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0. INTRODUCTION

To study closure operators we introduce two new concepts that are reasonably simple, yet

apparently quite powerful. The first one is the relation ⊥ , which naturally extends earlier

notions of “diagonalizability” or “orthogonality”. The second one is the subcollection M ⋄M

of M ×M for M ⊆Mor (X ) that consists of the composable pairs in M .

In Section 1 we recall the basic categorical approach to factorization systems on a class M

of morphisms, and relate it to the classical topological closure operators. We then collect some

familiar results regarding such closure operators (in the setting of 〈E,M 〉-categories) that are

needed later, and in the process we introduce the relation ⊥ .

In Section 2 we introduce composable pairs and restrict ⊥ accordingly. This leads to the

Galois connections mentioned in the abstract. We show that classes of composable pairs of

M -elements are related to general closure operators in essentially the same way as subclasses of

M are related to closure operators that are necessarily both idempotent and weakly hereditary

(cf. Diagram (2-00)). Indeed the lattice of all closure operators on M is essentially the lattice

of Galois fixed points with respect to the natural polarity induced by the restriction of ⊥

to M ⋄M . The collection of closure operators on M that are both idempotent and weakly

hereditary appears twice as such a lattice of Galois fixed points — first with respect to a suitable

restriction of ⊥ to M , and second with respect to the composite of the two natural Galois

“insertions” of idempotent (respectively weakly hereditary) closure operators into all closure

operators. This two-fold appearance helps to explain why the idempotent weakly hereditary
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closure operators have been dominant in the early work in the field (cf. [3], [9], [11] and [13]).

The analogue between the results for M and M ⋄M seems to make a strong case for the

study of classes of composable pairs.

Applications and examples can be found in section 3.

1. PRELIMINARIES

Our main tool will be a notion of orthogonality that generalizes the one introduced by Tholen

(cf. [17]), and encompasses part of the defining properties of factorization structures for sinks

(cf. Definition 1.04) and for sources, as well as one of the essential features of closure operators

(cf. Definition 1.02). Throughout we work in a category X .

1.00 Definition. (cf. [13]) A pair 〈a, a′〉 consisting of a sink a = 〈Ai
ai−−→ A′〉I and a

morphism A′
a′

−−→ A′′ is called left orthogonal to a pair 〈b, b′〉 consisting of a morphism

B
b
−→ B′ and a source b′ = 〈B′

b′j−−→ B′′j 〉J , written as 〈a, a′〉 ⊥ 〈b, b′〉 , iff for any sink

f = 〈Ai
fi−−→ B〉I and any source f ′′ = 〈A′′

f ′′j−−→ B′′j 〉J with the property that for each i ∈ I

and each j ∈ J the outer square of following diagram commutes

Ai
fi

−−−−−−−−−−−−−−−−−−−−−→ B

a′ ◦ ai
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b′j ◦ b

A′′ −−−−−−−−−−−−−−−−−−−−−→
f ′′j

B′′j

(1-00)

there exists a unique X -morphism A′
f ′

−−→ B′ such that all inner trapezoids commute. In

this case the pair 〈b, b′〉 is called right orthogonal to 〈a, a′〉 . We write a ⊥ b′ rather than

〈a, id〉 ⊥ 〈id, b′〉 , i.e., we suppress the morphism-part of a pair in case it is an isomorphism.

Notice that a sink a and an object X are separated in the sense of Pumplün and Röhrl

(cf. [14]), if a is left-orthogonal to the 2-source X
idX←−−− X

idX−−−→ X , and that a is an epi-sink

iff a and every X -object are separated in this sense.

Now consider the following characterization of continuous functions between topological

spaces 〈X, t〉 and 〈Y, s〉 , where “ − ” denotes the usual topological closure.

1.01 Proposition. A function X
g
−→ Y is continuous from 〈X, t〉 to 〈Y, s〉 iff for every

M ⊆ X and every N ⊆ Y the direct image of M along g is contained in N provided that

the direct image of M along g is contained in N .

2



Diagrammatically the situation can be described as follows (the vertical and diagonal arrows

are inclusions): If a function f exists 3 that makes the outer square commute, then there exists

a unique function M
d
−→ N that makes the lower trapezoid commute (and by default makes

the upper trapezoid commute as well).

M
f

−−−−−−−−−−−−−−−−−−−−−→ N


















y

@
ց ւ

�

M
d

−−→ N

ւ
� @

ց



















y

X −−−−−−−−−−−−−−−−−−−−−→
g

Y

(1-01)

The factorizations of the inclusions M −→ X and N −→ Y are clearly orthogonal to each

other in the sense of Definition 1.00. Moreover, we see that the classical topological closure

operators (= increasing, idempotent, order-preserving functions that preserve finite unions) on

the subspace lattices of topological spaces do not just exist in isolation, but are also linked

together quite strongly. In fact, the way they are linked determines the notion of continuity.

Let M be an arbitrary class of morphisms in X (corresponding to the embeddings in

Top ). We regard M as a full subcategory of the arrow category X /X ; its objects are

all morphisms in M , and an M -morphism 〈f, g〉 from m ∈ M to n ∈ M is a pair of

X -morphisms that satisfy g ◦m = n ◦ f . The domain functor M
U
−−→ X maps 〈f, g〉 to

f , while the codomain functor V maps 〈f, g〉 to g .

1.02 Definition. A closure (resp. density) operator F = 〈( )F , ( )F 〉 on M maps each

m ∈M to a pair 〈mF ,m
F 〉 with m = mF ◦mF and mF ∈M (resp. mF ∈M ) such that

F (m) ⊥ F (n) for all n ∈M .

If F is a closure or density operator, m ∈ M is called F -closed (resp. F -dense) if

mF (resp. mF ) is an isomorphism. ∇∗ (F ) and ∆∗ (F ) denote the classes of F -closed and

F -dense members of M , respectively.

1.03 Remarks. (0) A succinct categorical formulation of the concept of closure operator,

first proposed by Dikranjan and Giuli [9], views ( )F as an endofunctor M
( )F

−−−→M that

satisfies V ∗ ( )F = V , and views ( )F as the domain-part of a natural transformation

idM

δ
−→ ( )F that satisfies idV ∗ δ = idV . The uniqueness part of the orthogonality

condition then says that 〈δ, ( )F 〉 is a pre-reflection in the sense of Börger [1], cf. also

[18].

(1) If M is stable under M -relative first factors, i.e., if p ◦n ∈M and p ∈M implies

n ∈M , then every closure operator on M is a density operator as well. Furthermore,

3 Such a function will necessarily be unique.
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if F is a closure operator on a class M of monomorphisms, as we will assume later,

the uniqueness part of the orthogonality condition is automatically satisfied.

In order to have analogues to the complete subobject lattices of topological spaces, through-

out the remainder of the paper we assume that we are working in a category X that is suf-

ficiently nice to support certain constructions. Specifically, we require X to be an 〈E,M 〉-

category for sinks. For easy reference we recall the definition.

1.04 Definition. X is called an 〈E,M 〉-category for sinks if there exists a collection

E of X -sinks and a class M of X -morphisms such that:

(0) each of E and M is stable under compositions with isomorphisms;

(1) X has 〈E,M 〉-factorizations (of sinks); i.e., each sink s in X has a factorization

s = m ◦e with e ∈ E and m ∈M , and

(2) every sink e ∈ E is left orthogonal to every morphism m ∈M .

That X is an 〈E,M 〉-category for sinks entails certain features of the class M , namely:

1.05 Proposition. (0) Every m in M is a monomorphism.

(1) M is stable under M -relative first factors.

(2) M is closed under composition.

(3) Pullbacks of M -elements along X -morphisms exist and belong to M .

(4) The M -subobjects of every X -object form a (possibly large) complete lattice; suprema

are formed via 〈E,M 〉- factorizations.

≤ denotes the usual pre-order on M -subobjects. To minimize problems resulting from

the fact that this pre-order in general is not antisymmetric, we assume that for every sink s

in X a specific 〈E,M 〉-factorization has been chosen. (This choice need not be canonical in

any sense.) Now we can speak about the infimum and the supremum of a sink consisting of

M -elements, as well as of the pullback of an M -element. We continue to use the term lattice

for pre-ordered classes that are finitely complete and finitely cocomplete. A lattice is called

complete if each subclass has an infimum or, equivalently, each subclass has a supremum.

1.06 Definition. A closure operator F on M is called

(0) idempotent iff mF is F -closed for every m ∈M , i.e., iff ( )F ∗ ( )F ∼= ( )F ;

(1) weakly hereditary iff mF is F -dense for every m ∈M , i.e., iff ( )F ∗ ( )F ∼= ( )F .

CL (M ) denotes the collection of all closure operators on M , pre-ordered by F ⊑ G iff

mF ≤ mG for all m ∈ M , while iCL (M ) and wCL (M ) stand for the subcollections of

idempotent and weakly hereditary closure operators, respectively. We write iwCL (M ) for

the intersection of these two collections.
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Two other important concepts, hereditary closure operators and modal closure operators,

are investigated in a subsequent paper [4].

Notice that under our assumptions arbitrary suprema and infima of closure operators exist.

They are formed pointwise in the fibers. (N.B., in [13] the terms proper and strict were used

instead of idempotent and weakly hereditary, respectively.)

1.07 Proposition. (cf. [9] and [13]) wCL (M ) is closed under the formation of suprema in

CL (M ) , whereas iCL (M ) is closed under the formation of infima in CL (M ) .

Thus every closure operator F has an idempotent hull (i.e., reflection) F
i ∈ iCL (M )

as well as a weakly hereditary core (i.e., coreflection) Fw ∈ wCL (M ).

1.08 Proposition. (cf. [10], [11] and [13]) (0) If F is idempotent, so is Fw .

(1) If F is weakly hereditary, so is F
i
.

Notice, however, that in general F
i
w and Fw

i
need not agree.

1.09 Lemma. Let F be a closure operator.

(0) If m is F -dense and n is F -closed then m ⊥ n .

(1) m ∈ M is F -dense iff m is left-orthogonal to every pair F (n) with n ∈ M iff

m ⊥ F (m) . If F is idempotent, then m ∈M is F -dense iff m is left-orthogonal to

every F -closed element of M iff m ⊥ mF .

(2) n ∈ M is F -closed iff n is right-orthogonal to every pair F (m) with m ∈ M iff

F (n) ⊥ n . If F is weakly hereditary, then n ∈M is F -closed iff n is right-orthogonal

to every F -dense element of M iff nF ⊥ n .

(3) F is idempotent iff mF ∼= inf { p ∈M | m = p ◦n and p ∈ ∇∗ (F ) } for each m ∈M .

Thus an idempotent closure operator F is essentially determined by its class ∇∗ (F ) of

F -closed M -elements (cf. [13]).

(4) F is weakly hereditary iff mF ∼= sup { p ∈M | m = p ◦n and n ∈ ∆∗ (F ) } for each

m ∈ M . Thus a weakly hereditary closure operator F is essentially determined by its

class ∆∗ (F ) of F -dense M -elements (cf. [13]).

(5) If F is idempotent and weakly hereditary, then ∆∗ (F ) and ∇∗ (F ) determine each

other via the orthogonality relation ⊥ (cf. [9] and [13]).

For more background on closure operators see, e.g., [2], [9], [11], and [13].

The above lemma (in particular part (5)) suggests that polarities induced by suitable re-

strictions of the orthogonality relation ⊥ will play a significant role in the study of closure

operators.

Below we recall some facts about Galois connections between pre-ordered classes, especially

between power collections, and introduce some convenient notation. A more detailed account
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in the case of partially ordered sets can be found in [12]. There are only minor technical

differences between the theories of Galois connections in the setting of partially ordered sets

and in the setting of pre-ordered classes.

1.10 Definition. For pre-ordered classes A = 〈A,⊑〉 and B = 〈B,⊑〉 a Galois con-

nection A
π=〈π∗,π

∗〉
−−−−−−−−• B consists of two functions A

π∗

←===→
π∗

B that satisfy a ⊑ π∗ (b) iff

π∗ (a) ⊑ b for all a ∈ A and b ∈ B . (Order-preservation then is automatic.) π∗ is the

adjoint part and π∗ is the coadjoint part of π . We write A π and Bπ for the classes of

Galois fixed points { a ∈ A | a ∼= π∗π∗ (a) } and { b ∈ B | π∗π
∗ (b) ∼= b } with the induced

orders, respectively. π is called a (co)reflection iff π∗ (respectively π∗ ) is a one-to-one

function, and an equivalence iff 〈π∗, π∗〉 is a Galois connection from B to A . (Notice that

π restricts to an equivalence from A π to Bπ .)

The composite A
ρ ◦ π
−−−−• C of two Galois connections A

π
−−• B and B

ρ
−−• C is defined

as 〈ρ∗ ◦π∗, π
∗ ◦ ρ∗〉 , and the dual B

op πop

−−−• A
op

of a Galois connection A
π
−−• B is given

by πop = 〈π∗, π∗〉 .

If A
ϕ
−−• C factors as A

ϕ̇
−−• B

ϕ̈
−−• C and if B is equivalent to both fixed point classes A ϕ

and Cϕ , then we call ϕ̈ ◦ ϕ̇ an essentially canonical factorization of ϕ with center B .

The dot notation will be employed throughout to indicate essentially canonical factorizations.

1.11 Proposition. (cf. [12]) Any relation R ⊆ A×B between classes A and B induces

(0) a Galois connection P (A)
ϕ
−−• P (B)

op
, called a polarity, the coadjoint and adjoint

parts of which are defined by

ϕ∗ (U) := { b ∈ B | ∀a∈U 〈a, b〉 ∈ R } for U ⊆ A

ϕ∗ (V ) := { a ∈ A | ∀b∈V 〈a, b〉 ∈ R } for V ⊆ B

(1) a Galois connection P (A)
ψ
−−• P (B) , called an axiality, the coadjoint and adjoint

parts of which are defined by

ψ∗ (U) := { b ∈ B | ∃a∈A 〈a, b〉 ∈ R and a ∈ U } for U ⊆ A

ψ∗ (V ) := { a ∈ A | ∀b∈B 〈a, b〉 ∈ R implies b ∈ V } for V ⊆ B

( ψ∗ (U) is commonly known as the direct image of U under R .)
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2. HOW TO CONSTRUCT CLOSURE OPERATORS

Let M ⋄M be the class of composable pairs of morphisms in M , i.e., the pullback of the

domain functor U along the codomain functor V . In this section we construct the following

commutative diagram of Galois connections between lattices

P (M ⋄M)
ω̇

−−−−−−−−−−−−−−−−−−−• CL (M )

g

•∣
∣

∣

∣

∣

∣

∣

∣

∣

∣

∆̈

�
�
•

wCL (M )

�
�
•

∆̇ ǫ̇
@

@•
P (M ) −−−−−−−−−−−−−−−−−−−•

υ̇
iwCL (M )

ω̈

−−−−−−−−−−−−−−−−−−−• P (M ⋄M) op

@
@•

∇̇

iCL (M )

�
�
•

ǫ̈ ∇̈
@

@• •

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f

−−−−−−−−−−−−−−−−−−−•
ϋ

P (M )
op

(2-00)

In the course of the construction we will see that

• The restriction of the relation ⊥ to M induces a polarity P (M )
υ
−−• P (M )

op
that

has (by virtue of Lemma 1.09(5)) an essentially canonical factorization υ = ϋ ◦ υ̇ with

a center that consists of all idempotent and weakly hereditary closure operators on M ,

i.e., iwCL (M ) is equivalent to the Galois fixed points of υ .

• The polarity P (M ⋄M)
ω
−−• P (M ⋄M) op induced by the restriction of the relation

⊥ to M ⋄M admits an essentially canonical factorization ω̈ ◦ ω̇ with a center consisting

of all closure operators on M , i.e., CL (M ) is equivalent to the lattices of Galois fixed

points of ω . Moreover, this factorization “lifts” the essentially canonical factorization

ϋ ◦ υ̇ .

• The function CL (M )
∆∗
−−→ P (M ) that maps each closure operator to its class of dense

M -elements is in fact the adjoint part of a Galois connection P (M )
∆
−−• CL (M )

that factors through ω̇ by means of an axiality g , and has an essentially canonical

factorization ∆ = ∆̈ ◦ ∆̇ with a center that consists of all weakly hereditary closure

operators on M . (Here ∆̇∗ maps a closure operator to its weakly hereditary core.) In

particular, wCL (M ) is equivalent to the lattice of Galois fixed points of ∆ .

• Analogous to the above, the function CL (M )
∇∗−−→ P (M )

op
that maps each closure

operator to its class of closed M -elements turns out to be coadjoint, and the resulting

Galois connection CL (M )
∇
−−• P (M )

op
factors through the analogue f of g by

means of ω̈ , and has an essentially canonical factorization ∇ = ∇̈ ◦ ∇̇ that has a center

consisting of all idempotent closure operators on M . (Here ∇̈∗ maps a closure operator

to its idempotent hull.) Now iCL (M ) is equivalent to the lattice of Galois fixed points

of ∇ .

• The composite ∇̇ ◦ ∆̈ is a Galois connection wCL (M )
ǫ
−−• iCL (M ) with the property

that the Galois fixed point lattices wCL (M )ǫ and iCL (M )ǫ actually coincide; in

fact, they are equal to iwCL (M ). Because of Proposition 1.08 ∇̇ admits a “weakly
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hereditary” restriction ǫ̇ , and ∆̈ admits an “idempotent” restriction ǫ̈ that constitute

an essentially canonical factorization of ǫ . Hence iwCL (M ) appears as a Galois fixed

point lattice for the second time.

A crucial ingredient for our approach will be the interplay between inverse images and direct

images. The codomain functor V is well-known to support such constructs. Recall that for an

X -object X the V -fibre V/X consists of all M -subobjects of X , i.e., elements of M with

codomain X , equipped with the usual pre-order m ≤ p iff p = n ◦m for some (necessarily

unique) n .

2.00 Proposition. Every X -morphism X
f
−→ Y induces a V -inverse image function

V/Y
f←

−−−→ V/X (that maps each M -subobject of Y to its pullback along f ) and a V -

direct image function V/X
f→−−→ V/Y (that maps each M -subobject m of X to the M -

component of the chosen 〈E,M 〉- factorization of f ◦m ). Moreover, 〈f→, f
←〉 is a Galois

connection; in particular, f→ (up to isomorphism) preserves suprema of M -subobjects.

To compare different factorizations of a morphism in M we introduce a pre-order ≪ on

M ⋄M . Notice that M ⋄M can be viewed as a category whose morphisms from 〈n, p〉 to

〈q, r〉 are triples 〈a, b, c〉 of X -morphisms that satisfy q ◦ a = b ◦n and r ◦ b = c ◦ p .

2.01 Definition. The composition functor M ⋄M
W
−−→M maps 〈n, p〉

〈a,b,c〉
−−−−→ 〈q, r〉 to

the M -morphism p ◦n
〈a,c〉
−−−→ r ◦ q . For each m ∈M its W -fiber, i.e., the comma category

W/m , is pre-ordered by 〈n, p〉 ≪ 〈q, r〉 iff there exists a (necessarily unique) X -morphism b

such that 〈n, p〉
〈id,b,id〉
−−−−−→ 〈q, r〉 is an M ⋄M -morphism.

The W -fibers form (possibly large) complete lattices with respect to ≪ . Intersections and

〈E,M 〉-factorizations of the (collections of) second components yield infima and suprema,

respectively. Inside of W -fibers 〈n, p〉 ⊥ 〈q, r〉 implies 〈n, p〉 ≪ 〈q, r〉 , and closure operators

F and G satisfy F ⊑ G iff F (m)≪ G (m) for all m ∈M .

2.02 Definition. For m
〈f,g〉
−−−→ n in Mor (M ) consider 〈q, r〉 ∈W/m and 〈s, t〉 ∈W/n .

(0) 〈q, r〉 is called the W -inverse image of 〈s, t〉 along 〈f, g〉 (denoted by 〈f, g〉← (〈s, t〉) )

iff there exists an X -morphism d such that •
r
←− •

d
−→ • is the pullback of •

g
−→ •

t
←− •

and q satisfies d ◦ q = s ◦ f . Given D ⊆M ⋄M we write Dii for the smallest subclass

of M that contains D and is closed under isomorphisms and W - inverse images.

(1) 〈s, t〉 is called the W -direct image of 〈q, r〉 along 〈f, g〉 (denoted by 〈f, g〉→ (〈q, r〉) )

iff there exists an X -morphism d such that 〈〈d, s〉, t〉 is the 〈E,M 〉-factorization of

the sink •
g ◦ r
−−−→ •

n
←− • . Given C ⊆M ⋄M we write C

di
for the smallest subclass of

M that contains C and is closed under isomorphisms and W -direct images.

2.03 Proposition. (0) Every M -morphism m
〈f,g〉
−−−−→ n induces a Galois connection

〈〈f, g〉→, 〈f, g〉
←〉 .
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(1) Both of the operations ( )ii and ( )
di

on P (M ⋄M) are idempotent.

Proof. (0) One easily verifies that 〈f, g〉→ (〈q, r〉)≪ 〈s, t〉 ⇐⇒ 〈q, r〉 ≪ 〈f, g〉← (〈s, t〉) .

(1) ( )ii is idempotent since for any two M -morphisms m
〈f,g〉
−−−→ n and n

〈h,k〉
−−−−→ p

we have (〈f, g〉←)(〈h, k〉←) ∼= 〈h ◦ f, k ◦ g〉← . But (0) implies (〈h, k〉→)(〈f, g〉→) ∼=

〈h ◦ f, k ◦ g〉→ , so ( )
di

is idempotent as well.

In order to factor the Galois connection ω , we first characterize its fixed points.

2.04 Lemma. If C ⊆M ⋄M and m ∈M we have sup≪
(

C
di ∩W/m

)

∈ ω∗ (C) .

Proof. Write 〈a, b〉 for the supremum and consider 〈q, r〉 ∈ C . For every M -morphism

r ◦ q
〈f,g〉
−−−→ m the W -direct image of 〈q, r〉 along 〈f, g〉 is used in the construction of the

supremum, hence 〈q, r〉 ⊥ 〈a, b〉 .

2.05 Theorem. C ⊆M ⋄M is a fixed point of ω∗ ◦ω∗ iff C satisfies the following conditions

(C0) C is closed under the formation of W -direct images.

(C1) sup≪
(

C ∩W/m
)

∈ C for every m ∈M .

(C2) C ∩W/m is a lower segment for every m ∈M .

Proof. (⇒). Let C be a fixed point of ω∗ ◦ω∗ .

(C0) If 〈s, t〉 is a direct image of 〈q, r〉 ∈ C along r ◦ q
〈f,g〉
−−−→ t ◦ s , there exists a unique

c with 〈c, s〉 ∈ E as well as c ◦ q = s ◦ f and t ◦ c = g ◦ r . For 〈n, p〉 ∈ ω∗ (C)

consider an M -morphism t ◦ s
〈h,k〉
−−−−→ p ◦n . Since 〈q, r〉 ⊥ 〈n, p〉 , there exists a unique

e with e ◦ q = n ◦h ◦ f and p ◦ e = k ◦ g ◦ r . But now 〈c, s〉 ⊥ p implies the existence

of a unique d such that d ◦ c = e as well as d ◦ s = n ◦h and p ◦ d = k ◦ t . Hence

〈s, t〉 ⊥ 〈n, p〉 , and consequently 〈s, t〉 ∈ ω∗ω∗ (C) = C .

(C1) Write 〈a, b〉 for the supremum. By (C0) and Lemma 2.04 〈a, b〉 belongs to ω∗ (C) .

Dually, 〈c, d〉 := inf≪
(

ω∗ (C) ∩W/m
)

∈ ω∗ω∗ (C) = C , and hence 〈c, d〉 ≪ 〈a, b〉 . But

clearly 〈a, b〉 ≪ 〈c, d〉 , and so 〈a, b〉 ∼= 〈c, d〉 , which implies 〈a, b〉 ∈ C .

(C2) 〈n, p〉 ≪ 〈q, r〉 ∈ C ∩W/m and 〈q, r〉 ⊥ 〈s, t〉 ∈ ω∗ (C) implies 〈n, p〉 ⊥ 〈q, r〉 , since t

is mono.

(⇐). Suppose that C ⊆ M ⋄M satisfies (C0) – (C2). For 〈n, p〉 ∈ ω∗ω∗ (C) set m =

p ◦n . By (C0) and Lemma 2.04 〈a, b〉 := sup≪
(

C ∩W/m
)

belongs to ω∗ (C) , which implies

〈n, p〉 ≪ 〈a, b〉 . By (C1) 〈a, b〉 belongs to C as well, so (C2) yields 〈n, p〉 ∈ C .

Notice that conditions (C1) and (C2) together are equivalent to

• C ∩W/m is a principal ideal for every m ∈M .
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2.06 Proposition. P (M ⋄M)
ω̇∗−−→ CL (M ) and P (M ⋄M)

op ω̈∗

−−→ CL (M ) defined by

ω̇∗ (C) (m) := sup
≪

(

C
di ∩W/m

)

and ω̈∗ (D) (m) := inf
≪

(

Dii ∩W/m
)

(2-01)

for C,D ⊆M ⋄M and m ∈M , both preserve order.

Proof. To show that ω̇∗ (C) is a closure operator, consider an M -morphism m
〈f,g〉
−−−→ n .

Since 〈f, g〉→ as a coadjoint preserves suprema, the W -direct image of ω̇∗ (C) (m) along

〈f, g〉 is isomorphic to sup≪{ 〈f, g〉→ (〈q, r〉) | 〈q, r〉 ∈ Cdi ∩W/m } . Now Proposition 2.03(1)

implies 〈f, g〉→ (ω̇∗ (C) (m))≪ sup≪
(

C
di ∩W/n

)

= ω̇∗ (C) (n) .

That ω̇∗ preserves order follows since ( )
di

does. The proof for ω̈∗ is similar.

For an idempotent and weakly hereditary closure operator the classes ∆∗ (F ) of F -dense

M -elements and ∇∗ (F ) of F -closed M -elements are corresponding fixed points for the

polarity υ induced by the restriction of ⊥ to M (cf. Lemma 1.09(5)). For a general closure

operator we need to consider classes of composable pairs to obtain a similar result.

2.07 Definition. For a closure operator F define the classes ω̇∗ (F ) of relatively F -dense

pairs and ω̈∗ (F ) of relatively F -closed pairs, respectively, as

ω̇∗ (F ) = ω∗{F (m) | m ∈M } and ω̈∗ (F ) = ω∗{F (m) | m ∈M } (2-02)

2.08 Theorem. (0) CL (M )
ω̇∗

−−→ P (M ⋄M) and CL (M )
ω̈∗−−→ P (M ⋄M) op both

preserve order.

(1) For any closure operator F the classes of relatively F -dense pairs and of relatively

F -closed pairs are corresponding fixed points under the polarity ω , i.e., we have

ω∗ω̇
∗ (F ) = ω̈∗ (F ) and ω∗ω̈∗ (F ) = ω̇∗ (F )

(2) For any two classes C,D ⊆ M ⋄M with ω∗ (C) = D and ω∗ (D) = C the closure

operators ω̇∗ (C) and ω̈∗ (D) are isomorphic. Moreover, any closure operator F iso-

morphic to these two satisfies {F (m) | m ∈M } ⊆ C ∩D , and ω̇∗ (F ) = C as well as

ω̈∗ (F ) = D .

(3) ω̇∗ ◦ ω̇
∗ ∼= idCL(M )

∼= ω̈∗ ◦ ω̈∗ .

(4) ω̈ ◦ ω̇ is an essentially canonical factorization of ω .

Proof. (0) If F ⊑ G then F (m) ≪ G (m) for every m ∈ M . Hence 〈n, p〉 ⊥ F (m)

implies 〈n, p〉 ⊥ G (m) . This shows that ω̇∗ (F ) ⊆ ω̇∗ (G) . The result for ω̈∗ follows

dually.

(1) By the definition of a closure operator we have {F (m) | m ∈M } ⊆ ω̇∗ (F ) ∩ ω̈∗ (F ) .

Therefore ω̇∗ (F ) ⊇ ω∗ω̈∗ (F ) and ω∗ω̇
∗ (F ) ⊆ ω̈∗ (F ) . On the other hand for 〈n, p〉 ∈
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ω̇∗ (F ) and 〈q, r〉 ∈ ω̈∗ (F ) we have 〈n, p〉 ≪ F (p ◦n) ⊥ F (r ◦ q) ≪ 〈q, r〉 and hence

〈n, p〉 ⊥ 〈q, r〉 , which yields the other inclusions.

(2) That ω̇∗ (C) and ω̈∗ (D) are isomorphic follows from Lemma 2.04 and Theorem 2.05,

and their duals: For any m ∈M both sup≪
(

C ∩W/m
)

and inf≪
(

D ∩W/m
)

belong

to C ∩ D and hence are isomorphic. Moreover, any closure operator F isomorphic

to ω̇∗ (C) and ω̈∗ (D) satisfies {F (m) | m ∈ M } ⊆ C ∩ D , which in turn yields

ω̇∗ (F ) ⊇ C and ω̈∗ (F ) ⊇ D . But C and D as well as ω̇∗ (F ) and ω̈∗ (F ) are

corresponding fixed points under the polarity ω , which implies that ω̇∗ (F ) = C and

ω̈∗ (F ) = D .

(3) For F ∈ CL (M ) by (1) the classes ω̇∗ (F ) and ω̈∗ (F ) satisfy the hypothesis of (2),

hence ω̇∗ω̇
∗ (F ) and ω̈∗ω̈∗ (F ) are isomorphic. Moreover, { ω̇∗ω̇

∗ (F ) (m) | m ∈M } ⊆

ω̇∗ (F ) ∩ ω̈∗ (F ) . Thus for each m ∈ M we have F (m) ⊥ ω̇∗ω̇
∗ (F ) (m) ⊥ F (m) , so

F (m)≪ ω̇∗ω̇
∗ (F ) (m)≪ F (m) , i.e., F ∼= ω̇∗ω̇

∗ (F ) .

(4) For C ⊆ M ⋄M Lemma 2.04 and Theorem 2.05 imply ω̇∗ω
∗ω∗ (C) ⊑ ω̇∗ (C) . The

reverse order holds by Proposition 2.06, so both closure operators are isomorphic. Hence

by (2) ω̈∗ω̇∗ (C) = ω∗ (C) and ω̇∗ω̇∗ (C) = ω∗ω∗ (C) . Similarly one obtains ω̇∗ ◦ ω̈∗ =

ω∗ and ω̈∗ ◦ ω̈
∗ = ω∗ ◦ω

∗ . Therefore ω = ω̈ ◦ ω̇ and ω̇∗ ◦ ω̇∗ is increasing, while ω̈∗ ◦ ω̈
∗

is decreasing. This together with (3) establishes the desired adjunctions.

2.09 Definition. (cf. 1.11(1)) Let P (M )
g

−−• P (M ⋄M) be the axiality induced by the

dual of the graph of the first projection M ⋄M −→M , and let P (M ⋄M)
op f

−−• P (M )
op

be the dual of the axiality induced similarly by the second projection M ⋄M −→M .

Notice that ω ◦g is the polarity induced by the restriction of ⊥ to M × (M ⋄M ) , while

f ◦ω is the polarity induced by the restriction of ⊥ to (M ⋄M )×M .

2.10 Theorem. (0) ω̇∗g∗ (A) is weakly hereditary for every A ∈ P (M ) .

(1) ω̈∗f∗ (B) is idempotent for every B ∈ P (M )
op

.

(2) g
∗ω̇∗ (F ) = ∆∗ (F ) and f∗ω̈∗ (F ) = ∇∗ (F ) for every F ∈ CL (M ) . In particular,

∆∗ is adjoint, while ∇∗ is coadjoint.

Proof. (0) Fix A ⊆ M and set F = ω̇∗g∗ (A) . We claim that 〈mFF ,m
F ◦mF

F 〉 is

relatively F -closed, i.e., belongs to ω̈∗ (F ) = ω∗g∗ (A) , for any m ∈M . Both F (m)

and F (mF ) have this property. Consider an M -morphism n
〈f,g〉
−−−→ m and 〈q, r〉 ∈

g∗ (A) with r ◦ q = n . Since 〈q, r〉 ⊥ F (m) there exists a unique d with d ◦ q = mF ◦ f

and g ◦ r = mF ◦ d . But 〈q, id〉 ∈ g∗ (A) implies 〈q, id〉 ⊥ F (mF ) , so there exists a

unique d′ with d′ ◦ q = f and mF
F ◦ d′ = d . Thus 〈q, r〉 ⊥ 〈mFF ,m

F ◦mF
F 〉 , which

establishes the claim. Since F (m) is relatively F -dense as well, we have F (m) ⊥

〈mFF ,m
F ◦mF

F 〉 , which forces mF
F to be an isomorphism. Hence mF is F -dense.

(1) Similar.
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(2) By Lemma 1.09(1) we have

g
∗ω̇∗ (F ) = {n ∈M | ∀〈q,r〉∈M⋄M q = n ⇒ ∀m∈M 〈q, r〉 ⊥ F (m) }

= {n ∈M | ∀m∈M n ⊥ F (m) } = ∆∗ (F ) .

The same kind of reasoning establishes the second equality.

We are now in a position to define the remaining Galois connections in Diagram (2-00).

2.11 Definition. (0) Define ∆̇ as the codomain restriction of ω̇ ◦g to wCL (M ), and

∇̈ as the domain restriction of f ◦ ω̈ to iCL (M ).

(1) Set ǫ := ∇̇ ◦ ∆̈ .

(2) Set υ̇ := ǫ̇ ◦ ∆̇ and ϋ := ∆̈ ◦ ǫ̈ .

2.12 Proposition. (0) ∆̇∗ ◦ ∆̇
∗ ∼= idwCL(M ) and ∇̈∗ ◦ ∇̈∗ ∼= idiCL(M ) .

(1) ǫ̈ ◦ ǫ̇ is an essentially canonical factorization of ǫ .

(2) ϋ ◦ υ̇ is an essentially canonical factorization of the polarity υ induced by restricting

⊥ to M .

Proof. (0) For a weakly hereditary closure operator F we have

∆∗
(

∆̇∗∆̇
∗ (F )

)

= ∆̇∗∆̇∗∆̇
∗ (F ) = ∆̇∗ (F ) = ∆∗ (F ) .

By Lemma 1.09(4) this implies that F ∼= ∆̇∗∆̇
∗ (F ) . The argument for ∇̈ is similar.

(1) and (2) follow from Proposition 1.08 from Lemma 1.09(5), respectively.

This completes the construction of the commutative Diagram (2-00).

3. EXAMPLES

We start with some examples that illustrate Diagram (2-00).

3.00 Example. Let M be the class of embeddings in X = Top . If S is the Sierpinski

space on the set 2 = {0, 1} with {0} open, let ri be the embedding of the subspace {i} into

S , for i ∈ 2 .

To describe the weakly hereditary closure operators ∆̇∗{ri} = ω̇∗g∗{ri} we introduce a

relation R on the underlying set of a topological space X : 〈x, y〉 ∈ R iff g (0) = x and

g (1) = y for some continuous S
g
−→ X , i.e., iff every open set about y contains x , or in

other words, iff y belongs to the usual topological closure {x} of {x} .

For a subspace 〈M,m〉 of X , an embedding S
k
−→ Y , and k ◦ r0

〈f,h〉
−−−−→ m , the W -direct

image of 〈r0, k〉 along 〈f, h〉 coincides with the W -direct image of 〈r0, idS〉 along 〈f, h ◦ k〉 .
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Hence the ∆̇∗{r0} -closure 〈M0,m0〉 of 〈M,m〉 is determined by the union of all W -direct

images of 〈r0, idS〉 along some M -morphism r0
〈f,g〉
−−−→ m , i.e.,

M0 =
⋃

{

{x} | x ∈M
}

= { y ∈ X | ∃x∈X 〈x, y〉 ∈ R and x ∈M }

is precisely the direct image of M under R (cf. Proposition 1.11(1)). Similarly, ∆̇∗{r1}

produces

M1 =
{

x ∈ X | {x} ∩M 6= ∅
}

= {x ∈ X | ∃y∈X 〈x, y〉 ∈ R and y ∈M }

which is the direct image of M under the opposite relation R
op

. Since R is transitive,

both closure operators are easily seen to be idempotent, and hence are determined by their

respective classes of closed M -elements.

Next we consider the idempotent closure operators ∇̈∗{ri} = ω̈∗f∗{ri} . The ∇̈∗{r0} -

closure of a subspace 〈M,m〉 is given by the intersection of all open subspaces (in the ordinary

sense) containing M , while its ∇̈∗{r1}-closure is given by the intersection of all closed sub-

spaces (in the ordinary sense) containing M , i.e., it is the usual topological closure. Clearly,

both of these closure operators are weakly hereditary, and hence are determined by their re-

spective classes of dense M -elements.

3.01 Example. With the hypotheses of the preceding example consider the topological space

T on 3 = {0, 1, 2} with {0} and {2} open, and the inclusion pairs {0}
u
−→ {0, 2}

v
−→ T and

{0}
r0−−→ S

s
−→ T . A similar analysis as in the preceding example yields that the ω̇∗{〈u, v〉} -

closure of a subspace 〈M,m〉 of X is the inclusion into X of the subspace

{ z ∈ X | ∃y∈X ∃x∈M 〈x, y〉, 〈z, y〉 ∈ R } = { z ∈ X | ∃y∈M0 〈z, y〉 ∈ R } = (M0)1

which is the direct image of M under the product relation R ◦ Rop
. Hence ω̇∗{〈u, v〉} =

∆̇∗{r1} ◦ ∆̇∗{r0} . This closure operator is neither idempotent nor weakly hereditary, i.e., it

cannot be recovered from its collection of closed M -elements, nor from its collection of dense

M -elements. ω̇∗{〈r0, s〉} is just ∆̇∗{r0} .

On the other hand, the ω̈∗{〈r0, s〉}-closure of 〈M,m〉 in X is the intersection of all

closed subspaces N (in the ordinary sense) such that M is contained in the interior of N .

This closure operator is weakly hereditary, but not idempotent. So the collection of dense

M -elements does characterize it. ω̈∗{〈u, v〉} coincides with ∇̈∗{r0} .

3.02 Example. For X = P os and M = Mono (P os) let 1
f
−→ 2 and 1

t
−→ 2 be the

embeddings of the singleton poset into the two-element chain {0, 1} = 2 with 0 < 1 that take

values 0 and 1 , respectively. Then ∆̇∗{t} as well as ∇̈∗{f} map a subset M of a poset X

to its down-closure, the smallest down-closed set that contains M , while both ∆̇∗{f} and

∇̈∗{t} map M to its up-closure, the smallest up-closed set that contains M . Clearly, both

of these closure operators are weakly hereditary and idempotent.
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3.03 Example. In the same setting as above consider the inclusion u of {1} into 3 , the

three-element chain {0, 1, 2} = 3 with 0 < 1 < 2 . Then ∆̇∗{u} maps a subset M of a

poset X to the union of the down-closure of M with the up-closure of M . This closure

operator is weakly hereditary but not idempotent. On the other hand, ∇̈∗{u} maps M to

the intersection of the down-closure of M with the up-closure of M . This is the “interval hull”

of M , i.e., the smallest subset that for any a, b ∈ M contains each c ∈ X with a ≤ c ≤ b .

Clearly, ∇̈∗{u} is both idempotent and weakly hereditary.

In the next three examples we take a closer look at the Salbany closure operator κ∗ (C )

induced by a subclass C of Ob (X ) (cf. [15]). We have to require that X has equalizers and

that M contains all regular monomorphisms, or equivalently, that E consists of epi-sinks.

The closure of m ∈ M then is the intersection of all equalizers of those parallel morphisms

〈r, s〉 from the codomain of m to some object in C that satisfy r ◦m = s ◦m . Salbany

closure operators are always idempotent, and hence are determined by their collections of

closed M -elements.

3.04 Example. If X is a topological space, the b-closure of a subspace 〈M,m〉 consists of all

those points x ∈ X with the property that M ∩{x}∩N is not empty, for each neighborhood

N of x . This yields a closure operator (in the sense of Definition 1.02) on the class M of

topological embeddings. In fact, this is the Salbany closure operator κ∗ (Top0) induced by the

class of T0 -spaces. This closure operator was shown to be weakly hereditary in [5], Example

3.01, hence it can be recovered from the class of b-dense embeddings (cf. Proposition 2.12).

3.05 Example. If C is a class of Hausdorff spaces that contains a space with at least two

points, then the Salbany closure operator κ∗ (C ) is not weakly hereditary:

Consider the discrete space N of non-negative integers, and form a new space X by adding

two new points a , b to N as follows.

For c ∈ {a, b} the basic neighborhoods are the upper segments of N together with c .

The embedding of N into X viewed as a sequence then converges to a and to b , and the

subspace {a, b} is discrete. Sequences in Hausdorff spaces have unique limits, so any two

continuous functions from X into a Hausdorff space that agree on a must agree on b as well.

Since C contains a space with at least two points, it follows that no elements of N belong

to the κ∗ (C )-closure of {a} in X , which therefore must be {a, b} . But the κ∗ (C )-closure

of {a} in {a, b} is {a} . Hence the inclusion of {a} into {a, b} is not κ∗ (C )-dense.

Consequently κ∗ (C ) cannot be recovered from the class of κ∗ (C )- dense embeddings, even

though in the case that C = Top2 the restriction of κ∗ (C ) to C is the ordinary topological

closure operator.

Clementino in [7] characterizes a class C ⊆ Ob (Top) with κ∗ (C ) weakly hereditary as a

disconnectedness, i.e., for some class D of spaces Y ∈ C iff every continuous function from
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X ∈ D to Y is constant. This allows her to establish κ∗ (Top1) to be weakly hereditary. On

the other hand, the preceeding example shows that Top2 is not a disconnectedness.

3.06 Example. If X is a topological space, the Θ-closure of a subspace 〈M,m〉 consists of

all those points x ∈ X with the property that M ∩ N is not empty, for each neighborhood

N of x . This closure operator is known to be neither idempotent nor weakly hereditary, cf.

Example 1.5.(b) of [8]. A space where this can easily be seen is the Simplified Arens Square,

Counterexample 81 in [16]. If m is the embedding of (0, 1
2 ) × (0, 1

2 ) into the square, then

mΘ is not a Θ-closed embedding. Furthermore, the embedding n of (0, 1
2 ]× (0, 1

2 ] into the

square has the property that nΘ is not Θ-dense. Therefore neither Θ-closed embeddings

nor Θ-dense embeddings suffice to characterize the Θ-closure.

κ∗ (Top2.5) is known to coincide with the idempotent hull of the Θ-closure on Top2.5 ,

the class of Urysohn spaces. By Example 3.05 and Proposition 1.08 neither of these operators

can be weakly hereditary. However, we do not know whether they agree on all of Top .

Salbany closure operators are also useful in algebraic contexts.

3.07 Example. Let 〈T ,F 〉 be a torsion theory in the category R-Mod of left R -modules

over a fixed ring R with unity, i.e., T and F are corresponding fixed points of the polarity

induced by the relation on Ob (X ) that contains all pairs 〈X,Y 〉 with the property that

hom〈X,Y 〉 is a singleton set. Let M consist of all monomorphisms. Then κ∗ (F ) maps a

monomorphism M
m
−−→ X to the smallest submodule N

n
−→ X that contains M and satisfies

X/N ∈ F . Such Salbany closure operators are always weakly hereditary, i.e., characterized

by the F -dense submodules as well as by the F -closed submodules. A submodule M is

F -dense (resp. F -closed) in X iff X/M ∈ T (resp. X/M ∈ F ).

Important special cases for R = Z , i.e., R-Mod = Ab , are the following: if F consists

of all torsion-free (resp. reduced) abelian groups, then T is the class of all torsion (resp.

divisible) abelian groups.

However, closure operators in algebraic contexts need not be weakly hereditary.

3.08 Example. Let X be Grp , the category of groups, and let M be the class of all

monomorphisms. Mapping a subgroup M of a group X to the smallest normal subgroup

containing M yields an idempotent closure operator that is not weakly hereditary (because the

normal subgroup relation is not transitive). This operator is easily seen to be equal to ∇̈∗ (A ) ,

where A consists of all embeddings of normal subgroups. Although the ∇̈∗ (A )-separated

objects are precisely the abelian groups (cf. [6]), the Salbany closure operator κ∗ (Ab) differs

from ∇̈∗ (A ) : it maps M to the smallest normal subgroup N that contains M and for

which X/N is abelian. Notice that κ∗ (Ab) is not weakly hereditary either.
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