphism X
f

−→ Y consider the statements:

(a) f is N -dependent;

(b) f is N -constant;

(c) f is N -fixed.

We always have that (b) ⇒ (a) and (c) ⇒ (a). If N is closed under the formation of direct

images, then (a) ⇔ (b) ⇐ (c). If N is closed under the formation of pullbacks, then (a) ⇔ (c)

⇐ (b). As a consequence, if N is closed under the formation of both pullbacks and direct images

then the three concepts are equivalent.

Proof:

(b) ⇒ (a). Consider n ∈ NX and p ∈ NY such that nf ≤ p. From (b), (idX)f ≤ p and so

idX ≤ f−1(p).

(c) ⇒ (a). Straightforward, since f−1(p) ≃ idX for any p ∈ NY .

Now assume that N is closed under the formation of direct images.

(a) ⇒ (b). Let n ∈ NX and let (ef , nf ) be the (E,M)-factorization of f ◦n. By assumption

on N , nf ∈ N . Since nf ≤ nf , from (a) we have that f−1(nf ) ≃ idX .
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(c) ⇒ (b). It follows from the fact that (a) and (b) are equivalent and (c) ⇒ (a) [See also

C4, Proposition 2.14].

Now let N be closed under the formation of pullbacks.

(a) ⇒ (c). Consider p ∈ NY . Then by assumption on N , f−1(p) ∈ NX . Since (f−1(p))f ≤ p,

from (a) we have that f−1(p) ≃ idX .

(b) ⇒ (c). It follows from the fact that (a) and (c) are equivalent and (b) ⇒ (a) [See also

C4, Proposition 2.14].

Clearly, Definition 2.6 yields a Galois connection S(X )
∆′

N-�
∇

′
N

S(X )op where for A ∈ S(X ),

∆′
N (A) = {Y ∈ X : ∀X ∈ A, each X

f
−→ Y is N -dependent} and for B ∈ S(X )op, ∇′

N (B) =

{X ∈ X : ∀Y ∈ B, each X
f

−→ Y is N -dependent}. Thus we obtain the following:

THEOREM 2.8

Let N be a subclass of M. Then the Galois connection S(X )
∆′

N-�
∇

′
N

S(X )op factors through

CL(X ,M) via the Galois connections S(X )
JN-�
IN

CL(X ,M) and CL(X ,M)
DN-�
TN

S(X )op.

Proof:

Let A ∈ S(X )op and let X ∈ IN (TN (A)). Consider a morphism X
f

−→ Y with Y ∈ A

and M-subobjects n ∈ NX and p ∈ NY such that nf ≤ p or equivalently n ≤ f−1(p). Since

n is TN (A)-dense, i.e., nTN (A) ≃ idX , then from Proposition 2.3 we immediately obtain that

f−1(p) ≃ idX . Hence f is N -dependent and consequently X ∈ ∇′
N (A). Thus, IN (TN (A)) ⊆

∇′
N (A).

Viceversa, let X ∈ ∇′
N (A). Consider n ∈ NX . For every morphism X

f
−→ Y with Y ∈ A

and M-subobjects n ∈ NX and p ∈ NY such that n ≤ f−1(p) or equivalently nf ≤ p we have

that f−1(p) ≃ idX . Again from Proposition 2.3 we immediately obtain that nTN (A) ≃ idX , i.e.,

X ∈ IN (TN (A)). Thus ∇′
N (A) ⊆ IN (TN (A)).

Let B ∈ S(X ) and let Y ∈ DN (JN (B)). Consider a morphism X
f

−→ Y with X ∈ B and

M-subobjects n ∈ NX and p ∈ NY such that nf ≤ p or equivalently n ≤ f−1(p). By assumption

on Y , p is JN (A)-closed, i.e., p ≃ pJN (A). Then, from Proposition 2.3 we can easily conclude

that (idX)f ≤ p or equivalently f−1(p) ≃ idX . Hence f is N -dependent and consequently

Y ∈ ∆′
N (B). Thus, DN (JN (B)) ⊆ ∆′

N (B).

Now let Y ∈ ∆′
N (B). Consider p ∈ NY . By assumption on Y , for every morphism X

f
−→ Y

with X ∈ B and M-subobjects n ∈ NX and p ∈ NY such that n ≤ f−1(p) or equivalently nf ≤ p

we have that f−1(p) ≃ idX , or equivalently (idX)f ≤ p. Again from Proposition 2.3 we obtain

that pJN (B) ≃ p, i.e., Y ∈ DN (JN (B)). Thus ∆′
N (B) ⊆ DN (JN (B)).

We recall the following from [C5]:
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DEFINITION 2.9

An X -object X is called (C,N )-connected if X ∈ IN (TN (DN (C))).

As a consequence of Remark 2.5 and Theorem 2.8, we obtain the following alternative

descriptions of the notion of (C,N )-connectedness under appropriate closedness conditions:

PROPOSITION 2.10

(a) An X -object X is (C,N )-connected if every morphism X
f

−→ A with A ∈ DN (C) is N -

dependent; i.e., for every n ∈ NX and every p ∈ NA, nf ≤ p implies f−1(p) ≃ idX .

(b) If N is closed under the formation of direct images, then an X -object X is (C,N )-connected

if every morphism X
f

−→ A with A ∈ DN (C) is N -constant; i.e., f factors through nf for

every n ∈ NX .

(c) If N is closed under the formation of pullbacks, then an X -object X is (C,N )-connected

if every morphism X
f

−→ A with A ∈ DN (C) is N -fixed; i.e., f−1(n) ≃ idX for every

n ∈ NA.

We are now ready to give the following:

DEFINITION 2.11

(a) Let A ∈ S(X ). A is said to be a connectedness class if there is a subclass of morphisms

N ⊆ M and a closure operator C such that A = IN (TN (DN (C))).

(b) Let A ∈ S(X ) and N ⊆ M. A is said to be an N -connectedness class if there is a closure

operator C such that A = IN (TN (DN (C))).

REMARK 2.12

Notice that if A = IN (TN (DN (C))), then from the properties of Galois connections we have

that A = IN (TN (DN (JN (A)))). Consequently, part (b) of Definition 2.11 can be also restated

as follows: A is an N -connectedness class if and only if A = IN (TN (DN (JN (A)))).

PROPOSITION 2.13

A ∈ S(X ) is a left fixed point of S(X )
∆′

N-�
∇

′
N

S(X )op if and only if A is an N -connectedness

class.

Proof:

Let A = ∇′
N (B) with B ∈ S(X )op. Without loss of generality we can also assume that

B = ∆′
N (A). Thus, from Theorem 2.8, we have that A = ∇′

N (∆′
N (A)) = IN (TN (DN (JN (A)))).

Therefore A is an N -connectedness class. Conversely, let A = IN (TN (DN (C))), for C ∈

CL(X ,M). Again from Theorem 2.8 we obtain that A = ∇′
N (DN (C)).
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REMARK 2.14

Notice that using Remark 2.5, the result of Proposition 2.13 holds for the Galois connection

S(X )
∆N-�
∇N

S(X )op (S(X )
∆̂N-�
∇̂N

S(X )op) under the assumption of N being closed under the

formation of direct images (pullbacks).

The following few results will lead to a characterization of connectedness classes, under the

assumption of N being closed under the formation of pullbacks.

PROPOSITION 2.15

(a) X ∈ IN (C) if and only if for every n ∈ NX , X
f

−→ Y , Y ∈ X we have that f−1(n
C

f ) ≃ idX .

(b) Y ∈ DN (C) if and only if for every n ∈ NY , X
f

−→ Y , X ∈ X we have that ((f−1(n))
C

)f ≤

n.

Proof:

(a). Let X ∈ IN (C) and let n ∈ NX . Notice that nf ∈ M and so we can consider n
C

f . From

the general properties of closure operators we have that idX ≥ f−1(n
C

f ) ≥ (f−1(nf ))
C

≥ n
C

≃

idX . The last isomorphism is a consequence of the fact that X ∈ IN (C). Therefore we conclude

that f−1(n
C

f ) ≃ idX .

Conversely, let X ∈ X and n ∈ NX . Suppose that for every X
f

−→ Y , Y ∈ X , f−1(n
C

f ) ≃

idX . In particular, if Y = X and f = idX , we have that idX ≃ f−1(n
C

f ) ≃ n
C

. Thus X ∈ IN (C).

(b). Let Y ∈ DN (C) and let n ∈ NY . Notice that f−1(n) ∈ M and so we can con-

sider (f−1(n))
C

. From the general properties of closure operators we have that ((f−1(n))
C

)f ≤

((f−1(n))f )
C

≤ n
C

≃ n. The last isomorphism is a consequence of the fact that Y ∈ DN (C).

Therefore we conclude that ((f−1(n))
C

)f ≤ n.

Conversely, let Y ∈ X and let n ∈ NY . Suppose that for every X
f

−→ Y , X ∈ X ,

((f−1(n))
C

)f ≤ n. In particular, if we take Y = X and f = idX , we obtain that n ≥

((f−1(n))
C

)f ≃ n
C

. Since it is always true that n ≤ n
C

, we can conclude that n ≃ n
C

and

so Y ∈ DN (C).

In the special cases that C = TN (B) or C = JN (A), under a further assumption on N , we

obtain the following:

PROPOSITION 2.16

Let N be closed under the formation of pullbacks and let X and Y be two X -objects.

(a) X ∈ IN (TN (B)) if and only if for every Y ∈ B, X
f

−→ Y and n ∈ NY , we have that

(idX)f ≤ n.

(b) Y ∈ DN (JN (A)) if and only if for every X ∈ A, X
f

−→ Y and n ∈ NY , we have that
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(idX)f ≤ n.

Proof:

(a). Let X ∈ IN (TN (B)) and let X
f

−→ Y be an X -morphism with Y ∈ B. The hypothesis

on N implies that f is N -fixed (cf. Remark 2.5). Consequently, f−1(n) ≃ idX for every n ∈ NY .

Thus we have that (idX)f ≤ n, for every n ∈ NY .

Conversely, let X ∈ X and X
f

−→ Y with Y ∈ B. (idX)f ≤ n for every n ∈ NY implies that

f−1(n) ≃ idX . So, f is N -fixed and consequently X ∈ IN (TN (B)).

(b). Let Y ∈ DN (JN (A)). Then, from Remark 2.5, every morphism X
f

−→ Y with X ∈ A

is N -fixed. Thus, for every n ∈ NY , f−1(n) ≃ idX and so (idX)f ≃ (f−1(n))f ≤ n.

Conversely, consider a morphism X
f

−→ Y with X ∈ A. (idX)f ≤ n, for every n ∈ NY

implies that idX ≃ f−1((idX)f ) ≤ f−1(n), for every n ∈ NY . Thus, f is N -fixed and from

Remark 2.5, Y ∈ DN (JN (A)).

The following result is well-known from the theory of (E,M)-categories:

LEMMA 2.17

Let (Xi
fi
−→ Y ) be a sink and let (ei, m) be its (E,M)-factorization. If (gi, mi) is the

(E,M)-factorization of each fi and (hi, n) is the (E,M)-factorization of the sink (mi), then we

have that m ≃ n.

PROPOSITION 2.18

Let N be closed under the formation of pullbacks and let A ∈ S(X ). Let (Xi
fi−→ Y )i∈I be

the total sink from A into Y ∈ X and let Xi
ei−→ M

m
−→ Y be its (E,M)-factorization. Then,

the following are equivalent:

(a) Y ∈ IN (JN (A))

(b) the 2-sink (m, n) belongs to E, for every n ∈ NY .

Proof:

(a)⇒(b). From our hypothesis, for every n ∈ NY , nJN (A) ≃ idY . Notice that since

(f−1(n))f ≤ n and f−1(n) ∈ NX for every X
f

−→ Y with X ∈ A, then any such f occurs

in the construction of nJN (A) (cf. Proposition 2.3). Consequently the total sink (Xi
fi
−→ Y )i∈I is

used in the construction of nJN (A). From Lemma 2.17 and from the universal property of suprema

we obtain that m∨n ≃ nJN (A) ≃ idY . Since suprema are obtained via (E,M)-factorizations, we

obtain that the M-part of the (E,M)-factorization of the 2-sink (m, n) is an isomorphism and

so (m, n) ∈ E.

(b)⇒(a). Now, let n ∈ NY with Y ∈ X . As observed in the first part of the proof, the

fact that N is closed under the formation of pullbacks implies that the total sink (Xi
fi−→ Y )i∈I
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from A into Y is used in the construction of nJN (A). Again from Lemma 2.17 and the general

property of suprema we have that nJN (A) ≃ m ∨ n. Since (m, n) ∈ E, its supremum (taken via

its (E,M)-factorization) is an isomorphism. Thus, nJN (A) ≃ idY and so Y ∈ IN (JN (A)).

COROLLARY 2.19

If N is closed under the formation of pullbacks, then for every A ∈ S(X ), IN (JN (A)) is

closed under E-sinks.

Proof:

Let (Yi
gi
−→ Y )i∈I be an E-sink with Yi ∈ A, for every i ∈ I and let n ∈ NY . Since N is

closed under the formation of pullbacks, as in the proof of the previous proposition, all the gi’s

occur in the construction of nJN (A). Clearly the M-part of the (E,M)-factorization of the sink

(Yi
gi
−→ Y )i∈I is an isomorphism i and consequently, for every n ∈ NY so is the M-part of the

(E,M)-factorization of the 2-sink (i, n). Thus, nJN (A) ≃ idY , i.e., Y ∈ IN (JN (A)).

PROPOSITION 2.20

Let N be closed under the formation of pullbacks. Y ∈ DN (JN (A)) if and only if the total

sink from A into Y factors through n, for every n ∈ NY .

Proof:

(⇒). Consider the total sink from A into Y , (Ai
fi
−→ Y )i∈I . If Y ∈ DN (JN (A)), then from

Proposition 2.16(b), for every n ∈ NY , (idAi
)fi

≤ n. From Lemma 2.17 we obtain that the sink

(fi)i∈I factors through n.

(⇐). Consider the morphism A
f

−→ Y with A ∈ A and n ∈ NY . By hypothesis f , as

a member of the total sink from A into Y , factors through n, that is, there is a morphism r

such that f = n ◦ r. If we consider the (E,M)-factorization of f , (ef , (idX)f ), we obtain that

(idX)f ◦ ef = n ◦ r. The (E,M)-diagonalization property implies the existence of a unique

morphism d such that, in particular, n ◦ d = (idX)f . Thus, we have that (idX)f ≤ n and from

Proposition 2.16(b) we conclude that Y ∈ DN (JN (A)).

DEFINITION 2.21

For every A ∈ S(X ) and N ⊆ M, IN (TN (DN (JN (A)))) is called the N -connectedness hull

of A.

REMARK 2.22

From Remark 2.12 we obtain that A ∈ S(X ) is an N -connectedness class if and only if A

agrees with its N -connectedness hull.
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We conclude this section with the following:

THEOREM 2.23

Let N be closed under the formation of pullbacks, let X ∈ X and let A ∈ S(X ). X belongs

to the N -connectedness hull of A if and only if for every morphism X
f

−→ Y , if the total sink

(Ai
fi
−→ Y ) from A into Y factors through n, for every n ∈ NY , then so does f .

Proof:

(⇒). Consider the morphism X
f

−→ Y . If the total sink from A into Y factors through

every n ∈ NY , then from Proposition 2.20, Y ∈ DN (JN (A)). Thus, from Remark 2.5, f is

N -fixed, that is, for every n ∈ NY , f−1(n) ≃ idX . Consequently, (idX)f ≃ (f−1(n))f ≤ n and

so f factors through n, for every n ∈ NY .

(⇐). Let Y ∈ DN (JN (A)) and let X
f

−→ Y be an X -morphism. Then, from Proposition

2.20, the total sink from A into Y factors through n, for every n ∈ NY . Then, by our hypothesis,

f factors through n, for every n ∈ NY . This clearly implies that (idX)f ≤ n and consequently

f−1(n) ≃ idX . Thus f is N -fixed and from Remark 2.5, X ∈ IN (TN (DN (JN (A)))).

3 CONNECTEDNESS IN CATEGORIES WITH A TER-
MINAL OBJECT

In this section we provide a characterization of connectedness classes in the special case of a

category with a terminal object. So, from now on we assume that the category X has a terminal

object T .

DEFINITION 3.1

An X -object X is called empty (non-empty) if it does not have (it has) T as a subobject. An

X -object that is either empty or isomorphic to T is called trivial, otherwise it is called non-trivial.

Now we make the following

ASSUMPTIONS 3.2

(a) If X is a trivial object, then any morphism with domain X belongs to M;

(b) any morphism with domain a terminal object T belongs to N ;

(c) Whenever T
t

−→ X and M
m
−→ X are M-subobjects such that m ≤ t, then M non-empty

implies m ≃ t;

(d) N is a class of non-empty M-subobjects.
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Notice that at times we will use the expression “X contains T ” to mean that T is a subobject

of X .

REMARK 3.3

It is important to observe that if X is empty, then as a consequence of Assumption 3.2(d)

it cannot have any N -subobject.

The following result will be very useful.

LEMMA 3.4

Let X be non-empty and let X
f

−→ Y be a morphism. The following are equivalent:

(a) f is N -dependent;

(b) f is N -constant;

(c) f factors through T ;

(d) Xf is isomorphic to T .

Proof:

(b) ⇒ (a) was shown in Proposition 2.7.

(a) ⇒ (c). Consider the N -subobject T
t

−→ X and let (ef , tf ) be its (E,M)-factorization,

with T
ef

−→ Tf . Since by Assumption 3.2(a) ef ∈ E ∩M then it is an isomorphism. So T ≃ Tf

together with Assumption 3.2(b) implies that tf ∈ N . Clearly tf ≤ tf implies from (a) that

f−1(tf ) ≃ idX . Thus f factors through T .

(c) ⇒ (d). Let (ef , mf ) be the (E,M)-factorization of f and let X
tX

−→ T and T
tY−→ Y

be two morphisms such that f = tY ◦ tX . Since by Assumption 3.2(a) tY ∈ M, the (E,M)-

diagonalization property gives a unique morphism Xf
d

−→ T such that, in particular, tY ◦d = mf .

Notice that since mf and tY both belong to M, we also have that d ∈ M. Consequently d is

a monomorphism. Since X is non-empty, there is a morphism T
tX−→ X . Since T is a terminal

object, the morphism d satisfies: d ◦ ef ◦ tX = idT . So, d is an isomorphism since it is a

monomorphism and a retraction.

(d) ⇒ (b). Let n ∈ NX and let X
e1−→ Xf

n1−→ Y and N
ef
−→ Nf

nf
−→ Y be the (E,M)-

factorizations of f and f◦n, respectively. The (E,M)-diagonalization property yields a morphism

d such that, in particular, n1 ◦ d = nf . Since Xf ≃ T and (by 3.2(d)) Nf is non-empty, from

assumption 3.2(c) we obtain that d is an isomorphism, i.e., f factors through nf and so we have

(b).

REMARK 3.5

Notice that under Assumption 3.2 the concepts in 3.4 are not equivalent to f being N -fixed.
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As a matter of fact, in the category Top of topological spaces with the usual (episink,embedding)

factorization structure and N consisting of all non-empty embeddings, any constant function

X
f

−→ Y with X, Y topological spaces with at least two points is N -constant and N -dependent

but not N -fixed. Moreover, these three concepts are generally distinct. Again, in the category

Top with the (episink,embedding) factorization structure and N consisting of all non-empty

clopen subsets, the morphism D2
i

−→ X where D2 is the two-point discrete space, X = {0, 1, 2}

with non-trivial open sets {0, 1} and {2}, and i(0) = 0, i(1) = 1, is N -dependent but neither

N -constant nor N -fixed. Clearly Assumption 3.2(b) is not satisfied in this case.

However, under the additional assumption that the terminal object T is an M-subobject of

every element of N (this is always the case in the category Grp of groups, for instance) then the

three notions are equivalent.

PROPOSITION 3.6

Any connectedness class contains all trivial objects.

Proof:

We recall that from Proposition 2.10(a), connectedness classes can be described via N -

dependent morphisms. If X ≃ T , then clearly any morphism X
f

−→ Y factors through T , so we

can apply the previous lemma. If X is empty, then from the previous remark (3.3) X does not

have any N -subobject. Consequently any morphism X
f

−→ Y is vacuously N -dependent.

PROPOSITION 3.7

Let X
g

−→ Y be an E-morphism with X non-empty and (C,N )-connected. Then Y is

(C,N )-connected.

Proof:

From Proposition 2.10(a) and Lemma 3.4, it is enough to show that any morphism Y
f

−→ A

with A ∈ DN (C) factors through T . Since X is (C,N )-connected and contains T , then f ◦ g

factors through T , i.e., f ◦ g = tA ◦ tX with X
tX

−→ T and T
tA−→ A. By Assumption 3.2(b),

tA ∈ M and so the (E,M)-diagonalization property implies the existence of a morphism Y
d

−→ T

such that, in particular, tA ◦ d = f . This concludes the proof.

THEOREM 3.8

Let N be closed under the formation of direct images along elements of M and let A be a class

that is closed under E-quotients and contains all trivial objects in X . A is an N -connectedness

class if and only if A satisfies the following condition:

a non-trivial object X belongs to A if and only if every non-trivial image of X has a non-
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trivial M-subobject that belongs to A.

Proof:

(⇒). Assume that A is an N -connectedness class. Let X ∈ A and let X
f

−→ Y be a

morphism. Since X is (C,N )-connected, from Proposition 3.7, so is Xf . So, if Xf is non-trivial

then it has itself as M-subobject belonging to A.

Conversely, suppose that X is non-trivial and X 6∈ A. Then there is a morphism X
f

−→ Y

with Y ∈ DN (JN (A)) that does not factor through T . Thus Xf is non-trivial and it belongs

to DN (JN (A)), since by our assumptions on N we have that DN (JN (A)) is closed under M-

subobjects (cf. [C4, Proposition 2.7]). Let M
m
−→ Xf be a non-trivial M-subobject such that

M ∈ A. Again from [C4, Proposition 2.7] we have that M ∈ DN (JN (A)). This implies that

M ≃ T . Thus some non-trivial image of X has no non-trivial M-subobject in A.

(⇐). Suppose that A satisfies the condition and let X ∈ IN (TN (DN (JN (A)))). We just

need to show that X ∈ A. If X is trivial, then by assumption it belongs to A. So, suppose that

X is non-trivial and that X 6∈ A. Then there is a morphism X
f

−→ Y such that Xf is non-

trivial and it does not have any non-trivial M-subobject belonging to A. Now let A ∈ A and

let A
g

−→ Xf be a morphism. If A does not contain T , then from Remark 3.3 g is N -constant.

So, let A contain T . Consider the (E,M)-factorization mg ◦ eg = g. Since Ag

mg

−→ Xf is an

M-subobject of Xf and Ag ∈ A then Ag ≃ T . So, Xf ∈ DN (JN (A)). From Proposition 3.7,

Xf ∈ IN (TN (DN (JN (A)))). Consequently we obtain that Xf ≃ T which contradicts the fact

that Xf is non-trivial.

PROPOSITION 3.9

Let DN (C) be E-reflective in X . Then a non-trivial object X is (C,N )-connected iff its

E-reflection X
rX−→ rX satisfies rX ≃ T .

Proof:

(⇐). For any Y ∈ DN (C) and X
f

−→ Y there is a morphism rX
g

−→ Y such that g◦rX = f .

Since rX ≃ T , we have that f factors through T , i.e., from Lemma 3.4 and Proposition 2.10(a),

X is (C,N )-connected.

(⇒). Since X is (C,N )-connected and rX ∈ DN (C), again from Lemma 3.4 and Proposition

2.10(a), rX factors through T , i.e., there exist morphisms X
tX

−→ T and T
trX−→ rX such that

trX◦tX = rX = idrX◦rX . By assumptions rX ∈ E and trX ∈ M. So, the (E,M)-diagonalization

property yields a morphism rX
d

−→ T such that in particular trX ◦ d = idrX . Thus trX is a

monomorphism and a retraction and so an isomorphism.

PROPOSITION 3.10

The class A of all trivial objects in X forms a connectedness class.
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Proof:

We just need to show that IN (TN (DN (JN (A)))) ⊆ A. It is easy to see directly from

its definition in Proposition 2.2 that JN (A) is the discrete closure operator. Consequently,

DN (JN (A)) = X . Now if X ∈ IN (TN (DN (JN (A)))), then every n ∈ NX is TN (DN (JN (A)))-

dense. Since X ∈ DN (JN (A)) = X , then every n ∈ NX is TN (DN (JN (A)))-closed. Now, if X

does not contain T , then by assumption X ∈ A. If X contains T , then from the above we easily

obtain that the N -morphism T
tX−→ X is an isomorphism. Thus X ∈ A.

PROPOSITION 3.11

For every B ∈ S(X ), ∆N (B) is closed under the formation of products.

Proof:

Let X be a nonempty object in B and consider a morphism X
f

−→
∏

Yi with Yi ∈ ∆N (B)

for every i ∈ I. Clearly, if
∏

Yi
pi
−→ Yi is the usual projection, then the morphism pi ◦ f is

N -constant and so factors through T for every i ∈ I. Hence for every i ∈ I we obtain the

factorization pi ◦ f = mi ◦ ei with T
mi−→ Yi. By the universal property of products we obtain a

morphism T
t

−→
∏

Yi such that pi ◦ t = mi for every i ∈ I. Also, since T is the terminal object

we have that ei = ej = e for every i, j ∈ I. Now, pi ◦ f = mi ◦ e = pi ◦ t ◦ e for every i ∈ I. The

fact that (pi)i∈I is a monosource implies that f = t ◦ e, that is f factors through T and so from

Lemma 3.4, f is N -constant. Notice that if X is empty, then from Remark 3.3, any morphism

with domain X is N -constant.

REMARK 3.12

We have already proved in [C3, Proposition 2.10] that ∆N (B) is closed under M-subobjects.

This, together with the above proposition, under the appropriate hypotheses implies that ∆N (B)

is an E-reflective subcategory of X (cf. [HS, Theorem 37.1] or [AHS, theorem 16.8]).

DEFINITION 3.13

A non-empty family (Mi
mi−→ X)i∈I of M-subobjects of X is said to be disjoint if ∩Mi is

empty or |I| = 1.

DEFINITION 3.14

(a) We say that a non-empty disjoint family (Mi
mi−→ X)i∈I of non-empty M-subobjects of X

has a strong E-quotient if there is an E-morphism X
q

−→ Q such that:

i) q ◦ mi factors through T for every i ∈ I;

ii) for every morphism T
tQ

−→ Q we have that either q−1(tQ) ≃ T or there is an element
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i0 ∈ I such that mi0 = q−1(tQ);

iii) for any E-morphism X
g

−→ Y such that g ◦ mi factors through T for every i ∈ I, there

exists a morphism Q
h

−→ Y such that h ◦ q = g.

(b) An X -morphism X
q

−→ Q is called a strong E-quotient if there is a non-empty disjoint family

(Mi
mi−→ X)i∈I of non-empty M-subobjects of X , that has q as a strong E-quotient.

(c) We say that X has strong E-quotients if for any X ∈ X , any non-empty disjoint family of

non-empty M-subobjects (Mi
mi−→ X)i∈I has a strong E-quotient.

REMARK 3.15

(a) Let X
q

−→ Q be a strong E-quotient of the family (Mi
mi−→ X)i∈I and let Mj0

mj0−→ be a

non-trivial element of this family. By condition 3.14(a) i), q ◦ mj0 factors through T . Call

its image T
tQ

−→ Q. Clearly we have that mj0 ≤ q−1(tQ). Condition 3.14(a) ii) and the

disjointness of the family (Mi
mi−→ X)i∈I imply that mj0 = q−1(tQ).

(b) We observe that if E is a class of episinks then any two strong E-quotients with respect to

the same family of M-subobjects (Mi
mi−→ X)i∈I must be isomorphic. The same conclusion

can be drawn if we require uniqueness of the morphism h in property iii).

(c) Consider the category Top of topological spaces with the (episink,embedding)-factorization

structure. If X
q

−→ Q is a topological quotient, then it can be easily seen that q is a strong

E-quotient with respect to the family of subspaces (q−1{ti})ti∈Q. On the other hand, let

X
q

−→ Q be a strong E-quotient with respect to a disjoint family of non-empty subspaces

(Mi
mi−→ X)i∈I . Clearly q is a surjective continuous function. Consider the topological

quotient that is obtained by identifying the points of X that lie in the same subspace Mi,

that is for each x, y ∈ X we define the relation: xRy if and only if either x = y or there

is an element i ∈ I such that x, y ∈ Mi. If P is the induced topological quotient, then

from property iii) of strong E-quotients we obtain a continuous function Q
h

−→ P such that

h ◦ q = p. Moreover, since q is constant on the fibers of p and P has the quotient topology,

we obtain a continuous function P
k

−→ Q such that k ◦ p = q. This together with h ◦ q = p

yields a homomorphism between P and Q. Thus, we can conclude that Top has strong

E-quotients.

(d) It is very easy to see that in the category Ab of abelian groups with the (episink,injective)-

factorization structure the strong E-quotients are precisely the surjective homomorphisms.

Consequently Ab has strong E-quotients.

(e) Clearly, the category Grp of groups with the (episink,injective)-factorization structure does

not have strong E-quotients since in this case not every subgroup in normal.
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THEOREM 3.16

Suppose that E is a class of episinks that is closed under the formation of pullbacks along

elements of M, X is E-cowell powered with products and strong E-quotients and that N is closed

under the formation of direct images.

Let A be a class of objects that is isomorphism closed and contains all trivial objects. Assume

that there is a weakly hereditary closure operator C such that A ⊆ IN (TN (DN (C))) and that

the class of strong E-quotients is closed under the formation of pullbacks along C-closures of

M-subobjects. Then, A is an N -connectedness class if and only if it satisfies the following

conditions:

(a) A is closed under E-quotients;

(b) for every M-subobject M
m
−→ X that contains T , M ∈ A implies that its C-closure M

C

∈ A;

(c) if (Mi
mi−→ X)i∈I is a family of M-subobjects such that each Mi ∈ A and ∩Mi contains T ,

then also ∨Mi ∈ A;

(d) if X
q

−→ Q is a strong E-quotient such that Q ∈ A and for every morphism T
tQ

−→ Q,

q−1(T ) ∈ A, then X ∈ A.

Proof:

(⇒). (a). Assume that A is an N -connectedness class, i.e., as observed in Remark 2.12,

A = IN (TN (DN (JN (A)))). Let X
f

−→ Y be an X -morphism with X ∈ A and f ∈ E. If X

contains T , then the result follows from Proposition 3.7. If X is empty, then as a consequence

of Assumption 3.2(a) we have that f ∈ M∩ E and so it is an isomorphism. Thus, Y ∈ A.

(b) follows from [C5, Proposition 3.2(b)].

(c) follows from [C5, Proposition 3.3(a)].

(d). Now let X
q

−→ Q be a strong E-quotient for the non-empty disjoint family of non-

emptyM-subobjects (Mi
mi−→ X)i∈I , such that Q is (JN (A),N )-connected. Let (ei, ti) be the

(E,M)-factorization of q ◦ mi with T
ti−→ Q. Clearly we have that mi ≤ q−1(ti). By as-

sumption we have that q−1(T ) is (JN (A),N )-connected. Notice that under our assumptions,

DN (JN (A)) = ∆N (A) is E-reflective in X (cf. Remark 3.12 and [HS, Theorem 37.1]). So, let

us consider the E-reflection X
rX−→ rX into DN (JN (A)). Since q−1(T ) contains T , from Propo-

sition 2.10(a) and Lemma 3.4 we have that rX ◦ q−1(ti) factors through T and consequently so

does rX ◦ mi. Thus, by definition of strong E-quotient, there exists a morphism Q
p

−→ rX such

that p ◦ q = rX . Notice that since E is a class of episinks, the fact that rX and q belong to E

implies that also p belongs to E. Since Q is (JN (A),N )-connected and p ∈ E then, from (a)

rX is too. However, the fact that rX ∈ DN (JN (A)) implies that idrX
factors through T . This

clearly implies that rX ≃ T . Consequently from Proposition 3.9, X is (JN (A),N )-connected,

i.e., X ∈ A.

(⇐). Now let us assume that A contains all trivial objects and satisfies conditions (a) through
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(d). To show that A is an N -connectedness class we use the characterization in Theorem 3.8.

Clearly, if X is non-trivial and belongs to A, then any image of it is non-trivial and from (a) it

satisfies the condition in Theorem 3.8.

Conversely, let X ∈ X be non-trivial. For any morphism T
ti−→ X consider the family of all

M-subobjects Mi
mi−→ X containing T

ti−→ X such that Mi ∈ A. Clearly condition (c) implies

that ∨Mi ∈ A. Call this object Ati
. This yields a family (Ati

ai−→ X)i∈I of non-isomorphic

M-subobjects (the isomorphic ones are identified) such that Ati
∈ A for every i ∈ I. Notice

that if |I| > 1, then ∩Ati
does not contain T . As a matter of fact, the existence of a morphism

T
t

−→ ∩Ati
would yield a morphism T

t0−→ X . Condition (c) would imply that At0 ≃ Ati
, for

each i ∈ I, that is |I| = 1, which is a contradiction. Let X
q

−→ Q be the strong E-quotient

of the family (Ati

ai−→ X)i∈I . Since X is non-trivial, Q cannot be empty, so we can consider a

morphism T
tq

−→ Q. By the property ii) of strong E-quotients, we have that q−1(T ) belongs to

A. If Q ≃ T then X ≃ q−1(T ) and so X belongs to A. So, let us assume that Q is non-trivial.

Now, from the condition in Theorem 3.8, Q has a non-trivial M-subobject A
m
−→ Q with A ∈ A.

Consider its C-closure A
C m

C

−→ Q. By condition (b), A
C

∈ A. Let T
tA−→ A

C

be a morphism and

consider the following commutative diagram

q−1(T )
q−1(t′) - X

QQQQQt s �����
q−1(m)

3

q−1(AC)

AC

q̄
?

�����
tA

3 QQQQQ
m

C

s
T

q̂

?

t′
- Q

?

q

where t is the morphism induced by the universal property of pullbacks. Now, since X
q

−→ Q is

the strong E-quotient of the family (Ati

ai−→ X)i∈I , again from property ii) of strong E-quotients,

we have that either q−1(T ) ≃ Atj
for some j ∈ I or q−1(T ) ≃ T . So, q−1(T ) ∈ A. Notice that

in the case that q−1(T ) ≃ T , since q−1(t′) = tk for some k ∈ I with T
tk−→ X , by property i) of

strong E-quotients, we easily conclude that Atk

ak−→ X must factor through T
t′

−→ Q. This clearly

yields that q−1(T ) ≃ Atk
. Thus, in any case we have that q−1(T ) ≃ Atj

for some j ∈ I. Thus,

q−1(T ) ∈ A for every morphism T
tA−→ A

C

. Now, since the right and the outer squares of the

above diagram are pullbacks, so is the left one. Notice that our assumptions on C and A imply

that q̄ is a strong E-quotient. Thus from (d), q−1(A
C

) ∈ A and consequently, by construction

of Atj
we have that Atj

≃ q−1(A
C

). Therefore q−1(T )
t

−→ q−1(A
C

) is an isomorphism. So,
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q̄ ◦ t = tA ◦ q̂ implies q̄ = tA ◦ q̂ ◦ t−1. Now, notice that tA ∈ M. Since q̄ ∈ E, by assumption

we have that q̂ ∈ E as a pullback of q̄ along tA. Thus, q̂ ◦ t−1 ∈ E. The uniqueness of (E,M)-

factorizations implies that tA is an isomorphism. Clearly, this contradicts the fact that A
C

is

non-trivial.

REMARK 3.17

We would like to observe that the hypotheses of Theorem 3.16 are not as strong as they

may first appear. As a matter of fact, from [C2, Proposition 2.7] we know that for any class

of X -objects A, the closure operator JN (A) is always weakly hereditary and clearly satisfies

A ⊆ IN (TN (DN (JN (A)))). Moreover, if in Ab we consider the (episinks,monomorphism)-

factorization structure, due to the fact that in this case the strong E-quotients are exactly the

surjective homomorphisms, we have that the pullback condition in the hypotheses of Theorem

3.16 is satisfied for any closure operator C.

In the category Top with the (episink,embedding)-factorization structure, since as observed

in Remark 3.15, the strong E-quotients are precisely the topological quotients, the Kuratowski

closure K certainly satisfies the hypotheses of Theorem 3.16. Since, if N is the class of all non-

empty embeddings, IN (TN (DN (K)))) consists of all connected topological spaces, the above

theorem clearly applies to any subclass A of connected topological spaces satisfying conditions

(a) through (d). Notice that it was proved in [AW, Lemma 3.11] that condition (b) of the

above theorem is always satisfied for the Kuratowski closure by any class of topological spaces

satisfying (a), (c) and (d). Therefore, in this case we obtain as a special case the characterization

of topological connectednesses given by Arhangel’skii and Wiegandt [AW, Theorem 3.10]. We

further observe that in [AW, Proposition 4.2] it was shown that connected topological spaces is the

largest non-trivial connectedness in Top, therefore our special case characterizes all non-trivial

connectednesses in Top.

Several examples that illustrate the above theory can be found in [C5]. Here we conclude

with a few examples that show that in those cases in which the above concepts of N -constant,

N -fixed and N -dependent do not agree with the classical notion of constant function, we obtain

some new Galois correspondences.

EXAMPLE 3.18

Consider the category Top of topological spaces with M consisting of all embeddings and

N all nonempty clopen subsets. If A is the class Discr of discrete topological spaces, then

for every M-subobject of X ∈ Top, MTN (A) = ∩{f−1(f(M)) : X
f

−→ Y, Y discrete }. Con-

sequently, IN (TN (A)) = {X : for every non-empty clopen subset M ⊆ X, MTN (A) = X} =

{X : for every non-empty clopen M ⊆ X, X
f

−→ Y and Y discrete , f(X) = f(M)}. Clearly

IN (TN (A)) contains the class Conn of connected topological spaces. On the other hand, if X is
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not connected then there is a non-empty clopen subset M 6= X . As a consequence we can find a

morphism X
f

−→ D2, with D2 being the two point discrete topological space with underlying set

{0, 1} and f defined as f(M) = 0, f(X−M) = 1. Hence, X does not belong to IN (TN (Discr))

and so IN (TN (Discr)) = Conn. Clearly, if B consists of all connected topological spaces, then

JN (B) is the discrete closure and DN (JN (B)) = Top. Using the properties of Galois connections

we obtain that IN (TN (Top)) = Conn. This is clearly different from the classical correspondence

between connected and totally disconnected topological spaces.

We also observe that if A is a class of connected topological spaces, then TN (A) is the

indiscrete closure and clearly IN (TN (A)) = Top. On the other hand, if B=Top, and N is a

non-empty clopen subset of X , then using the morphism X
idX−→ X , from Proposition 2.3, we

obtain that NJN (B) = X . Consequently, X ∈ DN (JN (B)) if and only if for every non-empty

clopen subset N of X , N = NJN (B) = X , i.e., DN (JN (B)) consists of all connected topological

spaces.

In conclusion, this Galois connection yields the following pairs of fixed points: (Top,Conn)

and (Conn,Top).

EXAMPLE 3.19

Consider the category Grp of groups with M consisting of all monomorphisms and let N

be the class of all normal subgroups different from zero. If Y is simple, then any morphism

X
f

−→ Y is N -dependent, so for instance Z(3)
id
−→ Z(3) is an N -dependent morphism that is

not constant. Now let us consider the class B of all simple groups. Consider the M-subobject

M
m
−→ Y , Y ∈ Grp. Since for every X ∈ B the only n ∈ NX is X itself we have that

if nf ≤ m then also (idX)f ≤ m and so mJN (B) ≃ m. Thus JN (B) is the discrete closure

operator. Consequently DN (JN (B)) = Grp. Now, let A=Grp. Then it is easy to see that for

an M-subobject M
m
−→ X different from zero, mTN (A) is the normal closure of M , that is the

intersection of all normal subgroups of X containing M . It follows that IN (TN (Grp)) consists of

all simple groups. On the other side, for every class of simple groups A, TN (A) is the indiscrete

closure and IN (TN (A)) = Grp. Now let B= Grp and let Y ∈ DN (JN (B)). Consider a normal

subgroup N of Y different from zero. Clearly using the morphism Y
idY−→ Y , from Proposition 2.3

we obtain that NJN (B) = Y . However, if Y ∈ DN (JN (B)), then we must have that NJN (B) = N .

So, N = Y , that is Y is a simple group. Now, if Y is simple, then any N -subobject of Y is

JN (B)-closed by default, since the only normal subgroup of Y different from zero is Y itself. In

conclusion, DN (JN (B)) consists of all simple groups.

Let A= Ab and let M
m
−→ X be an M-subobject. Using the characterization in 2.3 we

have that for every subgroup P normal in Y , Y ∈ Ab and X
f

−→ Y , f−1(P ) is normal in X

and satisfies X/f−1(P ) ≃ f(X)/(P ∩ f(X)) is abelian. On the other hand, if N is a normal

subgroup of X containing M such that X/N is abelian, then N must contain the subgroup X ′
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generated by the commutators of X . Consider the homomorphism X
q

−→ X/X ′. Since X ′ ⊆ N

we obtain a morphism X/X ′ t
−→ X/N such that t ◦ q = q′ with X

q′

−→ X/N . Therefore, we have

that N = q−1(t−1({0})). If t−1({0}) 6= {0}, that is N 6= X ′, then N occurs in the construction

of TN (A). In conclusion, MTN (A) consists of the intersection of all normal subgroups of X

containing M and properly containing the commutator subgroup of X (we recall that X ′ ⊆ N is

equivalent to X/N being abelian.) Thus IN (TN (Ab)) consists of all groups X that do not have

any proper normal subgroup that properly contains the commutator subgroup. We call this the

class of quasi-perfect groups. We observe that in the case that N consists of all normal subgroups

then IN (TN (Ab)) consists of all perfect subgroups (cf. [C3, Example 3.5]).

EXAMPLE 3.20

Consider the category Ab of abelian groups with M consisting of all monomorphisms and

let N be the class of all torsion subgroups different from zero. Clearly, if Z is the additive group

of integers, the quotient morphism Z
q

−→ Z/2Z is N -dependent but not constant. Let A be

the class TF of all torsion free abelian groups. Since for every Y ∈ A there is no n ∈ NX ,

we have that for every M-subobject M
m
−→ X , MTN (F) = X , that is, TN (F) is the indiscrete

closure operator. Consequently, IN (TN (F)) = Ab. Now let B= Ab and let 0 6= M ≤ Y be

a torsion subgroup. Then, using the morphism Y
idY−→ Y , from Proposition 2.3, we obtain that

MJN (B) = Y . Clearly as a consequence we obtain that DN (JN (B)) = TF.

Let A= Ab. It is easy to see that for every torsion subgroup 0 6= M ≤ X , MTN (A) = M .

Consequently IN (TN (Ab)) = {X ∈ Ab : ∀0 6= M ≤ X, M torsion , X = MTN (Ab) = M} = TF.

If B=TF, the clearly JN (B) is the discrete closure operator and consequently DN (JN (B)) = Ab.

Let B=T, the class of all torsion abelian groups and let 0 6= M ≤ X be a torsion subgroup.

Then using as a morphism the inclusion of the torsion of X , t(X)
t

−→ X , from proposition 2.3,

we obtain that MJN (B) = t(X). So, DN (JN (B)) = {X ∈ Ab : ∀0 6= M ≤ X, M torsion , M =

MJN (B) = t(X)}. In other words, this class consists of all abelian groups X such that t(X) does

not have any non-trivial subgroup. This class properly contains TF since any finite group of

prime order belongs to it but not to TF. This clearly differs from the classical correspondence

between torsion and torsion-free abelian groups.
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