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ABSTRACT: Let X be an (E,M)-category for sinks. For each subclass N of M, two new Galois
connections that generalize the Clementino-Tholen connectedness and separation Galois connections
are introduced. In particular, closure operator constructions that generalize the regular and coregular
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0 INTRODUCTION

Let X be an (E,M)-category for sinks, let CL(X ,M) denote the conglomerate of all closure op-

erators on X with respect to M with the usual pointwise order and let S(X ) denote the conglom-

erate of all subclasses of objects of X , ordered by inclusion. For each subclass N of M and clo-

sure operator C, the function CL(X ,M)
A

−→ S(X )op defined by: A(C) = {X ∈ X : every m ∈

N with domain X is C-closed} is shown to preserve suprema and consequently it gives rise to a Ga-

lois connection CL(X ,M)
A

⊥

-
�

P

S(X )op. Similarly, the function CL(X ,M)
B
−→ S(X ) defined by:

B(C) = {X ∈ X : every m ∈ N with domain X is C-dense} preserves infima and so yields a Galois

connection S(X )
Q

⊥

-
�

B

CL(X ,M). In Section 2, constructive descriptions of the closure operators P (A)

and Q(B) for A,B ⊆ X are presented.

The above Galois connections yield as special cases the Clementino-Tholen connectedness and sepa-

ration Galois connections ([CT]) and have been used ([CH1]) to provide a link between the connectedness

notion with respect to a closure operator introduced in [CT] and the one by Castellini ([C1−5]).

The assignments A and B have an obvious duality to each other – one depending on closedness,

the other on density. This duality extends to P (A) and Q(B) which are generalizations of the regular

closure operator and its dual the coregular closure operator (cf. [DG], [DT] and [CT]).

In Section 3, we see how the present constructions do indeed generalize and simplify previous con-

structions, particularly in [CKS2]. These newly introduced Galois connections are then pasted together
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with some previously introduced ones in order to build a big diagram of Galois connections, all depend-

ing on the parameter N . The final aim of this paper is to show that this dependence on N is useful since

the variation of the parameter N enables us to obtain many existing closure operator constructions by

focusing on different parts of the diagram.

We use the terminology of [AHS] throughout the paper1.

1 PRELIMINARIES

Throughout we consider a category X and a fixed class M of X -monomorphisms, which contains all

X -isomorphisms and is closed under composition . It is assumed that X is M-complete; i.e.,

Pullbacks of M-morphisms exist and belong to M, and multiple pullbacks of (possibly large) families

of M-morphisms with common codomain exist and belong to M.

One of the consequences of the above assumptions is that there is a uniquely determined class E of

sinks in X such that X is an (E,M)-category for sinks. This implies the following features of M and

E (cf. [AHS] for the dual case):

PROPOSITION 1.1 (1) Every isomorphism is in both M and E (as a singleton sink).

(2) M is closed under M-relative first factors, i.e., if n ◦ m ∈ M, and n ∈ M, then m ∈ M.

(3) M and E are closed under composition, in particular for E this has the consequence that if (Xi
ei−→

Y )i∈I is a sink in E and the morphism Y
f

−→ Z (seen as a singleton sink) belongs to E, then so

does the sink (Xi
f◦ei
−→ Z)i∈I .

(4) Pullbacks of X -morphisms in M exist and belong to M.

(5) The M-subobjects of every X -object form a (possibly large) complete lattice; suprema are formed

via (E,M)-factorizations and infima are formed via intersections.

If X
f

−→ Y is an X -morphism and M
m
−→ X is an M-subobject, then M

ef◦m
−→ Mf

mf
−→ Y will

denote the (E,M)-factorization of f ◦ m. Mf

mf

−→ Y will be called the direct image of m along f and

M
ef◦m
−→ Mf will be called the restriction of the morphism f to the M-subobject m. If N

n
−→ Y is an

M-subobject, then the pullback f−1(N)
f−1(n)
−−−−→ X of n along f will be called the inverse image of n

along f . Whenever no confusion is likely to arise, we will denote the morphism ef◦m simply ef .

DEFINITION 1.2 A closure operator C on X (with respect to M) is a family {( )
C

X
}X∈X of functions

on the M-subobject lattices of X with the following properties that hold for each X ∈ X :

(a) [extension] m ≤ (m)
C

X
, for every M-subobject M

m
−→ X;

(b) [order-preservation] m ≤ n ⇒ (m)
C

X
≤ (n)

C

X
for every pair of M-subobjects of X;

(c) [continuity] If f−1(m) is the inverse image of the M-subobject M
m
−→ Y along X

f
−→ Y and

f−1((m)
C

Y
) is the inverse image of the closure of m along f , then (f−1(m))

C

X
≤ f−1((m)

C

Y
).

1Paul Taylor’s Commutative Diagrams in TEX macro package was used to typeset most of the diagrams in this paper.
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Condition (a) implies that for every closure operator C on X , every M-subobject M
m
−→ X has a

canonical factorization

M
t- (M)

C

X

QQQQQm s
X

(m)
C

X?

where (m)
C

X
is called the C-closure of the subobject m.

When no confusion is likely we will write m
C

rather than (m)
C

X
and for notational symmetry we

will denote the morphism t by m
C
.

REMARK 1.3 (1) Notice that in the above definition, under condition (b), the continuity condition

(c) is equivalent to the following statement concerning direct images: if M
m
−→ X is an M-

subobject and X
f

−→ Y is a morphism, then ((m)
C

Y
)f ≤ (mf )

C

Y
, i.e., the direct image of the

closure of m is less than or equal to the closure of the direct image of m; (cf. [DG]).

(2) Under condition (a), both order-preservation and continuity, i.e., conditions (b) and (c) together

are equivalent to the following: given M-subobjects M
m
−→ X and N

n
−→ Y , if f and g are

morphisms such that n ◦ g = f ◦m, then there exists a unique morphism d such that the following

diagram commutes.

M
g - N

@@@
m

C

R
@@@

n
C

R
M

C d -

n

N
C

	���
m

C 	���
n

C

X

m

?

f
- Y

?

DEFINITION 1.4 Given a closure operator C, we say that m ∈ M is C-closed if m
C

is an isomor-

phism. An X -morphism f is called C-dense if for every (E,M)-factorization (e, m) of f we have that

m
C

is an isomorphism. We call C idempotent provided that m
C

is C-closed for every m ∈ M. C is

called weakly hereditary if m
C

is C-dense for every m ∈ M.

Notice that Definition 1.2(c) implies that inverse images of C-closed M-subobjects are C-closed.

We denote the collection of all closure operators on X with respect to M by CL(X ,M) pre-ordered

as follows: C ⊑ D if m
C

≤ m
D

for all m ∈ M (where ≤ is the usual order on subobjects). Notice

that arbitrary suprema and infima exist in CL(X ,M), they are formed pointwise in the M-subobject

fibers. The symbols iCL(X ,M) and wCL(X ,M) will be used to denote all idempotent and all weakly

hereditary closure operators, respectively.

For more background on closure operators see, e.g., [CKS1−2], [DG] and [DGT]. For a recent survey

on the same topic, one could check [C7]. Detailed proofs can be found in [H1] and [DT].
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DEFINITION 1.5 For pre-ordered classes (X,≤) and (Y,≤), a Galois connection X
F

⊥

-
�

G

Y consists

of order preserving functions F and G that satisfy F ⊣ G, i.e., x ≤ G(F (x)) for every x ∈ X and

F (G(y)) ≤ y for every y ∈ Y . (G is adjoint and has F as coadjoint or left adjoint).

If x ∈ X and y ∈ Y are such that F (x) = y and G(y) = x, then x and y are said to be corresponding

fixed points of the Galois connection (X, F, G, Y ).

An order preserving function (X,≤)
H- (Y,≤) is adjoint (coadjoint, respectively) if it preserves

infima (suprema). In this case the coadjoint (adjoint) is given by I(y) :=
∧
{x ∈ X : y ≤ H(x)}

(J(y) :=
∨
{x ∈ X : H(x) ≤ y}).

Some authors consider Galois connections to be order reversing. We avoid this as it prohibits

composition of Galois connections. Properties and many examples of Galois connections can be found

in [EKMS].

2 TWO NEW CLOSURE OPERATOR CONSTRUCTIONS

Let S(X ) denote the collection of all subclasses of objects of X , ordered by inclusion and let N be a

fixed subclass of M. The aim of this Section is to introduce two new closure operator constructions

that depend on the parameter N .

PROPOSITION 2.1 Let CL(X ,M)
A

−→ S(X )op be defined by:

A(C) = {X ∈ X : every m ∈ N with domain X is C-closed}

then, A preserves suprema and thus forms a Galois connection CL(X ,M)
A

⊥

-
�

P

S(X )op with adjoint

P (A) =
∨

{C ∈ CL(X ,M) : A(C) ⊇ A}.

Proof: It follows since m ∈ M is
∨

I Ci-closed iff m is Ci-closed for each i ∈ I. (Note that

m∨ICi =
∨

I mCi ≤ m ⇔ mCi ≤ m for each i ∈ I.)

PROPOSITION 2.2 Let CL(X ,M)
B
−→ S(X ) be defined by:

B(C) = {X ∈ X : every m ∈ N with domain X is C-dense}

then, B preserves infima and thus forms a Galois connection S(X )
Q

⊥

-
�

B

CL(X ,M) with coadjoint

Q(B) =
∧

{C ∈ CL(X ,M) : B(C) ⊇ B}.

Proof: It follows by observing that m ∈ M is
∧

I Ci-dense iff m is Ci-dense for each i ∈ I.

(idX ≤ m∧ICi =
∧

I mCi ⇔ idX ≤ mCi for each i ∈ I.)

REMARK 2.3 It is important to observe that under the assumption that M contains all regular

monomorphisms, if N consists of all diagonal morphisms then for every C ∈ CL(X ,M) we obtain
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special cases of the above definitions: A(C) = {X ∈ X : δX is C-closed} and B(C) = {X ∈ X :

δX is C-dense}. These definitions give rise to two well known Galois connections that have been widely

used in the literature (cf. [DG], [CKS2] and [CT]). In this case the closure operator P (A) is the regular

closure, while Q(A) is its dual or the “coregular” closure induced by the subcategory A.

Next we present some more practical descriptions of the closure operators P (A) and Q(B).

PROPOSITION 2.4 Let A ∈ S(X )op. For every X ∈ X and for every M-subobject M
m
−→ X,

consider all commutative squares of the form

M
m - X

Ai

ri
?

ni

- Bi

si
?

with Ai ∈ A and ni ∈ N , indexed by I. Form all pullbacks mi of ni along si and set CA(m) =
∧

I mi.

For every A ∈ S(X )op we have that the function CA that to every M-subobject M
m
−→ X associates

CA(m) is an idempotent closure operator on X and CA(m) ≃ mP (A).

Proof: We observe that the stated construction is a special case of the following construction which

yields an idempotent closure operator (cf. [CKS2, Theorem 2.3]). However, for completeness we include

a short proof.

Let F ⊆ M be closed under pullbacks and for m ∈ M define mCF =
∧
{m′ ∈ F : m ≤ m′}.

Clearly by construction CF is extensive and order preserving. To show continuity, consider any

morphism X
f

−→ Y and M
m
−→ Y ∈ M and note:

f−1(mCF ) = f−1(
∧
{m′ ∈ F : m ≤ m′})

=(1)
∧
{f−1(m′) : m′ ∈ F , m ≤ m′}

≥(2)
∧
{f−1(m′) : m′ ∈ F , f−1(m) ≤ f−1(m′)}

≥(3)
∧
{m̄ : m̄ ∈ F , f−1(m) ≤ m̄}

= (f−1(m))CF

where (1) follows since pullbacks and intersections commute, (2) follows since m ≤ m′ ⇒ f−1(m) ≤

f−1(m′) and (3) since each f−1(m) ∈ F .

As an infimum construction, CF is clearly idempotent, since for m′ ∈ F , mCF ≤ m′ ⇔ m ≤ m′.

If we set F = {f−1(n) : n ∈ N , dom(n) ∈ A, cod(n) = cod(f)} then our construction CA(m) = mCF

for any m ∈ M and we have an idempotent closure operator as claimed.

It remains to show that CA(m) ≃ mP (A). Since for every A ∈ A and N -subobject A
n

−→ X , the

square idX ◦n = n◦ idA is a pullback, we have that A ⊆ A(CA) and so by definition of P we obtain that

CA ⊑ P (A). On the other hand, from the property that A ⊆ A(P (A)), we have that each N -subobject

Ai
ni−→ Bi with Ai ∈ A is P (A)-closed. Thus, so is each mi as a pullback of a P (A)-closed subobject

and consequently
∧

I mi = CA(m) is P (A)-closed too. Hence, P (A) ⊑ CA and the equality follows.

LEMMA 2.5 Let C ∈ CL(X ,M) and let (ei)i∈I be an E-sink. Fix j ∈ I and assume that for each

i 6= j there are morphisms ri, fi such that ei ◦ fi = ej ◦ ri. If each fi, i 6= j is C-dense, then ej is

C-dense.
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Proof: Let us consider the following commutative diagram:

Xi

fi - Yi

@@@aiR ��
�
mi

�

Mi

Yj

ri

? ej - B

ei

?

@@@aj R ��
�
mj

�

Mj

di

?

where mi ◦ai = fi and mj ◦aj = ej are (E,M)-factorizations and di is the (E,M)-diagonal. By taking

the C-closures of each mi and of mj , we obtain the next commutative diagram:

Mi

mi - Yi

Z
Z

Z
Z

Z
(mi)C ~ �

�
�

�
�

(mi)
C

>

(Mi)
C

Mj

di

? mj - B

ei

?

Z
Z

Z
Z

Z
(mj)C ~ �

�
�

�
�

(mj)
C

>

(Mj)
C

hi

?

where hi is the morphism induced by property 1.3(2) of closure operators. However, (mi)
C

is an

isomorphism, since each fi is C-dense. So, we obtain the following commutative square:

Yi

ei - B

=�
�

�
�

�

d

(Mj)
C

ki

?

(mj)
C

- B

idB

?

where ki = hi ◦ ((mi)
C

)−1 for i 6= j, kj = (mj)C
◦ aj and d is the (E,M)-diagonal. Clearly, (mj)

C

is a monomorphism and a retraction and consequently an isomorphism. Thus, we conclude that ej is

C-dense.

PROPOSITION 2.6 Let B ∈ S(X ). For every X ∈ X and for every M-subobject M
m
−→ X, consider

all commutative squares of the form

Ai

ni - Bi

M

ri

?

m
- X

si

?
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with Ai ∈ B and ni ∈ N , indexed by I. Take the (E,M)-factorization of the sink (si)i∈I ∪ {m}. Thus

we obtain the following commutative diagram

Ai

ni - Bi

+�����
ei

Q

�����
k

3 QQQQQ

m̄

s
M

ri

?

m
- X

si

?

where (ei)i∈I ∪{k} ∈ E and m̄ ∈ M satisfy m̄◦ei = si for every i ∈ I and m̄◦k = m. Set CB(m) = m̄.

For every B ∈ S(X ), the function CB is a weakly hereditary closure operator on X and CB(m) ≃

mQ(B).

Proof: Clearly, by construction we have that m ≤ CB(m).

To show order preservation and continuity we prove the equivalent condition in Remark 1.3(2).

Consider the commutative diagram below detailing the construction of CB(m) = m̄ for m ∈ M where

Ai ∈ B, ni ∈ N , and also n ∈ M:

Bi

si - X
f - Y

QQQQQ
ei

s �����
m̄

3

Q
kQQQQQ

k

Ai

ni

6

ri

- M

m

6

g
- N

n

6

Let ((e′i)∪{k′}, m′) then be the (E,M)-factorization of the sink (f ◦si)∪{n}. Denoting the domain

of m′ as Q′, we have the following commutative diagram:

•
(ei) ∪ {k} - Q

Q′

(e′i) ∪ {k′ ◦ g}

?

m′
- Y

f ◦ m̄

?

The (E,M)-diagonalization property gives a diagonal Q
d

−→ Q′ for the above square that in par-

ticular yields m′ ◦ d = f ◦ m̄. However, since in the construction of CB(n) there are further squares

than the ones appearing in the above diagram, we have that m′ ≤ CB(n), or there is a d′ such that

m′ = CB(n) ◦ d′. The morphism d′ ◦ d is the one we seek to conclude that CB is a closure operator as

claimed.

Next we show that CB is weakly hereditary. Consider again the commutative diagram (the left-

hand part of the double square above) used in the construction of CB(m) where Ai ∈ B, ni ∈ N and

((ei)i∈I ∪ {k}, m̄) is the (E,M)-factorization of (si)∪ {m}. As a member of N with domain in B, each
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ni is clearly CB-dense (consider the commutative square idBi
◦n = n◦ idAi

in the construction of CB(n)

for such an n). Thus by Lemma 2.5, k is also CB-dense and CB is weakly hereditary.

It remains to be shown that CB(m) ≃ mQ(B). Since for every A ∈ B and N -subobject A
n

−→ X , n

is CB-dense it follows that B ⊆ B(CB). Consequently, by definition of Q we obtain that Q(B) ⊑ CB.

Conversely, from the property that B ⊆ B(Q(B)), we have that each N -subobject Ai
ni−→ Bi with

Ai ∈ B is Q(B)-dense. Thus, from Lemma 2.5, the morphism k is also Q(B)-dense. Thus we obtain the

following commutative diagram:

M
idM - M

@@@
kQ(B)

R
@@@

mQ(B)

R
M

Q(B)
Q

d -

m

M
Q(B)
X

	���
kQ(B) 	��

�
mQ(B)

Q

k

?

CB(m)
- X

?

where kQ(B) is an isomorphism. Consequently CB(m) ≤ mQ(B) and CB(m) ≃ mQ(B).

It may be worth mentioning that both closure operator constructions introduced in Propositions 2.4

and 2.6 work if I is empty.

We close this Section by observing that the closure operator constructions and related Galois con-

nections introduced in this Section have been used in a parallel paper ([CH1]) to provide a link between

the notion of connectedness with respect to a closure operator introduced by Castellini ([C1−5]) and

the one by Clementino and Tholen ([CT]). Moreover, the above Galois connections are also being used

in a forthcoming paper to study a notion of absolutely closed object in an arbitrary category ([CH2]).

3 A DIAGRAM OF GALOIS CONNECTIONS OF CLOSURE

OPERATORS

In this Section we show that the closure operators described in Propositions 2.4 and 2.6 are strongly

related to some classical closure operators constructions.

First we see that the present descriptions simplify and extend some previous constructions in the

literature. Second, when considered in conjunction with a number of prior constructions the usefulness

of the parameter N is borne out. Finally, a global summary of a number of results involving closure

operators and Galois connections is provided.

From now on, we assume that M contains all regular monomorphisms.

S(M) will denote the conglomerate of all subclasses of M, ordered by inclusion, and N is a fixed

subclass of M. For X ∈ X set NX = {n ∈ N : dom(n) = X} and dually NX = {n ∈ N : cod(n) = X}.

PROPOSITION 3.1 Define S(X )
H′

−→ S(M) and S(M)
K′

−→ S(X ) by:

H ′(A) = {n ∈ NX : X ∈ A}

K ′(M′) = {X ∈ X : n ∈ NX ⇒ n ∈ M′}.
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Then S(X )
H′

⊥

-
�

K′

S(M) is a Galois connection.

Proof: Clearly both H ′ and K ′ are order-preserving.

If X ∈ A, then every n ∈ NX also belongs to H ′(A), consequently X ∈ (K ′ ◦H ′)(A). On the other

hand, if n ∈ (H ′ ◦ K ′)(M′), then n ∈ NX with X ∈ K ′(M′). This implies that n ∈ M′.

As a consequence we obtain that S(M)op

K′op

⊥

-
�
H′op

S(X )op is also a Galois connection, where H ′op and

K ′op are defined just like H ′ and K ′, respectively.

In [CKS2] a number of Galois connections were introduced in a study of the regular closure operator

and its dual. As already remarked in 2.3, our operators P and Q render the regular closure and its dual

as a special case. The next two results demonstrate that the current closure operator constructions

both generalize and greatly simplify some constructions of [CKS2].

DEFINITION 3.2 [CKS2] A subclass M′ of M is called E-sink stable, if for every commutative

square

M
f - N

X

m
?

g
- Y

n
?

with n ∈ M and the 2-sink (g, n) ∈ E we have that m ∈ M′ implies n ∈ M′.

Notice that a byproduct of Lemma 2.5 is that the class of all C-dense M-subobjects is E-sink stable.

Ses(M) will denote the collection of all E-sink stable subclasses of M, ordered by inclusion and

Spb(M) will denote the collection of all subclasses of M that are closed under the formation of pullbacks,

ordered by inclusion.

We recall from [CKS2, Theorem 2.4 and Proposition 2.7] that the four assignments described below

yield Galois connections iCL(X ,M)
R∗

⊥

-
�

R∗

Spb(M)op and Spb(M)op

Q∗

⊥

-
�

Q∗

S(M)op.

(i) R∗(C) = {m ∈ M : m is C-closed};

(ii) mR∗(M′) =
∧
{m′ ∈ M′ : M ′ m′

−→ X and m ≤ m′}, for M
m
−→ X in M;

(iii) Q∗(M′) = M′;

(iv) Q∗(M′) = {m ∈ M : m is a pullback of some m′ ∈ M′}.

Our aim is to show that these Galois connections, together with the one of Proposition 3.1 provide a

factorization of the Galois connection CL(X ,M)
A

⊥

-
�

P

S(X )op.
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THEOREM 3.3 For every subclass N ⊆ M, we have (up to isomorphism) the following commutative

diagram of Galois connections:

CL(X ,M)

A

⊥
-

�
P

S(X )op

Spb(M)op

R
∗

⊢

6

R∗

? Q∗

⊥
-

�
Q∗

S(M)op

K ′op ⊣

6

H ′op

?

Proof: First we observe that the Galois connection CL(X ,M)
R̄∗

⊥

-
�

R̄∗

Spb(M)op is simply the ex-

tension of iCL(X ,M)
R∗

⊥

-
�

R∗

Spb(M)op to CL(X ,M).

The side and bottom Galois connections give rise by composition to a new Galois connection that

will turn out to be CL(X ,M)
A

⊥

-
�

P

S(X )op. In fact, let C ∈ CL(X ,M), then we have that R̄∗(C) =

{m ∈ M : m is C-closed}. Consequently, K
′
op(Q∗(R̄∗(C))) = K

′
op(R̄∗(C)) = K

′
op({m ∈ M :

m is C-closed}) = {X ∈ X : n ∈ NX ⇒ n is C-closed} = A(C).

Since the two functions in a Galois connection determine each other up to isomorphism, we conclude

that for any subcategory A ∈ S(X )op, P (A) ≃ (R̄∗ ◦ Q∗ ◦ H
′
op)(A).

REMARK 3.4 (a) Commutativity of the above diagram is only in the direction of the Galois con-

nections.

(b) Observe that for A = X , we obtain that P (X ) = (R̄∗ ◦ Q∗)(N ), and if N is stable under pullback

then P (X ) = R̄∗(N ). In other words, the closure operator construction R̄∗ is just a special case

of the P construction. Restriction to pullback stable classes can be avoided.

Now we recall from [CKS2, Theorem 2.4 and Proposition 2.7] that two further Galois connections

Ses(M)
K∗

⊥

-
�
K∗

wCL(X ,M) and S(M)
L∗

⊥

-
�

L∗

Ses(M) are yielded by the assignments:

(v) K∗(C) = {m ∈ M : m is C-dense};

(vi) mK∗(M′) =
∨
{(N

n
−→ X) ∈ M : ∃(M

t
−→ N) ∈ M′ with n ◦ t = m} for M

m
−→ X ∈ M;

(vii) L∗(M′) = M′;

(viii) L∗(M′) = {n ∈ M : n ◦ f = g ◦ m for some m ∈ M′ and some X -morphisms f and g

with (g, n) ∈ E}.

These Galois connections are now seen to factor through S(X )
Q

⊥

-
�

B

CL(X ,M).
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THEOREM 3.5 For every subclass N ⊆ M, we have (up to isomorphism) the following commutative

diagram of Galois connections:

S(X )

Q

⊥
-

�
B

CL(X ,M)

S(M)

K ′ ⊢

6

H ′

? L∗

⊥
-

�
L∗

Ses(M)

K∗ ⊣

6

K
∗

?

Proof: First we observe that the Galois connection Ses(X )
K̄∗

⊥

-
�
K̄∗

CL(X ,M) is simply the extension

of Ses(X )
K∗

⊥

-
�
K∗

wCL(X ,M) to CL(X ,M).

The side and bottom Galois connections give rise by composition to a new Galois connection that

will turn out to be S(X )
Q

⊥

-
�

B

CL(X ,M). Let C ∈ CL(X ,M). Then, we have that K ′(L∗(K̄∗(C))) =

K ′({m ∈ M : m is C-dense}) = {X ∈ X : n ∈ NX ⇒ n is C-dense} = B(C). Clearly, we have used

the fact that K̄∗(C) is E-sink stable.

Since the two functions in a Galois connection determine each other up to isomorphism, we conclude

that for any subcategory B ∈ S(X ), Q(B) ≃ (K̄∗ ◦ L∗ ◦ H ′)(B).

REMARK 3.6 For B = X , observe that Q(X ) = (K̄∗ ◦ L∗)(N ). In other words, for any subclass N

of M, the construction Q bypasses the concept of E-sink stability and accomplishes in one step what in

[CKS2] was accomplished in two, that is first enlarge the class N so to make it E-sink stable and then

apply the closure operator construction given by K̄∗.

In his study of categorical connectedness and disconnectedness, Castellini introduced the Galois con-

nections below. We recall them here as, like the closure operator constructions of the current article,

they depend on a parameter N and in conjunction with our current Galois connections provide a global

perspective on a number of previous closure operator constructions.

(1) In [C2] the Galois connection S(X )
H

⊥

-
�

K

S(M) is introduced, where

H(A) = {n ∈ NX : X ∈ A};

K(M′) = {X ∈ X : n ∈ NX ⇒ n ∈ M′}.

As a consequence we obtain that S(M)op

Kop

⊥

-
�
Hop

S(X )op is also a Galois connection. Hop and

Kop are defined just like H and K, respectively.

(2) The Galois connection CL(X ,M)
D

⊥

-
�

T

S(X )op was presented in [C1], with

D(C) = {X ∈ X : every n ∈ NX is C-closed};

T (A) =
∨
{C ∈ CL(X ,M) : D(C) ⊇ A}.
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(3) Also from [C2], the Galois connection S(X )
J

⊥

-
�

I

CL(X ,M) with

I(C) = {X ∈ X : every n ∈ NX is C-dense};

J(B) =
∧
{C ∈ CL(X ,M) : I(C) ⊇ B}.

(4) Recalling from [C4] that a morphism X
f

−→ Y is called N -dependent if for every n ∈ NX and every

p ∈ NY , nf ≤ p implies f−1(p) ≃ idX . The Galois connection S(X )
∆

⊥

-
�
∇

S(X )op is defined by

∇(A) = {X ∈ X : ∀Y ∈ A, X
f

−→ Y is N -dependent};

∆(B) = {Y ∈ X : ∀X ∈ B, X
f

−→ Y is N -dependent}.

(5) Finally we recall from [CH1] a Galois connection given by morphism orthogonality. For P ,Q ⊆

MorX , we write P ⊥ Q if for every commutative diagram:

X
u - Y

W

p
?

v
- Z

q
?

with p ∈ P and q ∈ Q, there is a unique morphism W
d

−→ Y such that d ◦ p = u and q ◦ d = v.

Using the classical terminology, this means that every element of P is “left orthogonal” to every

element of Q (or equivalently, every element of Q is “right orthogonal” to every element of P).

We now define a Galois connection S(X )
ρ

⊥

-
�

λ

S(X )op via

ρ(B) = {Y ∈ X : ∀X ∈ B,NX ⊥ N Y };

λ(A) = {X ∈ X : ∀Y ∈ A,NX ⊥ N Y }.

By putting together all the Galois connections introduced above, we obtain the following commuta-

tive diagram of Galois connections:

S(M) � (H, K)
S(X )

(∆,∇) - S(X )op � (Kop, Hop)
S(M)op

Ses(M)

(L∗, L
∗)

? (K∗, K
∗
) - CL(X ,M)

(J, I)

? idCL(X ,M)-�
idCL(X ,M)

CL(X ,M)

(D, T )

6

(R∗, R
∗
) - Spb(M)op

(Q∗, Q
∗)

6

S(M)

(L∗, L
∗)

6

�
(H ′, K ′)

S(X )

(Q, B)

6

(ρ, λ)
- S(X )op

(A, P )

?
�

(K ′op
, H ′op

)
S(M)op

(Q∗, Q
∗)

?
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In this diagram we have used single arrows to specify the direction of the Galois connections, hoping

to make more clear the way they compose and the involved factorizations. In the label of each arrow,

the first element of each pair is the coadjoint function in the direction of the arrow.

The commutativity of the single squares that form the above diagram are obtained as follows:

from left to right the lower squares follow from Theorem 3.5, [CH1, Theorem 2.5] and Theorem 3.3,

respectively. The upper squares follow from [C2, Theorem 2.26], [C4, Theorem 2.8] and [C2, Theorem

2.26], respectively.

The interesting aspect of the above diagram is that by choosing N in different ways, it yields many

different particular closure operator constructions that have appeared in the literature. For instance:

(a) we have already observed that for N consisting of diagonal morphisms, A and B yield the separa-

tion and connectedness Galois connections used in [CT]. P and Q render the regular and coregular

closure operators respectively;

(b) the lower middle square provides a description in terms of morphism orthogonality of their com-

position. The Galois connection (ρ, λ) is the classical connectedness-disconnectedness connection

of Preuss, Herrlich, Arhangelskii & Wiegand and is analyzed in [CH1];

(c) the upper middle square wraps up Castellini’s notions of connectedness and disconnectedness in

an arbitrary category (cf. [C4−6]) and yields the most classical results in concrete situations when

N = M;

(d) for N = M, T yields the splitting closure operator (cf. [BGH]);

(e) for A = X , as already observed, P (X ) yields a very classical closure operator construction induced

by the class N in which the N -subobjects turn out to be closed. Moreover, the class of P (X )-closed

M-subobjects is the smallest class of closed M-subobjects with respect to a closure operator that

contains N ;

(f) similarly, for B = X , Q(X ) yields a “dual” closure operator construction induced by the class N

in which the N -subobjects turn out to be dense (cf. [CKS2]). Moreover, the class of Q(X )-dense

M-subobjects is the smallest class of dense M-subobjects with respect to a closure operator that

contains N ;

(g) for any full subcategory A of X , if N = MorA ∩M then P (X ) generalizes the pullback closure

construction and coincides with it if A is E-reflective and E-morphisms are epic;

(h) as a final observation we notice that for A = X , P (X ) = T (X ) and J(X ) = Q(X ).

REFERENCES
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