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0 INTRODUCTION

In FTS several connectedness concepts have been introduced (e.g., [12], [17], [19], [20], [24] and

[25]). Using results obtained in [3-5], a general notion of connectedness with respect to a closure

operator C on an (E,M)-category X and to a subclass N of M was introduced in [6]. It was

shown that most of the properties of topological connectedness can be generalized to this setting.

Moreover, under certain mild assumptions on X and N , this notion of connectedness can be

described by means of constant morphisms.

In this paper we apply the above notion of connectedness to produce further connectedness

notions in FTS. All these new notions are of Preuß type, i.e., they can be described by means of

constant morphisms (cf. [21-23]). As a consequence of the general theory developed in [6], most

of the properties of topological connectedness are satisfied with respect to the closure operator

that induces a given connectedness. Some already existing connectedness notions in FTS are

obtained as particular cases of our approach. In particular, D-connectedness defined in [19] arises

from a rather natural closure operator.

We use the categorical terminology of [1] throughout the paper.
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1 PRELIMINARIES

As usual I denotes the closed unit interval [0, 1]. If X is any set and α ∈ I, then α will also

be used to denote the constant function from X into I with value α. The notion of a fuzzy

topological space used in this paper is the one due to Lowen [14]:

A pair (X, τ), where X is a set and τ is contained in IX , is called a fuzzy topological space

(and τ is called a fuzzy topology on X) if:

(i) α ∈ τ for each α ∈ I

(ii) {Wi : i ∈ I} ⊆ τ ⇒ ∨{Wi : i ∈ I} ∈ τ

(iii) W1, W2 ∈ τ ⇒ W1 ∧ W2 ∈ τ .

If X
f

−→ Y is a function, and X
U
−→ I and Y

V
−→ I are fuzzy sets, then the fuzzy set

f−1(V ) : X −→ I is defined by f−1(V ) = V ◦ f , and f(U) : Y −→ I is defined as follows:

f(U)(y) =

{

sup{U(x) : x ∈ f−1(y)}, if f−1(y) 6= ∅;
0, if f−1(y) = ∅.

If (X, τ) and (Y, σ) are fuzzy topological spaces, then a function (X, τ)
f

−→ (Y, σ) is said to

be fuzzy continuous provided that f−1(V ) ∈ τ whenever V ∈ σ. The notation FTS will denote

the category of fuzzy topological spaces and fuzzy continuous functions.

The category FTS has initial structures [15]: if {(Xi, τi)}I is a family of fuzzy topological

spaces, and for each i ∈ I we have a function X
fi
−→ Xi, then the fuzzy topology τ on X which is

initial with respect to (X
fi
−→ (Xi, τi))I has as subbasis {f−1

i (Ui) : i ∈ I, Ui ∈ τi}. (The notion

of subbasis for a fuzzy topology is analogous to the corresponding notion in ordinary topology.)

If {(Xi, τi)}I is a family of fuzzy topological spaces, then their product is the fuzzy topological

space Π(Xi, τi) = (ΠXi, τ), where ΠXi is the ordinary cartesian product of the sets Xi, and τ

is the initial fuzzy topology with respect to the family of projections (ΠXi
πi−→ (Xi, τi))I . Note

that Π(Xi, τi) is actually the categorical product in FTS.

For more information about fuzzy sets and the category FTS, the reader could consult [18].

Given a subset M of (X, τ) ∈ FTS, the initial fuzzy topology on M with respect to the

inclusion M
m
−→ X will be called the relative fuzzy topology on M .

From now on, M will denote the class of all morphisms (M, σ)
m
−→ (X, τ) in FTS where

M
m
−→ X is an injective function and σ is the relative fuzzy topology induced by m. Notice that

since there is a bijective correspondence between subsets of X and subobjects of (X, τ) with the

relative fuzzy topology, we will often make no distiction between the subset M and the subobject

(M, σ), where σ is the relative fuzzy topology.

We recall that a sink ((Xi, τi)
fi
−→ (Yi, σi))I is an epi-sink if ∪{fi(Xi)} = Y . Let E denote

the class of all epi-sinks in FTS. It is easy to verify that FTS is an (E,M)-category for sinks.
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DEFINITION 1.1

A closure operator C on FTS is a family {( )
C

(X,τ)
}

(X,τ)∈FTS
of functions on the M-subobject

lattices with the following properties which hold for every (X, τ) ∈ FTS:

(a) M ⊆ M
C

(X,τ)
for every subobject M of (X, τ)

(b) M ⊆ N ⇒ M
C

(X,τ)
⊆ N

C

(X,τ)
for every pair of subobjects M, N of (X, τ)

(c) For every subobject N of (Y, σ) and FTS-morphism (X, τ)
f

−→ (Y, σ), (f−1(N))
C

(X,τ)
⊆

f−1(N
C

(Y,σ)
).

We say that the subobject M of (X, τ) is C-closed if M ≃ M
C

(X,τ)
. M

C

(X,τ)
is called the

C-closure of M . We call C idempotent provided that for every (X, τ) ∈ FTS, M
C

(X,τ)
is C-closed

for every subset M of (X, τ).

The subscripts or superscripts in ( )
C

(X,τ)
will be omitted when no confusion is possible.

For more background on closure operators see, e.g., [2], [7], [8], [9], [10] and [13]. For a

detailed survey on the same topic, one could check [11].

Given a function X
U
−→ I, Supp(U) denotes the subset of X consisting of all x ∈ X such

that U(x) 6= 0 and coU will denote the complement of U , that is the function 1−U . If X
U
−→ I

and X
V
−→ I are two functions, we recall that U ≤ V means that for every x ∈ X , U(x) ≤ V (x).

Notice that any subset M of (X, τ) ∈ FTS can be seen as a fuzzy set via its characteristic

function, i.e., the function X
1M−→ I that to each x ∈ M associates 1 and 0 otherwise. fcl(1M)

will denote the fuzzy closure of 1M , that is, fcl(1M) = ∧{X
U
−→ I : 1M ≤ U and coU ∈ τ}. We

say that 1M is closed if 1M = fcl(1M ). ∨{X
U
−→ I : U ≤ V and U ∈ τ}.

2 CONNECTEDNESS IN FTS

We recall that in [6], Definition 2.5, a notion of connectedness with respect to a closure operator

C on an (E,M)-category for sinks X , was introduced. This notion was also dependent on a

subclass N of M. It was given the name of (C,N )-connectedness. All this was made possible

using techniques and results developed in [3-5].

Set DN (C) = {X ∈ X : every n ∈ NX is C-closed}. We say that an object X is (C,N )-

discrete if X ∈ DN (C). We also recall from [3] that an X -morphism X
f

−→ Y is called N -constant

if f factors through the image under f of any N -subobject of X.

It was proved in [6, Lemma 3.1] that under certain assumptions on the category X and on

the subclass of morphisms N , the notion of (C,N )-connectedness could be described in terms of

the notion of N -constant morphism. We recall that the needed assumptions were:
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ASSUMPTIONS 2.1

(a) X has a terminal object T ;

(b) N is closed under the formation of direct images and any morphism with domain T belongs

to N ;

(c) T is an M-subobject of every element of N .

For the rest of the paper we will assume that in FTS, N consists of all M
m
−→ X with

m ∈ M and M 6= ∅.

Notice that in this case the notion of N -constant morphism in FTS simply agrees with the

classical notion of constant function.

We observe that FTS has a terminal object (T, τ), where T is a singleton set and τ =

{T
α

−→ I}α∈I . Clearly, Assumptions 2.1 are satisfied. Consequently, from the above we obtain

the following:

DEFINITION 2.2

Given a closure operator C on FTS, we say that X ∈ FTS is C-connected if for every

Y ∈ DN (C), every morphism X
f

−→ Y is constant.

Notice that in the above definition the reference to N was omitted since only one specific

class N will be considered throughout the paper.

PROPOSITION 2.3

Let α ∈ [0, 1). The function cα that to each subset M of (X, τ) ∈ FTS, associates the subset

cα(M) = (fcl(1M))−1(α, 1] is a closure operator on FTS.

Proof:

We need to show that the conditions of Definition 1.1 are satisfied.

(a). If x ∈ M , then every X
U
−→ I that occurs in the construction of cα(M) satisfies

U(x) = 1. Consequently so does the infimum of all of them. Therefore x ∈ cα(M).

(b). Let M ⊆ N ∈ (X, τ). Notice that since 1M ≤ 1N , we have that every X
U
−→ I that

occurs in the construction of cα(N) also occurs in the construction of cα(M). So, by taking the

infimum we obtain that fcl(1M) ≤ fcl(1N). Consequently, we have that cα(M) ⊆ cα(N).

(c). Let (X, τ)
f

−→ (Y, σ) be fuzzy continuous and let N ⊆ Y . We have that 1N ≤ ∧{Y
U
−→

I : 1N ≤ U and coU ∈ σ}. Now, 1f−1(N) = f−1(1N ) ≤ f−1(∧{Y
U
−→ I : 1N ≤ U and coU ∈ σ}.

Since f is fuzzy continuous, we have that fcl(f−1(1N )) = ∧{X
V
−→ I : 1f−1(N) ≤ V and coV ∈

τ} ≤ f−1(fcl(1N)) = f−1(∧{Y
U
−→ I : 1N ≤ U and coU ∈ σ}). So, let x ∈ cα(f−1(N)). Then,

∧{X
U
−→ I : 1f−1(N) ≤ U and coU ∈ τ}(x) > α and from the above inequality, also f−1(∧{Y

U
−→

I : 1N ≤ U and coU ∈ σ}(x) > α. Therefore, ∧{Y
U
−→ I : 1N ≤ U and coU ∈ σ}(f(x)) > α,
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that is f(x) ∈ cα(N). So, we conclude that x ∈ f−1(cα(N)).

REMARK 2.4

(a) We observe that the closure operator cα is not idempotent for any α ∈ [0, 1). As a matter

of fact, given α ∈ [0, 1), choose β > 0 such that β < 1 − α. Let X = {a, b, c}, and let τ

be the fuzzy topology on X with the following collection as subbasis: {γ : γ ∈ I} ∪ {u, v},

where u(a) = 0, u(b) = β, u(c) = 1 and v(a) = 0, v(b) = 0, v(c) = β. Clearly, 1− u and 1− v

are fuzzy closed sets in (X, τ). Now, fcl(1{a}) = ∧{w : 1 − w ∈ τ and w(a) = 1} = 1 − u.

So, (fcl(1{a}))
−1(α, 1] = {a, b}, since 1 − u(b) = 1 − β > α. Also, fcl(1{a,b}) = 1 − v, so

(fcl(1{a,b}))
−1(α, 1] = {a, b, c}.

(b) Notice that if in the above proposition we choose α = 0 then we obtain as a special case

that the function cl1 that to each subset M of (X, τ) ∈ FTS, associates the subset cl1(M) =

Supp(∧{X
U
−→ I : 1M ≤ U and coU ∈ τ}) is a non-idempotent closure operator on FTS.

We recall from [26] the following:

DEFINITION 2.5

For α ∈ [0, 1), we define a concrete functor FTS
Fα−→ Top as follows: if (X, τ) ∈ FTS, then

Fα(X, τ) = (X, Fατ), where Fατ = {M ⊆ X : 1M ∧ α ∈ τ}.

LEMMA 2.6

Suppose that α ∈ [0, 1). Let (X, τ) ∈ FTS and let M ⊆ X . Then we have that M = cα(M)

if and only if 1X−M ∧ (1 − α) ∈ τ .

Proof:

(⇒). If M = (fcl(1M ))−1(α, 1], then 1M ∨α = fcl(1M )∨α = fcl(1M ∨α) and so 1− (1M ∨

α) = 1X−M ∧ (1 − α) ∈ τ .

(⇐). 1X−M ∧ (1 − α) ∈ τ implies that 1M ∨ α is closed in (X, τ). Hence, 1M ∨ α =

fcl(1M ∨ α) = fcl(1M ) ∨ α. Now, M = 1−1
M (α, 1] = (1M ∨ α)−1(α, 1] = (fcl(1M) ∨ α)−1(α, 1] =

(fcl(1M ))−1(α, 1] = cα(M).

PROPOSITION 2.7

Let α ∈ [0, 1) and let (X, τ) ∈ FTS. The following are equivalent:

(a) (X, τ) is cα-discrete;

(b) (X, F1−ατ) is discrete.
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Proof:

(a)⇒(b). If ∅ 6= M ⊆ X , then cα(X − M) = X − M . Hence, from the previous lemma we

have that 1M ∧ (1 − α) ∈ τ and so M ∈ F1−ατ .

(b)⇐(a). If ∅ 6= M ⊆ X , then X − M ∈ F1−ατ , so 1X−M ∧ (1 − α) ∈ τ . Again from the

previous lemma we obtain that M = cα(M).

PROPOSITION 2.8

Let α ∈ [0, 1) and let (X, τ) ∈ FTS. The following are equivalent:

(a) (X, τ) is cα-connected;

(b) (X, F1−ατ) is connected.

Proof:

(a)⇒(b). Suppose that (X, F1−ατ)
f

−→ (D, δ) is continuous, where D = {0, 1} and δ is

the discrete topology on D. Let δ′ be the fuzzy topology on D that has as subbasis {γ : γ ∈

I} ∪ {1{0} ∧ (1 − α), 1{1} ∧ (1 − α)}. Now, (D, δ′) is cα-discrete because F1−αδ′ = δ. Then,

(X, τ)
f

−→ (D, δ′) is fuzzy continuous for f−1(1{0} ∧ (1 − α)) = 1f−1({0}) ∧ (1 − α) ∈ τ , since

f−1({0}) ∈ F1−ατ . Similarly, f−1(1{1}) ∧ (1 − α)) ∈ τ . Hence f is constant.

(b)⇒(a). Suppose that (X, τ)
f

−→ (Y, σ) is fuzzy continuous and (Y, σ) is cα-discrete. Then

(X, F1−ατ)
f

−→ (Y, F1−ασ) is continuous and from Proposition 2.7 (Y, F1−ασ) is discrete. Con-

sequently, f is constant.

Consequently we obtain the following characterization of cα-connectedness:

THEOREM 2.9

Let α ∈ [0, 1) and let (X, τ) ∈ FTS. The following are equivalent:

(a) (X, τ) is cα-connected;

(b) There does not exist a nonempty subset M of X such that 1M ∧ (1 − α) ∈ τ and 1X−M ∧

(1 − α) ∈ τ .

REMARK 2.10

(a) Lowen and Srivastava ([19, Definition 2.1]) gave the following definition: for (X, τ) ∈ FTS

and α ∈ (0, 1], (X, τ) is 2α-connected if there does not exist a non-empty proper subset

A ⊆ X such that {α∧1A, α∧1X−A} ⊆ τ . It easily follows from Proposition 2.8 and from [19,

Proposition 2.1] that our notion of cα-connectedness agrees with that of 21−α-connectedness.

(b) As already observed in Remark 2.4(b), c0 = cl1. Consequently, from the above theorem we

obtain the following: (X, τ) is cl1-connected if and only if there does not exist a nonempty
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subset M of X such that 1M ∈ τ and 1X−M ∈ τ .

PROPOSITION 2.11

Let α ∈ I. The function kα that to each subset M of (X, τ) ∈ FTS, associates the subset

kα(M) = ∩{ω−1[1− α, 1] : ω is closed in (X, τ) and M ⊆ ω−1[1 − α, 1]} is a closure operator on

FTS.

Proof:

We need to show that the conditions of Definition 1.1 are satisfied.

(a). This is straightforward.

(b). Let M ⊆ N be subsets of (X, τ). Notice that every X
ω

−→ I that occurs in the

construction of kα(N) also occurs in the construction of kα(M). So, by taking the intersection

we obtain that kα(M) ⊆ kα(N).

(c). Let (X, τ)
f

−→ (Y, σ) be fuzzy continuous and let N ⊆ Y . Suppose that x 6∈ f−1(kα(N)).

Then f(x) 6∈ kα(N) and so there is a function Y
ω

−→ I, closed in (Y, σ), such that N ⊆ ω−1[1 −

α, 1] and f(x) 6∈ ω−1[1−α, 1], i.e., ω(f(x)) < 1−α. Now set ν = ω ◦ f . Notice that ν is closed in

(X, τ) since ν = f−1(ω). Now, the fact that ν(x) = ω(f(x)) < 1−α implies that x 6∈ ν−1[1−α, 1].

However, f−1(N) ⊆ ν−1[1 − α, 1], in fact if x ∈ f−1(N) then f(x) ∈ N ⊆ ω−1[1 − α, 1] and

so ν(x) = ω(f(x)) ≥ 1 − α. Thus, x 6∈ ∩{ν−1[1 − α, 1] : ν is closed in (X, τ) and f−1(N) ⊆

ν−1[1 − α, 1]} = kα(f−1(N)).

REMARK 2.12

Notice that if in the above proposition we choose α = 0 then we obtain as a special case

the function cl2 that to each subset M of (X, τ) ∈ FTS, associates the subset cl2(M) = {x :

fcl(1M )(x) = 1}.

We recall from [16] the following:

DEFINITION 2.13

For α ∈ [0, 1), we define a concrete functor FTS
ια−→ Top as follows: if (X, τ) ∈ FTS,

then ια(X, τ) = (X, ιατ), where ιατ is initial with respect to (X
u

−→ (I, {I, ∅, (α, 1]}))u∈τ , i.e.,

ιατ = {u−1(α, 1] : u ∈ τ}.

REMARK 2.14

Let (X, τ) ∈ FTS and α ∈ I. Then for each M ⊆ X there exists a closed ω ∈ (X, τ) such

that ω−1[1 − α, 1] = kα(M). Consequently, kα is an idempotent closure operator.

The proof of the following lemma is quite easy, so we omit it.
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LEMMA 2.15

For all fuzzy sets X
ω

−→ I and α ∈ [0, 1), we have:

(a) X − ω−1[1 − α, 1] = (1 − ω)−1(α, 1];

(b) (1 − ω)−1[1 − α, 1] = ω−1[0, α];

(c) X − ω−1(α, 1] = (1 − ω)−1[1 − α, 1].

PROPOSITION 2.16

Let α ∈ [0, 1) and let (X, τ) ∈ FTS. The following are equivalent:

(a) (X, τ) is kα-discrete;

(b) (X, ιατ) is discrete.

Proof:

(a) ⇒ (b). If ∅ 6= M ⊆ X , then M = kα(M), so X − M = X − ω−1[1 − α, 1] for some

closed ω in (X, τ) (cf. Remark 2.14). Hence, from the previous lemma we have that X − M =

(1 − ω)−1(α, 1] ∈ ιατ . The result follows since M is arbitrary.

(b) ⇒ (a). Choose ∅ 6= M ⊆ X . Then X − M ∈ ιατ and so X − M = ν−1(α, 1] for some

ν ∈ τ . Hence, again from the previous lemma, M = (1 − ν)−1[1 − α, 1], and so, from Remark

2.14, M = kα(M).

THEOREM 2.17

Let α ∈ [0, 1) and let (X, τ) ∈ FTS. The following are equivalent:

(a) (X, τ) is kα-connected;

(b) there does not exist a family {uj}j∈J ⊆ τ of cardinality greater than one with the following

properties:

(i) u−1
j (α, 1] 6= ∅ for all j ∈ J ;

(ii) u−1
j (α, 1] ∩ u−1

k (α, 1] = ∅ if and only if j 6= k;

(iii)
⋃

j∈J

u−1
j (α, 1] = X ;

(iv) {x, y} ⊆ u−1
j (α, 1] for some j ∈ J implies that uk(x) = uk(y) for all k ∈ J .

Proof:

(a) ⇒ (b). Suppose that there exists a family {uj}j∈J with the stated properties. Define an

equivalence relation ∼ on X as follows:

x ∼ y ⇔ {x, y} ⊆ u−1
j (α, 1] for some j ∈ J

.
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Let X
q

−→ X/∼ denote the canonical surjective function. For each j ∈ J define X/∼
vj

−→ I

by vj([x]) = uj(x). vj is well defined by (iv). Let σ denote the fuzzy topology on X/∼ with

{γ : γ ∈ I}∪{vj : j ∈ J} as a subbasis. Then (X, τ)
q

−→ (X/∼, σ) is fuzzy continuous, surjective

and (X/∼, σ) is kα-discrete. Since X/∼ has cardinality geater than one, it follows that q is not

constant.

(b) ⇒ (a). Suppose that (X, τ) is not kα-connected. Then there exists a surjective fuzzy

continuous function (X, τ)
f

−→ (D, δ′) with |D| > 1 and (D, δ′) kα-discrete. If we chose any

d ∈ D, then {d} ∈ ιαδ′ and so {d} = v−1
d (α, 1] for some vd ∈ δ′. Since f is fuzzy continuous we

have that ud = f−1(vd) ∈ τ . Then, {ud}d∈D has the required properties.

PROPOSITION 2.18

Let α ∈ (0, 1]. The function dα that to each subset M of (X, τ) ∈ FTS, associates the

subset dα(M) = (fcl(1M ∧ α))−1(0, 1] is a closure operator on FTS.

Proof:

We need to show that the conditions of Definition 1.1 are satisfied.

(a). This is clear.

(b). Let M ⊆ N be subsets of (X, τ). Then, 1M∧α ≤ 1N∧α and so fcl(1M∧α) ≤ fcl(1N∧α).

Consequently, dα(M) = (fcl(1M ∧ α))−1(0, 1] ⊆ (fcl(1N ∧ α))−1(0, 1] = dα(N).

(c). Let (X, τ)
f

−→ (Y, σ) be fuzzy continuous and let N ⊆ Y . Now first observe that if

Y
γ

−→ I is such that 1N ∧α ≤ γ and 1−γ ∈ σ, then ω = γ◦f = f−1(γ) satisfies 1−ω ∈ τ , since f

is fuzzy continuous. Moreover, 1f−1(N)∧α ≤ ω. In fact, if z ∈ f−1(N), then (1f−1(N)∧α)(z) = α.

Since f(z) ∈ N , (1N ∧α)(f(z)) = α and so ω(z) = γ(f(z)) ≥ α. On the other side, if z 6∈ f−1(N)

then 1f−1(N)(z) = 0. Thus, (1f−1(N) ∧ α)(z) = 0 and clearly ω(z) ≥ 0. So, (1f−1(N) ∧ α) ≤ ω.

Now we obtain that fcl(1f−1(N) ∧ α) = ∧{X
ω

−→ I : 1f−1(N) ∧ α ≤ ω and 1 − ω ∈ τ} ≤

∧{ω = γ ◦ f with Y
γ

−→ I : 1N ∧ α ≤ γ and 1 − γ ∈ σ} = ∧{f−1(γ) : Y
γ

−→ I with 1N ∧ α ≤

γ and 1 − γ ∈ σ} = f−1(∧{Y
γ

−→ I : 1N ∧ α ≤ γ and 1 − γ ∈ σ}) = f−1(fcl(1N ∧ α)). This

clearly implies that dα(f−1(N)) ≤ f−1(dα(N)).

REMARK 2.19

Notice that the closure operator dα is not idempotent for any α ∈ (0, 1]. As a matter of fact,

let X = {a, b, c}, let α ∈ (0, 1] and choose γ ∈ (0, 1) with 1−α < γ. Let τ be the fuzzy topology

on X which has the collection {β : β ∈ I} ∪ {u, v} as a subbasis, where u(a) = 1 − α, u(b) = γ,

u(c) = 1; v(a) = v(b) = 1 − α, v(c) = γ. Now, fcl(1{a} ∧ α) = 1 − u, so dα({a}) = {a, b}. Also,

fcl(1{a,b} ∧ α) = 1 − v, so dα({a, b}) = X .

9



LEMMA 2.20

Let α ∈ (0, 1] and (X, τ) ∈ FTS. If M ⊆ X , then M = dα(M) ⇔ 1X−M ∨ (1 − α) ∈ τ .

Proof:

(⇒). Suppose that M = dα(M). Then (fcl(1M ∧ α))(x) = 0 if x 6∈ M . Now, 1M ∧ α ≤

(fcl(1M ∧ α)) ≤ α, and since (1M ∧ α)(x) = α if x ∈ M , it follows that (fcl(1M ∧ α))(x) = α if

x ∈ M . Hence 1M ∧ α = (fcl(1M ∧ α)). Consequently, 1 − (1M ∧ α) = 1X−M ∨ (1 − α) ∈ τ .

(⇐). If 1X−M ∨ (1 − α) ∈ τ then 1M ∧ α = (fcl(1M ∧ α)). Hence M = (1M ∧ α)−1(0, 1] =

(fcl(1M ∧ α))−1(0, 1] = dα(M).

REMARK 2.21

Clearly we have that d1 = c0.

DEFINITION 2.22

For α ∈ (0, 1], we define a concrete functor FTS
Gα−→ Top as follows: if (X, τ) ∈ FTS, then

Gα(X, τ) = (X, Gατ), where Gατ = {M ⊆ X : 1M ∨ α ∈ τ}.

PROPOSITION 2.23

Let α ∈ (0, 1] and let (X, τ) ∈ FTS. The following are equivalent:

(a) (X, τ) is dα-discrete;

(b) (X, G1−ατ) is discrete.

Proof:

(a) ⇒ (b). If ∅ 6= M ⊆ X , then X−M = dα(X−M). So, from Lemma 2.20, 1M∨(1−α) ∈ τ ,

and then M ∈ G1−ατ .

(b) ⇒ (a). If ∅ 6= M ⊆ X , then M is closed in (X, G1−ατ), so 1X−M ∨ (1 − α) ∈ τ , which

means that M = dα(M).

PROPOSITION 2.24

Let α ∈ (0, 1] and let (X, τ) ∈ FTS. The following are equivalent:

(a) (X, τ) is dα-connected;

(b) (X, G1−ατ) is connected.

Proof:

(a) ⇒ (b). Given that (X, τ) is dα-connected, suppose that (X, G1−ατ)
f

−→ (D, δ) is con-

tinuous, where D = {0, 1} and δ is the discrete topology on D. Let δ′ be the fuzzy topology on

D that has {ν : ν ∈ I} ∪ {u0, u1} as a subbasis, where u0(0) = 1, u0(1) = 1 − α, u1(0) = 1 − α
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and u1(1) = 1. Now, (D, δ′) is d1−α-discrete, for {i} ∈ G1−αδ′ since 1{i} ∨ (1 − α) = ui ∈ δ′, for

i = 0, 1 (cf. Proposition 2.23). Also, (X, τ)
f

−→ (D, δ′) is fuzzy continuous, since for i = 0, 1 we

have that f−1({i}) ∈ G1−ατ and so f−1(ui) = 1f−1({i}) ∨ (1 − α) ∈ τ . Hence f is constant.

(b) ⇒ (a). If (X, G1−ατ) is connected and (X, τ)
f

−→ (D, δ) is fuzzy continuous, with (D, δ)

being d1−α-discrete, then (X, G1−ατ)
f

−→ (D, G1−αδ) is continuous and (D, G1−αδ) is discrete,

and so f is constant.

Hence we obtain the following characterization of dα-connectedness:

THEOREM 2.25

Let α ∈ (0, 1] and let (X, τ) ∈ FTS. The following are equivalent:

(a) (X, τ) is dα-connected;

(b) there does not exist a nonempty proper subset M of X with 1M ∨ (1 − α) ∈ τ and 1X−M ∨

(1 − α) ∈ τ .

PROPOSITION 2.26

Let α ∈ [0, 1). The function eα that to each subset M of (X, τ) ∈ FTS, associates the subset

eα(M) = ∩{v−1(α, 1] : v is closed in (X, τ) and M ⊆ v−1(α, 1]} is a closure operator on FTS.

Proof:

We need to show that the conditions of Definition 1.1 are satisfied.

(a). This is straightforward.

(b). Let M ⊆ N be subsets of (X, τ). Notice that every X
ω

−→ I that occurs in the

construction of eα(N) also occurs in the construction of eα(M). So, by taking the intersection

we obtain that eα(M) ⊆ eα(N).

(c). Let (X, τ)
f

−→ (Y, σ) be fuzzy continuous and let N ⊆ Y . Suppose that x 6∈ f−1(eα(N)).

Then f(x) 6∈ eα(N) and so there is a function Y
ω

−→ I, closed in (Y, σ), such that N ⊆ ω−1(α, 1]

and f(x) 6∈ ω−1(α, 1], i.e., ω(f(x)) < α. Now set ν = ω ◦ f . Notice that ν is closed in (X, τ)

since ν = f−1(ω). Now, the fact that ν(x) = ω(f(x)) < α implies that x 6∈ ν−1(α, 1]. However,

f−1(N) ⊆ ν−1(α, 1], in fact if x ∈ f−1(N) then f(x) ∈ N ⊆ ω−1(α, 1] and so ν(x) = ω(f(x)) > α.

Thus, x 6∈ ∩{ν−1(α, 1] : ν is closed in (X, τ) and f−1(N) ⊆ ν−1(α, 1]} = eα(f−1(N)).

REMARK 2.27

It is easy to verify that the closure operator eα is idempotent.
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DEFINITION 2.28

For α ∈ [0, 1), we define a concrete functor FTS
Hα−→ Top as follows: if (X, τ) ∈ FTS, then

Hα(X, τ) = (X, Hατ), where Hατ has as a basis the set {u−1[1 − α, 1] : u ∈ τ}.

PROPOSITION 2.29

Let α ∈ [0, 1) and let (X, τ) ∈ FTS. The following are equivalent:

(a) (X, τ) is eα-discrete;

(b) (X, Hατ) is discrete.

Proof:

(a) ⇒ (b). If M ⊆ X , then X − M = eα(X − M), so X − M = ∩{v−1(α, 1] : v

is closed in (X, τ) and X − M ⊆ v−1(α, 1]}. Hence M = ∪{(1 − v)−1[1 − α, 1] : v

is closed in (X, τ) and X − M ⊆ v−1(α, 1]} ∈ Hατ .

(b) ⇒ (a). If M ⊆ X , then X − M ∈ Hατ and so X − M = ∪u−1
i [1− α, 1] for some ui ∈ τ ,

i ∈ I. Hence M = ∩(1 − ui)
−1(α, 1] and so M = eα(M).

The proof of the following result is very similar to the one of Proposition 2.17, so we omit

it.

THEOREM 2.30

Let α ∈ [0, 1) and let (X, τ) ∈ FTS. The following are equivalent:

(a) (X, τ) is eα-connected;

(b) there does not exist a family {uj}j∈J ⊆ τ of cardinality greater than one with the following

properties:

(i) u−1
j [1 − α, 1] 6= ∅ for all j ∈ J ;

(ii) u−1
j [1 − α, 1] ∩ u−1

k [1 − α, 1] = ∅ if and only if j 6= k;

(iii)
⋃

j∈J

u−1
j [1 − α, 1] = X ;

(iv) {x, y} ⊆ u−1
j [1 − α, 1] for some j ∈ J implies that uk(x) = uk(y) for all k ∈ J .

PROPOSITION 2.31

Let α ∈ (0, 1]. The function lα that to each subset M of (X, τ) ∈ FTS, associates the subset

lα(M) = (fcl(1M ))−1[α, 1] is a closure operator on FTS.

Proof:

We need to show that the conditions of Definition 1.1 are satisfied.

(a). This is clear.
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(b). Let M ⊆ N be subsets of (X, τ). Then, 1M ≤ 1N and so fcl(1M) ≤ fcl(1N).

Consequently, lα(M) = (fcl(1M ))−1[α, 1] ⊆ (fcl(1N))−1[α, 1] = lα(N).

(c). Let (X, τ)
f

−→ (Y, σ) be fuzzy continuous and let N ⊆ Y . Now first observe that if

Y
γ

−→ I is such that 1N ≤ γ and 1 − γ ∈ σ, then ω = γ ◦ f = f−1(γ) satisfies 1 − ω ∈ τ and

1f−1(N) ≤ ω. In fact, if z ∈ f−1(N), then (1f−1(N))(z) = 1. Since f(z) ∈ N , (1N )(f(z)) = 1

and so ω(z) = γ(f(z)) = 1. On the other side, if z 6∈ f−1(N) then 1f−1(N)(z) = 0 and clearly

ω(z) ≥ 0. So, 1f−1(N) ≤ ω. Now we obtain that fcl(1f−1(N)) = ∧{X
ω

−→ I : 1f−1(N) ≤

ω and 1 − ω ∈ τ} ≤ ∧{ω = γ ◦ f with Y
γ

−→ I : 1N ≤ γ and 1 − γ ∈ σ} = ∧{f−1(γ) : Y
γ

−→

I with 1N ≤ γ and 1 − γ ∈ σ} = f−1(∧{Y
γ

−→ I : 1N ≤ γ and 1 − γ ∈ σ}) = f−1(fcl(1N)).

This clearly implies that lα(f−1(N)) ≤ f−1(lα(N)).

REMARK 2.32

The same example in Remark 2.4(a) shows that the closure operator lα is not idempotent.

In fact, lα({a}) = {a, b} and lα({a, b}) = X .

PROPOSITION 2.33

For α ∈ (0, 1], the function FTS
Pα−→ Top defined as follows: if (X, τ) ∈ FTS, then

Pα(X, τ) = (X, Pατ), where the topology Pατ has as a basis the set {M ⊆ X : (1M ∧ (1 − γ)) ∈

τ for some γ < α}, is a concrete functor.

Proof:

We check the action of Pα on morphisms. Suppose that (X, τ)
f

−→ (Y, σ) is fuzzy continuous.

It must be shown that (X, Pατ)
f

−→ (Y, Pασ) is continuous. Suppose that N ⊆ Y is such that

(1N ∧ (1 − γ)) ∈ σ for some γ < α. Now, 1f−1(N) ∧ (1 − γ) = f−1(1N ) ∧ f−1(1 − γ) =

f−1(1N ∧ (1 − γ)). This clearly belongs to τ by fuzzy continuity. Thus f−1(N) ∈ Pατ .

PROPOSITION 2.34

Let α ∈ (0, 1], (X, τ) ∈ FTS and M ⊆ X . The following are equivalent:

(a) M = lα(M);

(b) 1M ∨ γ is fuzzy closed for some γ < α;

(c) 1X−M ∧ (1 − γ) ∈ τ for some γ < α;

(d) X − M ∈ Pατ .

Proof:

(a)⇒(b). Suppose that M = (fcl(1M))−1[α, 1]. It is claimed that 1M ∨ γ = fcl(1M )∨ γ for

some γ < α. If x ∈ M then (1M ∨ β)(x) = (fcl(1M ) ∨ β)(x) = 1 for all β ∈ I. If x 6∈ M , then

(1M ∨ β)(x) = β for all β ∈ I. It follows from the initial assumption that fcl(1M )(x) < α, so
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taking (fcl(1M ))(x) = γ we get (fcl(1M ) ∨ γ)(x) = γ.

(b)⇒(a). If 1M ∨γ is fuzzy closed for some γ < α, then 1M ∨γ = fcl(1M ∨γ) = fcl(1M)∨γ.

It just needs to be shown that lα(M) ⊆ M . If x ∈ (fcl(1M ))−1[α, 1] then (fcl(1M))(x) ≥ α > γ.

Hence (fcl(1M ) ∨ γ)(x) = (1M ∨ γ)(x) > γ. Consequently 1M (x) = 1, i.e., x ∈ M .

(b)⇔(c). Clear.

(c)⇔(d). This follows from the definition of Pατ .

PROPOSITION 2.35

Let α ∈ (0, 1] and let (X, τ) ∈ FTS. The following are equivalent:

(a) (X, τ) is lα-discrete;

(b) (X, Pατ) is discrete.

Proof:

This follows easily from the equivalence of (a) and (d) of the previous proposition.

PROPOSITION 2.36

Let α ∈ (0, 1] and let (X, τ) ∈ FTS. The following are equivalent:

(a) (X, τ) is lα-connected;

(b) (X, Pατ) is connected.

Proof:

(a)⇒(b). Suppose that (X, Pατ)
f

−→ (D, δ) is continuous, where D = {0, 1} and δ is the

discrete topology on D. Now, f−1(0) ∈ Pατ , so 1f−1(0) ∧ β ∈ τ for some β > 1 − α. Similarly,

1f−1(1) ∧ λ ∈ τ for some λ > 1 − α. Let δ′ be the fuzzy topology on D which has as a subbasis

{γ : γ ∈ I} ∪ {1{0} ∧ λ, 1{1} ∧ β}. (D, δ′) is lα-discrete because Pαδ′ = δ. Also, (X, τ)
f

−→ (D, δ)

is fuzzy continuous since f−1(1{0} ∧ λ) = 1f−1(0) ∧ λ and f−1(1{1} ∧ β) = 1f−1(1) ∧ β. Thus f is

constant.

(b)⇒(a). Suppose that (X, τ)
f

−→ (Y, σ) is fuzzy continuous, where (Y, σ) is lα-discrete.

Then, (X, Pατ)
f

−→ (Y, Pασ) is continuous and (Y, Pασ) is discrete, and so f is constant.

As an easy consequence of Propositions 2.36 we obtain the following:

THEOREM 2.37

Let α ∈ (0, 1] and let (X, τ) ∈ FTS. The following are equivalent:

(a) (X, τ) is lα-connected;

(b) There exists no nonempty proper subset M of X with 1M ∧ λ ∈ τ for some λ > 1 − α, and

1X−M ∧ β ∈ τ for some β > 1 − α;
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(c) There exists no nonempty proper subset M of X with 1M ∧ µ ∈ τ and 1X−M ∧ µ ∈ τ for

some µ > 1 − α.

REMARK 2.38

We recall that in [19] a fuzzy topological space (X, τ) is called D-connected if it is 2α-

connected for each α ∈ (0, 1]. As already observed in Remark 2.10, each closure operator cα

defined in Proposition 2.3 yields the notion of 21−α-connectedness. It may be also worth noticing

that cl2 =
⋂

α∈[0,1)

cα. However, if we take α = 1 in Proposition 2.31, then we also obtain that cl2 = l1.

Consequently, from the above theorem we obtain that the closure operator cl2 yields exactly the

notion of D-connectedness.
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