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0 INTRODUCTION

The development of a general theory about topological connectedness and disconnectedness was

started by Preuß (cf. [25]) and by Herrlich ([19]). Further literature on this topic can be found

in [2-3], [13], [21], [23], [26-28] and [30-31].

Let X be an arbitrary category with an (E,M)-factorization structure for sinks and let

N ⊆ M. An X -morphism X
f

−→ Y is called N -dependent if for any N -subobject n of X and

any N -subobject p of Y , nf ≤ p implies f−1(p) ≃ idX (where nf is the direct image of n along f

and f−1(p) is the pullback of p along f [see §1]). Let S(X ) denote the collection of all subclasses

of objects of X , ordered by inclusion. For every N ⊆ M, the relation: XR
N

Y if and only if

every X -morphism X
f

−→ Y is N -dependent yields a Galois connection S(X )
∆′

N-�
∇

′
N

S(X )op. It

was proved in [8] that this Galois connection factors through CL(X ,M), i.e., the collection of

all closure operators on X with respect to M, via two previously introduced Galois connections

S(X )
JN-�
IN

CL(X ,M) and CL(X ,M)
DN-�
TN

S(X )op.

The above factorization is used to introduce the concept of N -disconnectedness class and

the one of N -connectedness hull of a subcategory A of X . A characterization of this last notion

is presented in section 2, under the assumption of N being closed under the formation of direct

images.

However, the real purpose of the paper appears in section 3, where the assumption of the

existence of a terminal object in X is added. This allowed us to obtain a characterization of

N -disconnectedness classes that in the category of topological spaces yields as a special case the

one given by Arhangel’skii and Wiegandt, [2, Theorem 2.12]. Moreover, in the category of abelian

groups, this yields the classical characterization of the torsion free part of a torsion theory. It
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2 G. CASTELLINI

is also worth to mention that in the process of obtaining the above characterization, we also

identify those E-reflective subcategories in which the fibers of any reflection morphism have their

reflections isomorphic to the terminal object (cf. Lemma 3.12).

The paper ends with some examples that illustrate the Galois conection S(X )
∆′

N-�
∇

′
N

S(X )op

in familiar categories.

We use the terminology of [1] throughout the paper1.

1 PRELIMINARIES

Throughout we consider a category X and a fixed class M of X -monomorphisms, which contains

all X -isomorphisms. It is assumed that X is M-complete; i.e.,

(1) M is closed under composition

(2) Pullbacks of M-morphisms exist and belong to M, and multiple pullbacks of (possibly large)

families of M-morphisms with common codomain exist and belong to M.

One of the consequences of the above assumptions is that there is a uniquely determined class

E of sinks in X such that X is an (E,M)-category for sinks. This implies the following features

of M and E (cf. [1] for the dual case):

PROPOSITION 1.1

(1) Every isomorphism is in both M and E (as a singleton sink).

(2) M is closed under M-relative first factors, i.e., if n ◦ m ∈ M, and n ∈ M, then m ∈ M.

(3) M is closed under composition.

(4) Pullbacks of X -morphisms in M exist and belong to M.

(5) The M-subobjects of every X -object form a (possibly large) complete lattice; suprema are

formed via (E,M)-factorizations and infima are formed via intersections.

If X
f

−→ Y is an X -morphism and M
m
−→ X is an M-subobject, then M

ef◦m
−→ Mf

mf
−→ Y

will denote the (E,M)-factorization of f ◦ m. Mf

mf

−→ Y will be called the direct image of m

along f and M
ef◦m
−→ Mf will be called the restriction of the morphism f to the M-subobject m.

If N
n

−→ Y is an M-subobject, then the pullback f−1(N)
f−1(n)

−−−−→ X of n along f will be called

the inverse image of n along f . Whenever no confusion is likely to arise, to simplify the notation

we will denote the morphism ef◦m simply ef .

1 Paul Taylor’s Commutative Diagrams in TEX macro package was used to typeset most of the dia-

grams in this paper.
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DEFINITION 1.2

A closure operator C on X (with respect to M) is a family {( )
C

X
}X∈X of functions on the

M-subobject lattices of X with the following properties that hold for each X ∈ X :

(a) [expansiveness] m ≤ (m)
C

X
, for every M-subobject M

m
−→ X ;

(b) [order-preservation] m ≤ n ⇒ (m)
C

X
≤ (n)

C

X
for every pair of M-subobjects of X ;

(c) [morphism-consistency] If p is the pullback of the M-subobject M
m
−→ Y along some X -

morphism X
f

−→ Y and q is the pullback of (m)
C

Y
along f , then (p)

C

X
≤ q, i.e., the closure of

the inverse image of m is less than or equal to the inverse image of the closure of m.

Condition (a) implies that for every closure operator C on X , every M-subobject M
m
−→ X

has a canonical factorization

M
t

−→ (M)
C

X

m ց




y
(m)

C

X

X

where ((M)
C

X
, (m)

C

X
) is called the C-closure of the subobject (M, m).

When no confusion is likely we will write m
C

rather than (m)
C

X
and for notational symmetry

we will denote the morphism t by m
C
.

REMARK 1.3

Notice that in the above definition, under condition (b), the morphism-consistency condition

(c) is equivalent to the following statement concerning direct images: if M
m
−→ X is an M-

subobject and X
f

−→ Y is a morphism, then ((m)
C

Y
)f ≤ (mf )

C

Y
, i.e., the direct image of the

closure of m is less than or equal to the closure of the direct image of m; (cf. [15]).

DEFINITION 1.4

Given a closure operator C, we say that m ∈ M is C-closed if m
C

is an isomorphism. An

X -morphism f is called C-dense if for every (E,M)-factorization (e, m) of f we have that m
C

is an isomorphism. We call C idempotent provided that m
C

is C-closed for every m ∈ M. C is

called weakly hereditary if m
C

is C-dense for every m ∈ M.

Notice that Definition 1.2(c) implies that pullbacks of C-closed M-subobjects are C-closed.

A special case of an idempotent closure operator arises in the following way. Given any class

A of X -objects and M
m
−→ X in M, define m

A

to be the intersection of all equalizers of pairs of

X -morphisms r, s from X to some A-object A that satisfy r ◦m = s ◦m, and let m
A
∈ M be the

unique X -morphism by which m factors through m
A

. It is easy to see that this gives rise to an
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idempotent closure operator that we will denote by SA. This generalizes the Salbany construction

of closure operators induced by classes of topological spaces, cf. [29].

We denote the collection of all closure operators on M by CL(X ,M) pre-ordered as follows:

C ⊑ D if m
C

≤ m
D

for all m ∈ M (where ≤ is the usual order on subobjects). Notice that

arbitrary suprema and infima exist in CL(X ,M), they are formed pointwise in the M-subobject

fibers.

For more background on closure operators see, e.g., [11-12] and [15-16]. For a recent survey

on the same topic, one could check [9]. Detailed proofs can be found in [20] and [17].

DEFINITION 1.5

For pre-ordered classes X = (X,⊑) and Y = (Y,⊑), a Galois connection X
F-�
G

Y consists

of order preserving functions F and G that satisfy F ⊣ G, i.e., x ⊑ GF (x) for every x ∈ X and

FG(y) ⊑ y for every y ∈ Y. (G is adjoint and has F as coadjoint).

If x ∈ X and y ∈ Y are such that F (x) = y and G(y) = x, then x and y are said to be

corresponding fixed points of the Galois connection (X , F, G,Y).

Properties and many examples of Galois connections can be found in [18].

2 GENERAL RESULTS ABOUT C-DISCONNECTED-
NESS

The aim of this section is to introduce in the category X a general notion of disconnectedness

that depends on a given closure operator and on a chosen class of M-subobjects. To this purpose

we need to recall some results that appeared in previous papers.

Throughout the paper we will assume that X is an (E,M)-category for sinks.

Unless otherwise specified, C will always denote a closure operator on X with respect to the

given class M of X -monomorphisms and N will be a subclass of M. For X ∈ X , NX will denote

all N -subobjects with codomain X .

We begin by recalling the following two propositions from [4].

PROPOSITION 2.1

Let CL(X ,M)
DN−→ S(X )op and S(X )op

TN−→ CL(X ,M) be defined by:

DN (C) = {X ∈ X : every n ∈ NX is C-closed}

TN (A) = Sup{C ∈ CL(X ,M) : DN (C) ⊇ A}.

Then, CL(X ,M)
DN-�
TN

S(X )op is a Galois connection.



DISCONNECTEDNESS CLASSES 5

PROPOSITION 2.2

Let CL(X ,M)
IN−→ S(X ) and S(X )

JN−→ CL(X ,M) be defined by:

IN (C) = {X ∈ X : every n ∈ NX is C-dense}

JN (B) = Inf{C ∈ CL(X ,M) : IN (C) ⊇ B}.

Then, S(X )
JN-�
IN

CL(X ,M) is a Galois connection.

In [4] we also presented some characterizations of the functions TN and JN . For reference

purposes we collect them under the following

PROPOSITION 2.3

For every A ∈ S(X )op and M-subobject M
m
−→ X , with X ∈ X , we have that

mTN (A) = ∩{f−1(n) : Y ∈ A, X
f

−→ Y, N
n

−→ Y ∈ NY and m ≤ f−1(n)}.

Moreover, for every B ∈ S(X ) and M-subobject M
m
−→ Y , with Y ∈ X , we have that

mJN (B) = sup
(

{m} ∪ {(idX)f : X ∈ B, X
f

−→ Y and ∃n ∈ NX with nf ≤ m}
)

.

DEFINITION 2.4

A morphism X
f

−→ Y is N -dependent if for every n ∈ NX and every p ∈ NY , nf ≤ p implies

f−1(p) ≃ idX .

Clearly, the above definition yields a Galois connection S(X )
∆′

N-�
∇

′
N

S(X )op where for A ∈

S(X ), ∆′
N (A) = {Y ∈ X : ∀X ∈ A, X

f
−→ Y is N -dependent} and for B ∈ S(X )op, ∇′

N (B) =

{X ∈ X : ∀Y ∈ B, X
f

−→ Y is N -dependent}.

In [8] we proved the following:

THEOREM 2.5

Let N be a subclass of M. Then the Galois connection S(X )
∆′

N-�
∇

′
N

S(X )op factors through

CL(X ,M) via the Galois connections S(X )
JN-�
IN

CL(X ,M) and CL(X ,M)
DN-�
TN

S(X )op.

Now we are ready to give the following:

DEFINITION 2.6

An X -object X is called (C,N )-disconnected if X ∈ DN (JN (IN (C))).
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As a consequence of Theorem 2.5, we obtain the following alternative description of the notion

of (C,N )-disconnectedness.

PROPOSITION 2.7

An X -object X is (C,N )-disconnected if every morphism A
f

−→ X with A ∈ IN (C) is

N -dependent; i.e., for every n ∈ NA and every p ∈ NX , nf ≤ p implies f−1(p) ≃ idA.

DEFINITION 2.8

(a) Let A ∈ S(X )op. A is said to be a disconnectedness class if there is a subclass of morphisms

N ⊆ M and a closure operator C such that A = DN (JN (IN (C))).

(b) Let A ∈ S(X )op and N ⊆ M. A is said to be an N -disconnectedness class if there is a

closure operator C such that A = DN (JN (IN (C))).

REMARK 2.9

Notice that if A = DN (JN (IN (C))), then from the properties of Galois connections we have

that A = DN (JN (IN (TN (A)))). Consequently, part (b) of Definition 2.8 can be also restated as

follows: A is an N -disconnectedness class if and only if A = DN (JN (IN (TN (A)))).

PROPOSITION 2.10

Let N be closed under the formation of direct images and let X and Y be two X -objects.

(a) X ∈ IN (TN (B)) if and only if for every n ∈ NX and X
f

−→ B, B ∈ B we have that

f−1(nf ) ≃ idX .

(b) Y ∈ DN (JN (A)) if and only if for every n ∈ NX , X
f

−→ Y with X ∈ A we have that

f−1(nf ) ≃ idX .

Proof:

(a). If X ∈ IN (TN (B)) then for every n ∈ NX , nTN (B) ≃ idX , that is from Proposition

2.3, ∩{f−1(p) : B ∈ B, X
f

−→ B, p ∈ NB and n ≤ f−1(p)} ≃ idX . This implies that for

every X
f

−→ B, B ∈ B and p ∈ NB such that n ≤ f−1(p) we have that f−1(p) ≃ idX . Since

n ≤ f−1(nf ) and nf ∈ N by hypothesis, for p = nf we obtain that f−1(nf ) ≃ idX .

Conversely, suppose that for every X
f

−→ B, B ∈ B and n ∈ NX , f−1(nf ) ≃ idX . Now let

p ∈ NB be such that n ≤ f−1(p). Then nf ≤ (f−1(p))f ≤ p implies idX ≃ f−1(nf ) ≤ f−1(p).

Hence f−1(p) ≃ idX and consequently nTN (B) ≃ idX . Thus, X ∈ IN (TN (B)).

(b). Consider X ∈ A, Y ∈ DN (JN (A)), n ∈ NX and X
f

−→ Y . By our hypothesis on N ,

nf ∈ NY and so (nf )JN (A) ≃ nf . Notice that X occurs in the construction of (nf )JN (A) (cf.

Proposition 2.3) and so (idX)f ≤ nf , which implies f−1(nf ) ≃ idX .
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Viceversa, let p ∈ NY and Y ∈ X . If X ∈ A and n ∈ NX is such that nf ≤ p, then

idX ≃ f−1(nf ) ≤ f−1(p). So, (idX)f ≤ (f−1(p))f ≤ p. Therefore, pJN (A) ≃ p and consequently

Y ∈ DN (JN (A)).

DEFINITION 2.11

For every A ∈ S(X )op and N ⊆ M, DN (JN (IN (TN (A)))) is called the N -disconnectedness

hull of A.

We conclude this section with the following:

THEOREM 2.12

Let N be closed under the formation of direct images and let A be a subcategory of X . Then,

an X -object Y belongs to the N -disconnectedness hull of A if and only if for every morphism

X
f

−→ Y , if the total source (X
fi
−→ Ai)i∈I satisfies f−1

i (nfi
) ≃ idX for every n ∈ NX , then so

does f .

Proof:

(⇐). Consider the morphism X
f

−→ Y . If the total source (X
fi
−→ Ai)i∈I satisfies

f−1
i (nfi

) ≃ idX for every n ∈ NX , then from Proposition 2.10(a), X ∈ IN (TN (A)). Thus,

any morphism X
f

−→ Y with X ∈ IN (TN (A)) satisfies f−1(nf ) ≃ idX for every n ∈ NX . Hence

from Proposition 2.10(b) we have that Y ∈ DN (JN (IN (TN (A)))).

(⇒). If Y ∈ DN (JN (IN (TN (A)))), then from Proposition 2.10(b), every morphism X
f

−→ Y

with X ∈ IN (TN (A)) satisfies f−1(nf ) ≃ idX for every n ∈ NX . Clearly X ∈ IN (TN (A)) is

equivalent to the total source (X
fi
−→ Ai)i∈I satisfying the above condition.

3 DISCONNECTEDNESS IN CATEGORIES WITH A
TERMINAL OBJECT

The aim of this section, which is also the main purpose of the paper, is to provide a characterization

of disconnectedness classes in categories with a terminal object.

So, from now on we assume that the category X has a terminal object T .

DEFINITION 3.1

An X -object X is called empty (non-empty) if it does not have (it has) T as a subobject. An

X -object that is either empty or isomorphic to T is called trivial, otherwise it is called non-trivial.
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DEFINITION 3.2

We say that terminal objects detect monomorphisms if whenever a morphism X
f

−→ Y satis-

fies the condition that f−1(T ) is trivial, for every morphism T
tY−→ Y , then f is a monomorphism.

Now we make the following

ASSUMPTIONS 3.3

(a) If X is a trivial object, then any morphism with domain X belongs to M;

(b) any morphism with domain a terminal object T belongs to N ;

(c) whenever T
t

−→ X and M
m
−→ X are monomorphisms such that m ≤ t, then M non-empty

implies m ≃ t;

(d) N is a class of non-empty M-subobjects;

(e) terminal objects detect monomorphisms.

REMARK 3.4

(1) Using Assumption 3.3(c), it is easy to see that if M
m
−→ X is a monomorphism, then m−1(T )

is trivial for every morphism T
t

−→ X .

(2) It is important to observe that if X is empty, then as a consequence of Assumption 3.3(d) it

cannot have any N -subobject.

The following result has a crucial importance for the rest of the paper. However, since a

more general version of it was proved in [8], we omit its proof.

LEMMA 3.5 (cf. [8, Lemma 3.4])

Let X
f

−→ Y be a morphism with X non-empty. Then, the following are equivalent:

(a) f is N -dependent;

(b) f factors through T .

PROPOSITION 3.6

Every N -disconnectedness class contains all trivial objects.

Proof:

We recall from Proposition 2.7, that N -disconnectedness classes can be described via N -

dependent morphisms.

If X ≃ T , then clearly any morphism Y
f

−→ X with Y ∈ IN (C) factors through T , so we

can apply Lemma 3.5. If X is empty then from Remark 3.4 X does not have any N -subobject.

Consequently any morphism Y
f

−→ X is N -dependent.
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REMARK 3.7

If A is an N -disconnectedness class then, from Remark 2.9, A = DN (JN (IN (TN (A)))).

Thus, from [8, Lemma 3.4], [5, Proposition 2.10] and [8, Proposition 3.11] we obtain that if X is E-

cowell powered with products, then A is an E-reflective subcategory (cf. [1, Theorem 16.8]). The

next step is to identify those E-reflective subcategories that can be seen as N -disconnectednesses.

This is taken care by the following results.

We recall the next two definitions from [8].

DEFINITION 3.8

A non-empty family (Mi
mi−→ X)i∈I of M-subobjects of X is said to be disjoint if ∩Mi is

empty or |I| = 1.

DEFINITION 3.9

(a) We say that a non-empty disjoint family (Mi
mi−→ X)i∈I of non-empty M-subobjects of X

has a strong E-quotient if there is an E-morphism X
q

−→ Q such that:

i) q ◦ mi factors through T for every i ∈ I;

ii) for every morphism T
tQ

−→ Q we have that either q−1(tQ) ≃ idT or there is an element

i0 ∈ I such that mi0 = q−1(tQ);

iii) for any E-morphism X
g

−→ Y such that g ◦ mi factors through T for every i ∈ I, there

exists a morphism Q
h

−→ Y such that h ◦ q = g.

(b) An X -morphism X
q

−→ Q is called a strong E-quotient if there is a non-empty disjoint family

(Mi
mi−→ X)i∈I of non-empty M-subobjects of X , that has q as a strong E-quotient.

(c) We say that X has strong E-quotients if for any X ∈ X , any non-empty disjoint family of

non-empty M-subobjects (Mi
mi−→ X)i∈I has a strong E-quotient.

Some remarks about the concept of strong E-quotient can be found in [8]. Here we just

observe that if E is a class of episinks, then any two strong E-quotients with respect to the same

family of M-subobjects must be isomorphic. Therefore in this case, up to isomorphism, one can

speak of “the” strong E-quotient of that family.

The proofs of the following two lemmas follow from some straightforward categorical argu-

ments, so we omit them.

LEMMA 3.10

If Mi
mi−→ M is a family of monomorphisms and M

m
−→ X is a monomorphism, then

∩(m ◦ mi) ≃ m ◦ (∩mi).
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LEMMA 3.11

If pullbacks of E-morphisms along M-subobjects belong to E, then if X
e

−→ Y belongs to

E and M
m
−→ Y belongs to M, we have that (e−1(m))e ≃ m.

LEMMA 3.12

Assume that X has strong E-quotients and let A be an E-reflective subcategory of X that

contains all trivial objects. For an X -object X let X
rX−→ rX be its E-reflection in A. Let us

consider the following statements:

(a) For every morphism T
t

−→ rX , r(r−1
X (T )) ≃ T ;

(b) for every X -morphism X
f

−→ Y with Y ∈ A that satisfies f−1(T ) ∈ A for every morphism

T
tY−→ Y , we have that X ∈ A.

Then, if A is closed under monomorphisms, (a) ⇒ (b).

Conversely, if we assume that there is a closure operator C such that terminal objects are

C-closed in A-objects and that the restriction of any strong E-quotient q to a C-closed subobject

that is a pullback along q, is a strong E-quotient. Moreover, if E consists of episinks and pullbacks

of E-morphisms along M-subobjects belong to E, then (b) ⇒ (a).

Proof:

(a) ⇒ (b). Let X
f

−→ Y be an X-morphism with Y ∈ A. Assume that for every morphism

T
tY−→ Y , f−1(T ) ∈ A. Consider the following commutative diagram:

r−1
X (T )

A
A
A
A
A
A
A
A
A
A
A

r̄X

U

@
@

@
@

@

d

R

HHHHHHHHHHH

r−1
X (t)

j
f−1(T )

k
- X

f - Y

T
?

f̄

t
- rX

?

rX

rf
- rY

?

rY

where k stands for f−1(r−1
Y ◦ rf ◦ t) and d is the morphism induced by the universal property of

pullbacks. By assumption, f−1(T ) ∈ A, and since d ∈ M (cf. Proposition 1.1(2)), the closure

of A under M-subobjects implies that r−1
X (T ) ∈ A. Thus we have that r(r−1

X (T )) ≃ r−1
X (T ).

By assumption, T ≃ r(r−1
X (T )) and so r−1

X (T ) ≃ T . Since by assumption, terminal objects

detect monomorphisms, we conclude that rX is a monomorphism. Finally, the closure of A under

monomorphisms implies that X ∈ A.
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(b) ⇒ (a). Let X ∈ X . If rX is empty, then condition (a) is true by default. So, let rX be

non-empty and let T
t

−→ rX be a morphism. Consider its pullback along rX , r−1
X (T )

r
−1

X
(t)

−−−−→ X .

We need to show that r(r−1
X (T )) ≃ T .

For every morphism Ti
di−→ r(r−1

X (T )), i ∈ I, where Ti is a terminal object, consider the

pullback e−1(Ti)
e−1(di)
−−−−→ r−1

X (T ) where, to simplify the notation we have set e = rr
−1

X
(T ). Con-

sider the disjoint family of M-subobjects of X that consists of all M-subobjects of the form

r−1
X (Tj)

r
−1

X
(tj)

−−−−→ X which are pullbacks of the non-isomorphic M-subobjects Tj

tj

−→ rX , j ∈ J ,

tj 6= t, together with the family e−1(Ti)
r
−1

X
(t)◦e−1(di)

−−−−−−−−→ X , for all non-isomorphic M-subobjects

Ti
di−→ r(r−1

X (T )).

Notice that M-subobjects of the form r−1
X (Tj)

r
−1

X
(tj)

−−−−→ X are disjoint by construction and

for the disjointness of the family (r−1
X (t) ◦ e−1(di))i∈I one can use Lemma 3.10. Moreover, from

Assumption 3.3(a) and the fact that pullbacks of E-morphisms along M-subobjects belong to E,

we can conclude that r−1
X (T ) is non-empty and so is r(r−1

X (T )). Consequently, the above family

is non-empty.

Thus we can build the strong E-quotient of the above family, say X
q

−→ Q. Clearly, rX ◦

r−1
X (tj) factors through the terminal object for every j ∈ J and so does rX ◦ r−1

X (t) ◦ e−1(di),

for every i ∈ I. Since rX ∈ E, from the universal property of strong E-quotients we obtain a

morphism Q
h

−→ rX such that h ◦ q = rX . Now, let us consider the direct image of r−1
X (T )

along q, that is the (E,M)-factorization q ◦ r−1
X (t) = t′ ◦ q′ with r−1

X (T )
q′

−→ (r−1
X (T ))q ∈ E and

(r−1
X (T ))q

t′

−→ Q ∈ M. By our assumptions, r−1
X (T ) is C-closed (as a pullback of a C-closed M-

subobject) and since r−1
X (T ) = (h◦q)−1(T ) = q−1(h−1(T )), we have that q′ is a strong E-quotient

as a restriction of the strong E-quotient q to a C-closed M-subobject that is a pullback along q.

Next we identify the family of M-subobjects with respect to which q′ is a strong E-quotient. For

every morphism T
α

−→ (r−1
X (T ))q consider the commutative diagram:

X
q - Q

r−1
X (T )

r−1
X (t)

6

q′
- (r−1

X (T ))q

6

t′

(q′)−1(T )

(q′)−1(α)

6

q′′
- T

6
α

The universal property of pullbacks implies that r−1
X (t) ◦ (q′)−1(α) ≤ q−1(t′ ◦ α). Since all
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the r−1
X (tj) are disjoint and r−1

X (t) ◦ (q′)−1(α) is a subobject of r−1
X (t), condition ii) of Definition

3.9(a) implies that either q−1(t′ ◦ α) ≃ idT or q−1(t′ ◦ α) = r−1
X (t) ◦ e−1(di) for some di. In the

first case, from Assumption 3.3(c), we have that r−1
X (t) ◦ (q′)−1(α) ≃ idT and consequently, so

does (q′)−1(α). In the latter case we have that q−1(t′ ◦α)∩ r−1
X (t) = (r−1

X (t) ◦ e−1(di))∩ r−1
X (t) =

r−1
X (t) ◦ e−1(di). From Lemma 2.20 of [6] we have that q−1(t′ ◦ α) ∩ r−1

X (t) ≃ r−1
X (t) ◦ (q′)−1(α).

Thus, r−1
X (t) ◦ e−1(di) = r−1

X (t) ◦ (q′)−1(α) and since r−1
X (t) is a monomorphism, we conclude

that (q′)−1(α) = e−1(di). Moreover, for every i ∈ I, consider the (E,M)-factorization (e′i, m
′
i)

of q′ ◦ e−1(di). Then, (e′i, t
′ ◦ m′

i) is the (E,M)-factorization of q ◦ r−1
X (t) ◦ e−1(di) and so it

factors through the terminal object. Hence, from Assumption 3.3(c), so does q′ ◦ e−1(di). Since

r−1
X (T )

q′

−→ (r−1
X (T ))q is a strong E-quotient, we conclude that q′ is the strong E-quotient of the

family {e−1(di)}i∈I . Consequently, from the universal property of strong E-quotients there is a

morphism (r−1
X (T ))q

p
−→ r(r−1

X (T )) such that p ◦ q′ = e.

Next we show that the morphism p satisfies the requirements of property (b). For every

morphism Ti
di−→ r(r−1

X (T )) consider the following commutative diagram:

r−1
X (T )

q′ - (r−1
X (T ))q

@
@
@

@e R 	�
�

�
�

p

r(r−1
X (T ))

e−1(Ti)

e−1(di)

6

d - p−1(Ti)

6

p−1(di)

@
@
@

@ēi R 	�
�

�
�

p̄i

Ti

6
di

where d is the unique morphism induced by the universal property of pullbacks.

From a classical property of pullback squares (cf. [1, Proposition 11.10(2)]), since the left and

right squares are pullbacks, so is the outer one. Thus, e−1(Ti) ≃ (q′)−1(p−1(Ti)). Now, since q′ ◦

e−1(di) factors through the terminal object, we have that Ti ≃ (e−1(Ti))q′ ≃ ((q′)−1(p−1(Ti)))q′ ≃

p−1(Ti). This last isomorphism follows from Lemma 3.11. Thus, p−1(Ti) ≃ Ti ∈ A and so p

satisfies property (b). Consequently (r−1
X (T ))q ∈ A.

Consider the morphism Tj

tj

−→ rX . From the following commutative diagram:
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X
q - Q

@
@
@

@rX R 	�
�
�

�

h

rX

r−1
X (Tj)

r−1
X (tj)

6

- h−1(Ti)

6

h−1(tj)

@
@
@

@(r̄X)j R 	�
�
�

�

h̄j

Tj

6
tj

we have that q−1(h−1(Tj)) = (h ◦ q)−1(Tj) = r−1
X (Tj). By applying q and from Lemma 3.11

we obtain that h−1(Tj) ≃ (r−1
X (Tj))q. Hence, for tj 6= t, (r−1

X (Tj))q ≃ Tj ∈ A and for tj = t,

(r−1
X (Tj))q ≃ (r−1

X (T ))q ∈ A. Thus, from (b) Q ∈ A.

As a consequence, there exists a morphism rX
k

−→ Q such that k ◦ rX = q. This together

with h◦q = rX yields k◦h◦q = q = idQ◦q. Since q ∈ E and E consists of episinks, we obtain that

k ◦ h = idQ. Thus h is an epimorphism (as second factor of the epimorphism rX = h ◦ q) and a

section and so an isomorphism. So, by definition of q, q−1((r−1
X (t)◦ e−1(di))q) ≃ r−1

X (t)◦ e−1(di),

for every i ∈ I. However, since h is an isomorphism, we have that q−1((r−1
X (t) ◦ e−1(di))q) ≃

r−1
X ((r−1

X (t) ◦ e−1(di))rX
) ≃ r−1

X (t) = r−1
X (t) ◦ idr

−1

X
(T ). Hence e−1(di) ≃ idr

−1

X
(T ) for every i ∈ I,

since r−1
X (t) is a monomorphism. Finally, this implies that r(r−1

X (T )) ≃ T .

THEOREM 3.13

Suppose that X has strong E-quotients and let A be an E-reflective subcategory of X that

contains all trivial objects. Assume that there is a closure operator C such that terminal objects

are C-closed in A-objects and that the restriction of any strong E-quotient q to a C-closed

subobject that is a pullback along q is a strong E-quotient. Moreover, E consists of episinks and

pullbacks of E-morphisms along M-subobjects belong to E. Then the following are equivalent:

(a) A is an N -disconnectedness class;

(b) for every X -morphism X
f

−→ Y with Y ∈ A that satisfies the condition that f−1(T ) ∈ A,

for every morphism T
tY−→ Y , we have that X ∈ A.

Proof:

(a) ⇒ (b). Let X
f

−→ Y be an X -morphism with Y ∈ A such that for every morphism

T
tY−→ Y , f−1(T ) ∈ A. The fact that A is an N -disconnectedness class implies that A =

DN (JN (IN (TN (A)))) = ∆′
N (IN (TN (A))) = ∆′

N (B) with B = IN (TN (A)), (cf. Remark 2.9 and
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Theorem 2.5). We need to show that X ∈ A = ∆′
N (B). Consider a morphism Z

g
−→ X with

Z ∈ B. If Z is empty, then g is N -dependent by default and so X ∈ ∆′
N (B) = A. Now, let Z be

non-empty. Clearly, since Y ∈ A = ∆′
N (B) and Z ∈ B, from Lemma 3.5 f ◦ g factors through T ,

i.e., f ◦ g = tY ◦ tZ . Let us consider the following commutative diagram:

Z

A
A
A
A
A
A
A
A
A
A
A

g

U

@
@

@
@

@

d

R

HHHHHHHHHHH

tZ

j
f−1(T )

f̄
- T

X
?

f−1(tY )

f
- Y

?

tY

where d is the morphism induced by the universal property of pullbacks. Since f−1(T ) ∈ A, then

d factors through T and consequently so does g. Thus, from Lemma 3.5, X ∈ ∆′
N (B) = A.

(b) ⇒ (a). Clearly A ⊆ DN (JN (IN (TN (A)))), so we just need to show that the other inclu-

sion holds. Let X ∈ DN (JN (IN (TN (A)))) and let X
rX−→ rX be its E-reflection in A. For any

morphism T
t

−→ rX consider the pullback r−1
X (T )

r
−1

X
(t)

−−−−→ X . Notice that from Assumption 3.3(a)

and from our assumptions on E we have that r−1
X (T ) is non-empty. Consider the E-reflection

r(r−1
X (T )) of r−1

X (T ) into A. From Lemma 3.12 we have that r(r−1
X (T )) ≃ T . Consequently, any

morphism r−1
X (T )

h
−→ A with A ∈ A factors through T . So, r−1

X (T ) ∈ IN (TN (A)). Consequently,

r−1
X (t) factors through T . Thus, r−1

X (t) ≤ tX for a morphism T
tX−→ X . Now, since r−1

X (T ) is

non-empty, from condition 3.3(c) we obtain that r−1
X (T ) ≃ T ∈ A. Hence the morphism rX

satisfies the condition in (b) and so we conclude that X ∈ A.

REMARK 3.14

We would like to observe that the hypotheses of Theorem 3.13 are not as strong as they

may first appear. For instance, if in Ab we consider the (episinks,monomorphism)-factorization

structure, since in this case, as it is easily seen, the strong E-quotients are exactly the surjec-

tive homomorphisms, we have that the restriction condition on E-quotients in the hypotheses of

Theorem 3.13 is satisfied by any closure operator on Ab. Moreover, for any non-empty subclass

A ⊆ Ab, the terminal object {0} is TN (A)-closed. Consequently, since condition (b) is equivalent

to the closure under group extensions, the above theorem yields the classical characterization of

the torsion free part of any torsion theory in Ab.

In the category Top with the (episink,embedding)-factorization structure, since as observed
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in [8, Remark 3.15(c)], the strong E-quotients are precisely the topological quotients, the Kura-

towski closure K certainly satisfies the hypotheses of Theorem 3.13 for any class of topological

spaces A ⊆Top1. Therefore, in this case we obtain as a special case the characterization of

topological disconnectedness given by Arhangel’skii and Wiegandt [2, Theorem 2.12].

Please, notice that although the above theorem seems to only characterize those disconnect-

edness classes contained in the category Top1, Arhangel’skii and Wiegandt [2, Proposition 2.10]

proved that the only non-trivial disconnectedness not contained in Top1 is Top0.

4 EXAMPLES

In what follows, for the category Top of topological spaces we will choose as M the class of

all extremal monomorphisms (embeddings). We recall that if E is the class of episinks in Top,

then Top is an (E,M)-category. For the category Grp of groups and Ab of abelian groups

we will use the (episink,monomorphism)-factorization structure. Full details about the following

examples can be found in [10] and [5-8].

EXAMPLE 4.1 (cf. [10])

Let X be the category Top and let N be the class of all nonempty embeddings. Notice that

since N contains all singleton monomorphisms (i.e., morphisms with singleton domain), to say

that a morphism X
f

−→ Y is N -dependent simply means that f(X) is a singleton.

(a). If C is the closure operator induced by the topology, then the class IN (C) agrees with the

class Ind of all indiscrete topological spaces. For every M-subobject M
m
−→ X , MJN (Ind) is the

union of M with all indiscrete subobjects of X which intersect M and (DN ◦ JN )(Ind) = Top0.

Thus, Top0 is the class of (C,N )-disconnected topological spaces. As a matter of fact Ind and

Top0 are corresponding fixed points of the Galois connection (∆′
N ,∇′

N ) of Theorem 2.5 (cf. [2]).

(b). Consider the class Absconn of all absolutely connected topological spaces. We recall

that a topological space X is absolutely connected if it cannot be decomposed into any disjoint

family L of nonempty closed subsets with |L| > 1 (cf. [25]). It is well known that Absconn

and Top1 are corresponding fixed points of the Galois connection (∆′
N ,∇′

N ) of Theorem 2.5 (cf.

[2]). Consequently, Absconn = IN (TN (Top1)) and Top1 = DN (JN (Absconn)). It was proved

in [10, Example 4.3] that TN (Top1) agrees with the regular closure operator induced by Top1.

Therefore Top1 is the class of (TN (Top1),N )-disconnected topological spaces.

(c). Consider the closure operator C that to each M-subobject M
m
−→ X , associates the

union of M with all connected subsets of X which intersect M . IN (C) is the class Conn of all

connected topological spaces and consequently (DN ◦JN )(IN (C)) is the class TDisc of all totally

disconnected topological spaces. Clearly, connected and totally disconnected topological spaces
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are corresponding fixed points of the Galois connection (∆′
N ,∇′

N ) of Theorem 2.5.

EXAMPLE 4.2

Let X be the category Grp and let N = M be the class of all monomorphisms in Grp.

Clearly, to say that a Grp-morphism X
f

−→ Y is N -dependent simply means that the image of

X under f is a singleton.

Let A be the subcategory Ab of abelian groups. We have that TN (Ab) ≃ SAb, where SAb

is the regular closure operator induced by Ab, (cf. [10, Example 4.4]). IN (SAb) agrees with the

class of perfect groups, i.e., X ∈ IN (SAb) iff X = X ′, where X ′ denotes the subgroup generated

by the commutators. Finally, (DN ◦ JN )(IN (SAb)) is the class of all groups which do not have

any non-trivial perfect subgroup.

EXAMPLE 4.3

Let X be the category Ab and let N = M be the class of al monomorphisms in Ab. Let

(T ,F) be a torsion theory. Clearly, T and F are corresponding fixed points of the Galois con-

nection (∆′
N ,∇′

N ) of Theorem 2.5. Let X ∈ Ab and let X
rX−→ rX be its F -reflection. For

every subobject M
m
−→ X consider the closure operator C defined by M

C

= M + Ker(rX). In

particular, if (T ,F) = (Torsion,Torsion-free), then we obtain the closure operator C1 defined by

M
C1

= M + Tor(X), where Tor(X) denotes the torsion subgroup of X . If (T ,F) = (Divisi-

ble,Reduced), then we obtain the closure operator C2 defined by M
C2

= M + Div(X), where

Div(X) denotes the largest divisible subgroup of X . Clearly, IN (C1) consists of all torsion

abelian groups and IN (C2) consists of all divisible abelian groups. Consequently torsion free

abelian groups form the N -disconnectedness class of C1 and reduced abelian groups form the

N -disconnectedness class of C2.

Here we conclude with two examples that show that in those cases in which the above concept

of N -dependent does not agree with the classical notion of constant function, we obtain some new

Galois correspondences and some unusual disconnectedness classes.

EXAMPLE 4.4

Consider the category Top of topological spaces with M consisting of all embeddings and

N all nonempty clopen subsets. If A is the class Discr of discrete topological spaces, then for

every M-subobject of X ∈ Top, MTN (A) = ∩{f−1(f(M)) : X
f

−→ Y, Y discrete }. Conse-

quently, IN (TN (A)) = {X : for every non-empty clopen subset M ⊆ X, MTN (A) = X} = {X :

for every non-empty clopen M ⊆ X, X
f

−→ Y and Y discrete , f(X) = f(M)}. It was shown in

[8, Example 3.18] that IN (TN (A)) is the class Conn of connected topological spaces. Clearly,

JN (Conn) is the discrete closure and DN (JN (Conn)) = Top. Using the properties of Galois
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connections we obtain that IN (TN (Top)) = Conn. This is clearly different from the classical

correspondence between connected and totally disconnected topological spaces.

Moreover, we also observe that if A is a class of connected topological spaces, then TN (A)

is the indiscrete closure and clearly IN (TN (A)) = Top. On the other hand, if B=Top, and N

is a non-empty clopen subset of X , then using the morphism X
idX−→ X , from Proposition 2.3,

we obtain that NJN (B) = X . Consequently, X ∈ DN (JN (B)) if and only if for every non-empty

clopen subset N of X , N = NJN (B) = X , i.e., DN (JN (B)) consists of all connected topological

spaces.

In conclusion, we obtain the pairs of fixed points: (Conn,Top) and (Top,Conn). In this

last case Conn turns out to be a disconnectedness class.

EXAMPLE 4.5

Consider the category Grp of groups.

(a). Let N consist of all inclusions of normal subgroups. Notice that in this case, X
f

−→ Y

is N -dependent if and only if f is constant in the classical sense.

Let Sim denote the subcategory of simple groups, i.e., all those groups that have no nontrivial

normal subgroups. Consider the closure operator that to each subgroup of M ≤ X associates the

intersection of all non-zero normal subgroups K of X such that M ≤ K. Clearly we have that

IN (C) = Sim and DN (JN (Sim)) = Simfree, i.e., the subcategory of all groups that have no

simple subgroup different from zero. Thus, Simfree is the (C,N )-disconnectedness class (cf. [6,

Example 2.24]).

(b). Let N be the class of all normal subgroups different from zero. Notice that in this

case, N -dependent does not mean constant since any non-constant homomorphism with domain

a simple group is N -dependent.

If C is the indiscrete closure operator, then IN (C) = Grp. Now let B= Grp and let Y ∈

DN (JN (B)). Consider a normal subgroup N of Y different from zero. Clearly using the morphism

Y
idY−→ Y , from Proposition 2.3 we obtain that NJN (B) = Y . However, if Y ∈ DN (JN (B)), then

we must have that NJN (B) = N . So, N = Y , that is Y is a simple group. Now, if Y is simple,

then any N -subobject of Y is JN (B)-closed by default, since the only normal subgroup of Y

different from zero is Y itself. In conclusion, DN (JN (B)) = Sim. Thus Sim is the (C,N )-

disconnectedness class.
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