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0 INTRODUCTION

Categorical closure operators have been used to generalize many classical topological notions to

arbitrary categories. A special type of closure operator was introduced by Salbany in [20]; and

has been used to characterize the epimorphisms in subcategories of an arbitrary category under

mild conditions. For specific examples see [12] and [4].

In this paper we use the Salbany-type closure operator to characterize the epimorphisms in

three categories of separated fuzzy topological spaces. The separation axioms thus considered

are the 0∗-T0-axiom of Wuyts and Lowen [22], the FTS-axiom of Ghanim, Kerre and Mashhour

[11], and the α-T2-axiom of Rodabaugh [19]. These axioms are analogues of the T0-, T1- and

T2-axioms, respectively, in ordinary topology.

Because of the very weak nature of the 0∗-T0-axiom, the characterization of the epimorphisms

in the corresponding category was by no means straightforward; and the relationship of this result

to that of Baron (cf. [3]) is not an obvious one.

The FTS case was a rather easy extension of the corresponding result for T1-topological

spaces (cf. [12]).

The task of characterizing the epimorphisms in the α-T2 case was simplified by the fact that

some of the necessary machinary was already available in [19].

1 The first author acknowledges a grant from the Research and Bursaries Committee of the University

of South Africa. He also would like to thank the Mayagüez campus of the University of Puerto Rico

for its hospitality while working on this paper.
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1 PRELIMINARIES

As usual I denotes the closed unit interval [0, 1]. If X is any set and α ∈ I, then α will also

be used to denote the constant function from X into I with value α. The notion of a fuzzy

topological space used in this paper is the one due to Lowen [14]:

A pair (X, τ), where X is a set and τ is contained in IX , is called a fuzzy topological space

(and τ is called a fuzzy topology on X) if:

(i) α ∈ τ for each α ∈ I

(ii) {Wi : i ∈ I} ⊆ τ ⇒ ∨{Wi : i ∈ I} ∈ τ

(iii) W1, W2 ∈ τ ⇒ W1 ∧ W2 ∈ τ .

If X
f

−→ Y is a function, and X
U
−→ I and Y

V
−→ I are fuzzy sets, then the fuzzy set

f−1(V ) : X −→ I is defined by f−1(V ) = V ◦ f , and f(U) : Y −→ I is defined as follows:

f(U)(y) =

{

sup{U(x) : x ∈ f−1(y)}, if f−1(y) 6= ∅;
0, if f−1(y) = ∅.

If (X, τ) and (Y, σ) are fuzzy topological spaces, then a function (X, τ)
f

−→ (Y, σ) is said

to be fuzzy continuous provided that f−1(V ) ∈ τ whenever V ∈ σ. The notation FTS will

denote the category of fuzzy topological spaces and fuzzy continuous functions. (We shall use

the categorical terminology of [1].)

The category FTS has initial structures [15]: if {(Xi, τi)}I is a family of fuzzy topological

spaces, and for each i ∈ I we have a function X
fi
−→ Xi, then the fuzzy topology τ on X which is

initial with respect to (X
fi
−→ (Xi, τi))I has as subbasis {f−1

i (Ui) : i ∈ I, Ui ∈ τi}. (The notion

of subbasis for a fuzzy topology is analogous to the corresponding notion in ordinary topology.)

If {(Xi, τi)}I is a family of fuzzy topological spaces, then their product is the fuzzy topological

space Π(Xi, τi) = (ΠXi, τ), where ΠXi is the ordinary cartesian product of the sets Xi, and τ

is the initial fuzzy topology with respect to the family of projections (ΠXi
πi−→ (Xi, τi))I . Note

that Π(Xi, τi) is actually the categorical product in FTS.

For more information about fuzzy sets and the category FTS, the reader could consult [16].

The following definition of a closure operator is a specialization to FTS of a notion for more

general categories, studied in e.g., [4], [5], [6], [8], [9], [10] and [13].

DEFINITION 1.1

A closure operator C on FTS is a family {[ ]
(X,τ)

C
}

(X,τ)∈FTS
of functions on the subset lattices

with the following properties which hold for every (X, τ) ∈ FTS:

(a) M ⊆ [M ]
(X,τ)

C
for every subset M of (X, τ)

(b) M ⊆ N ⇒ [M ]
(X,τ)

C
⊆ [N ]

(X,τ)

C
for every pair of subsets M, N of (X, τ)
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(c) If P is the inverse image of a subset M of (Y, σ) under some FTS-morphism (X, τ)
f

−→ (Y, σ),

and Q is the inverse image of [M ]
(Y,σ)

C
under f , then [P ]

(X,τ)

C
⊆ Q.

We say that the subset M of (X, τ) is C-closed if M ≃ [M ]
(X,τ)

C
. [M ]

(X,τ)

C
is called the C-

closure of M . We call C idempotent provided that for every (X, τ) ∈ FTS, [M ]
(X,τ)

C
is C-closed

for every subset M of (X, τ).

The subscripts or superscripts in [ ]
(X,τ)

C
will be omitted when no confusion is possible.

REMARK 1.2

The reader who is more categorically inclined could make use of the following equivalent

definition. A closure operator on a category X (with respect to a class of monomorphisms M)

is a pair C = (γ, F ), where F is an endofunctor on M that satisfies UF = U , and γ is a natural

transformation from idM to F that satisfies (idU )γ = idU (cf. [9]).

Note that in all the categories of fuzzy topological spaces studied in this paper, the equalizer

of a pair of fuzzy continuous functions (X, τ) −→−→
f

g
(Y, σ) can be identified with the set A given

by {x ∈ X : f(x) = g(x)}. (The corresponding fuzzy topology τ ′ on A and the corresponding

morphism (A, τ ′) −→ (X, τ) are the obvious ones and may be omitted from the discussion.)

DEFINITION 1.3

A special case of an idempotent closure operator arises in the following way. Given any class

A of FTS-objects and any subset M of (X, τ) ∈ FTS, define [M ]
A

to be the intersection of all

equalizers of pairs of FTS-morphisms r, s from (X, τ) to some A-object (Y, σ) that agree on M .

It is easy to see that such a construction defines an idempotent closure operator. This was first

introduced by Salbany in the category of topological spaces (cf. [20]).

2 MAIN RESULTS

We will make use of the following theorem which is a special case of Theorem 1.11 of [4]. We

therefore state it without proof.

THEOREM 2.1

Let A be a subcategory of FTS and let (X, τ)
f

−→ (Y, σ) be a morphism in A. f is an

epimorphism in A iff [f(X)]A = Y .

The following separation axiom is the 0∗-T0-axiom of Wuyts and Lowen [22], but is here

called the T0-axiom since it appears to be the categorically “right” concept of this axiom (cf. [17]
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and [2]).

DEFINITION 2.2

A fuzzy topological space (X, τ) is said to satisfy the T0-axiom if for every pair of distinct

points x, y ∈ X , there exists V ∈ τ such that V (x) 6= V (y).

The full subcategory of FTS whose objects are all those satisfying the above condition will

be denoted by FTS0.

REMARK 2.3

An important ingredient in the proof of the following proposition is the Sierpinski object

(I, ∆S), studied in [21] and in [17], where ∆S is the fuzzy topology on I generated by I
id
−→ I,

i.e.,

∆S = {(α ∧ id) ∨ β : α, β ∈ I}.

It should be noted that , given any (X, τ) ∈ FTS and W ∈ τ , it holds that (X, τ)
W
−→ (I, ∆S) is

fuzzy continuous, because W−1((α ∧ id) ∨ β)) = (α ∧ W ) ∨ β for every choice of α and β in I.

Also note that (I, ∆S) satisfies the T0-axiom.

PROPOSITION 2.4

Let (X, τ) ∈ FTS and let M be a subset of X . Consider the set

b(M) = {x ∈ X : ∀V ∈ τ, ∀ǫ > 0, ∃a ∈ M, ∃δ > 0 such that ∀W ∈ τ, V (a) − W (a) < δ ⇒

V (x) − W (x) < ǫ}.

Then, M is an equalizer in FTS0 iff M = b(M).

Proof:

(⇒). Suppose that M = equ(f, g), (X, τ) −→−→
f

g
(Y, σ) with (X, τ), (Y, σ) ∈ FTS0. Choose

x ∈ X − M . Then, f(x) 6= g(x). There exists U ∈ σ such that, say, 0 ≤ U(f(x)) < U(g(x)) ≤ 1.

Let V = g−1(U) ∈ τ . Now, take ǫ0 = (U(g(x)) − U(f(x)))/2. Consider W0 = f−1(U) ∈ τ . For

every a ∈ M we have that V (a) = U(g(a)) = U(f(a)) = W0(a). Therefore, it trivially occurs that

for every choice of δ > 0, V (a)−W0(a) < δ. However, V (x)−W0(x) = U(g(x))−U(f(x)) = 2ǫ0.

Hence x 6∈ b(M).

(⇐). Suppose that b(M) = M , and let x ∈ X − M . Since x 6∈ b(M), we can choose N ∈ τ

with the property that there exists ǫ > 0 such that for each a ∈ M and each δ > 0 there exists

Wa,δ ∈ τ such that N(a) − Wa,δ(a) < δ and N(x) − Wa,δ(x) ≥ ǫ.

Set Fx = ∨{Wa,δ : a ∈ M, δ > 0} and let Gx = N ∨ Fx. The aim is to show that Fx and

Gx differ at x and agree on the whole of M . Hence it must be shown that N(x) > Fx(x), and

Fx(a) ≥ N(a) for each a ∈ M .
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Now, N(x) − Wa,δ(x) ≥ ǫ ⇒ N(x) − ǫ ≥ Wa,δ(x) for each a ∈ M and δ > 0 ⇒ N(x) − ǫ ≥

Fx(x) ⇒ N(x) ≥ Fx(x) + ǫ > Fx(x).

Let a ∈ M . Then for each δ > 0 it holds that N(a) − Fx(a) ≤ N(a) − Wa,δ(a) < δ. Since

this holds for each δ > 0, we have that N(a)−Fx(a) ≤ 0. Hence Fx(a) ≥ N(a) for every a ∈ M .

Hence, for each x ∈ X − M we have two fuzzy continuous functions (X, τ)
Fx−→ (I, ∆S) and

(X, τ)
Gx−→ (I, ∆S) in FTS0 which agree at every element of M but differ at x (see Remark

2.3). Consider Π(I, ∆S), where the product is taken over the index set X − M . By definition of

product, we obtain two fuzzy continuous functions (X, τ)
F

−→ Π(I, ∆S) and (X, τ)
G
−→ Π(I, ∆S)

that agree precisely on M . Observe that the functions F and G are morphisms in FTS0 because

FTS0 is closed under the formation of products in FTS.

COROLLARY 2.5

For every subset M of (X, τ) ∈ FTS0, [M ]FTS0
= b(M).

Proof:

Since M ⊆ b(M) and b(b(M)) = b(M), it follows from Proposition 2.4 that b(M) is an

equalizer in FTS0 containing M . Therefore, by definition [M ]FTS0
⊆ b(M). Now, M ⊆ [M ]FTS0

implies that b(M) ⊆ b([M ]FTS0
). Since FTS0 is closed under products, [M ]FTS0

is an equalizer

in FTS0 (cf. [4, Proposition 1.6]). Hence, from the above proposition, b([M ]FTS0
) = [M ]FTS0

.

Thus, b(M) = [M ]FTS0
.

By applying Theorem 2.1 we obtain

THEOREM 2.6

A morphism (X, τ)
f

−→ (Y, σ) in FTS0 is an epimorphism in FTS0 iff b(f(X)) = Y .

EXAMPLE 2.7

Let (I, ∆S) be the Sierpinski object described in Remark 2.3. Then it can be easily verified

that [[0, 1)]FTS0
= I. Therefore the inclusion of [0, 1) into I is an epimorphism in FTS0.

REMARK 2.8

(a) The definition of b(A) in Proposition 2.4 has been written for fuzzy topological spaces in

the sense of Lowen, but could also apply to fuzzy topological spaces in the sense of Chang

[7]. In this case the reader should notice that this definition, when restricted to ordinary

T0-topological spaces, need not give the b-closure of Baron (cf. [3], [18]). However, to obtain

such a closure one can define b(M) as follows:

b(M) = {x ∈ X : ∀V ∈ τ, ∀ǫ > 0, ∃a ∈ M, ∃δ > 0 such that (i)V (x) − V (a) < ǫ and
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(ii)∀W ∈ τ, V (a) − W (a) < δ ⇒ V (x) − W (x) < ǫ}.

The extra condition (i) is redundant for fuzzy topological spaces in the sense of Lowen

because in this case it follows from (ii) and the fact that τ contains all the constant functions.

DEFINITION 2.9

Let X be a set. A fuzzy singleton of X is a function χα
x : X → I such that χα

x(x) = α and

χα
x (y) = 0 for every y 6= x.

DEFINITION 2.10

A fuzzy topological space (X, τ) is said to satisfy the T1-axiom if every fuzzy singleton is

closed. (In [11] this was termed the FTS-axiom.)

The full subcategory of FTS whose objects are all those satisfying the above condition will

be denoted by FTS1.

Given a function X
U
−→ I, Supp(U) denotes the subset of X consisting of all x ∈ X such

that U(x) 6= 0; coU denotes the complement of U , i.e., the function 1 − U .

Given a set X , the family τ consisting of all functions X
U
−→ I such that Supp(coU) is

finite, together with all constant functions forms a fuzzy topology on X called the cofinite fuzzy

topology ([11]). Notice that any cofinite fuzzy topological space satisfies the T1-axiom.

The following result is simply an extension to FTS1 of a similar result for T1-topological

spaces (cf. [12]).

PROPOSITION 2.11

Let M be a subset of (X, τ) ∈ FTS1. Then [M ]FTS1
= M .

Proof:

Since M is always contained in [M ]FTS1
, we just need to show the other inclusion.

Let x 6∈ M . Consider a fuzzy topological space (Y, γ) such that |Y | > |X | and where γ is

the cofinite fuzzy topology on Y . Let (X, τ)
f

−→ (Y, γ) be an injective function. If coU ∈ γ,

then Supp(U) is finite. Supp(f−1(U)) = Supp(U ◦ f) = {x ∈ X : U(f(x)) 6= 0} is finite. Thus

f−1(coU) = cof−1(U) belongs to the cofinite fuzzy topology on X and hence to τ , since any

T1-fuzzy topology on X contains the cofinite one (cf. [11, Theorem 4.2]). Consequently f is fuzzy

continuous.

Take y 6∈ Im(f). Define X
g

−→ Y by g(z) = f(z) for every z ∈ X − {x} and g(x) = y. As

above, g is injective and therefore fuzzy continuous. f and g agree on M but f(x) 6= g(x). Thus

x 6∈ [M ]FTS1 .
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As a consequence of the above proposition and Theorem 2.1, we obtain

THEOREM 2.12

The epimorphisms in FTS1 are surjective.

DEFINITION 2.13 (cf. [19])

Let α ∈ [0, 1). A fuzzy topological space (X, τ) is said to be α-T2 if for each pair of distinct

points x, y ∈ X , there exist U, V ∈ τ with U(x) > α, V (y) > α and U ∧ V = 0.

The full subcategory consisting of all the objects satisfying the above condition will be

denoted by FTSα2

DEFINITION 2.14 (cf. [19])

(a) Let (X, τ) ∈ FTS, let M ⊆ X and choose α ∈ [0, 1). Define

Clα(M) = {x ∈ X : U ∈ τ, U(x) > α ⇒ ∃a ∈ M with U(a) > 0}.

(This is precisely the α-closure of Rodabaugh.)

(b) The set M is said to be α-closed if Clα(M) = M .

REMARK 2.15 (cf. [19])

The set M is α-closed iff for each x ∈ X − M there exists U ∈ τ such that U(x) > α and

U(a) = 0 for every a ∈ M .

Notice that since Ib in [19] is equal to I, the following result holds

PROPOSITION 2.16 (cf. [19], Theorem 5.3)

Let (X, τ) −→−→
f

g
(Y, σ) be fuzzy continuous with (X, τ), (Y, σ) ∈ FTSα2. Then the subset

{x : f(x) = g(x)} is α-closed in X .

PROPOSITION 2.17 ([19])

Arbitrary intersections of α-closed sets are α-closed.

COROLLARY 2.18

Let M be a subset of (X, τ) ∈ FTSα2. We have that Clα(M) ⊆ [M ]FTSα2
.

Proof:

¿From Proposition 2.16 and Proposition 2.17, we obtain that [M ]FTSα2
is α-closed and so
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M ⊆ [M ]FTSα2
⇒ Clα(M) ⊆ Clα([M ]FTSα2

) = [M ]FTSα2
.

Final fuzzy topologies are required in the proof of the next proposition. If {(Xi, τi)}I is a

family of fuzzy topological spaces, and for each i ∈ I we have a function Xi
fi
−→ X , then the fuzzy

topology τ on X which is final with respect to ((Xi, τi)
fi
−→ X)I is {X

V
−→ I : f−1

i (V ) ∈ τi, ∀i ∈ I}

(see [15]). In particular, given (Y, σ) ∈ FTS, we shall need the coproduct (or sum) (Y ∐Y, σ∐σ),

where Y ∐ Y is the usual disjoint union, and σ ∐ σ is the fuzzy topology on Y ∐ Y which is final

with respect to the family of canonical injections ((Y, σ)
µ1
−→ Y ∐ Y, (Y, σ)

µ2
−→ Y ∐ Y ). It is easy

to show that σ ∐ σ = {U ∐ V : U, V ∈ σ}, where, given any fuzzy sets U, V ∈ σ, the fuzzy set

U ∐ V is defined by

(U ∐ V )(y, i) =

{

U(y), if i = 1;
V (y), if i = 2.

Let M ⊆ Y . Define an equivalence relation on Y ∐ Y by

(x, i) ∼ (y, j) ⇔







(x, i) = (y, j);
or
x = y ∈ M.

Let Q denote the quotient of the set Y ∐ Y with respect to the above relation and endowed with

the final fuzzy topology µ induced by the natural quotient function (Y ∐ Y, σ∐ σ)
q

−→ Q. Hence

q((x, i)) =

{

{(x, 1), (x, 2)}, if x ∈ M ;
{(x, i)}, if x 6∈ M ;

and µ = {Q
W
−→ I : q−1(W ) ∈ σ ∐ σ} = {Q

W
−→ I : W ◦ q = V1 ∐ V2 for some V1, V2 ∈ σ}.

LEMMA 2.19

Let U1 and U2 be arbitrary functions from Y into I. Then q−1(q(U1 ∐ U2)) = U1 ∐ U2 iff

U1(a) = U2(a) for every a ∈ M .

PROPOSITION 2.20

For each α-T2-space (Y, σ) and each α-closed subset M of Y , there exists an α-T2-space

(Q, µ) and fuzzy continuous functions (Y, σ) −→−→
r

s
(Q, µ) such that M = {y ∈ Y : r(y) = s(y)}.

Proof:

Let (Q, µ) be the above defined quotient fuzzy topological space with M α-closed. First we

wish to show that (Q, µ) ∈ FTSα2.

Suppose that q((x, i)) 6= q((y, j)).

Case I. x 6= y
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Since (Y, σ) is α-T2, there exist U1, U2 ∈ σ with U1(x) > α and U2(y) > α and U1 ∧U2 = 0.

Let U ′
1

= q(U1 ∐U1) and U ′
2

= q(U2 ∐U2). Then U ′
1

and U ′
2

belong to µ, by the previous lemma.

U ′
1
(q((x, i))) = U1(x) > α; U ′

2
(q((y, j))) = U2(y) > α. Also, we have (U ′

1
∧ U ′

2
)(q((z, i))) =

min[U ′
1
(q((z, i))), U ′

2
(q((z, i)))] = min[U1(z), U2(z)] = 0.

Case II. x = y

Set z = x = y. Then i 6= j. Note that z 6∈ M . Since M is α-closed there exists U ∈ σ

with U(z) > α, and U(a) = 0 for every a ∈ M . Set U ′
1

= q((U ∐ 0)) and U ′
2

= q((0 ∐ U)).

By the previous lemma, U ′
1

and U ′
2

belong to µ. We have that U ′
1
(q((z, 1))) = U(z) > α;

U ′
2
(q((z, 2))) = U(z) > α.

For d 6∈ M we have (U ′
1
∧U ′

2
)(q((d, 1))) = min[U ′

1
(q((d, 1))), U ′

2
(q((d, 1)))] = min[U(d), 0] = 0

and (U ′
1
∧U ′

2
)(q((d, 2))) = min[U ′

1
(q((d, 2))), U ′

2
(q((d, 2)))] = min[0, U(d)] = 0. If d ∈ M then we

have (U ′
1
∧ U ′

2
)(q((d, i))) = min[U ′

1
(q((d, i))), U ′

2
(q((d, i)))] = min[max[U(d), 0], max[U(d), 0]] =

U(d) = 0. Hence (U ′
1
∧ U ′

2
) = 0.

Now it can be easily checked that M = {y ∈ Y : r(y) = s(y)} with r = q ◦µ1 and s = q ◦µ2.

COROLLARY 2.21

Let M be a subset of (X, τ) ∈ FTS02. Then [M ]FTS02
= Cl0(M).

Proof:

Since Cl0(Cl0(M)) = Cl0(M), from Proposition 2.20 we obtain that Cl0(M) is an equalizer

in FTS02. Therefore we have that [M ]FTS02
⊆ Cl0(M). This together with Corollary 2.18 gives

that [M ]FTS02
= Cl0(M).

Now, by applying Theorem 2.1 we obtain the following

THEOREM 2.22

A morphism (X, τ)
f

−→ (Y, σ) in FTS02 is an epimorphism in FTS02 iff Cl0(f(X)) = Y .

REMARK 2.23

If α > 0, the operator Clα need not be idempotent. However, if for M ⊆ (X, τ) ∈ FTSα2

we define

Cα(M) = ∩{A ⊆ X : M ⊆ A and Clα(A) = A},

then the resulting operator Cα is idempotent and results analogous to those above allow us to

conclude that [M ]FTSα2
= Cα(M). Consequently a morphism (X, τ)

f
−→ (Y, σ) in FTSα2 is an
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epimorphism in FTSα2 iff Cα(f(X)) = Y .

EXAMPLE 2.24

Consider the fuzzy topological space (I, ω), where ω is the collection of all lower semicontin-

uous functions from I with the usual topology into itself (cf. [14]). This space is α-T2 for each

α ∈ [0, 1). Now, if Q is the set of rational numbers, then Clα(Q ∩ I) = Clα([0, 1)) = I. So, the

inclusions of Q∩ I and [0, 1) into I are both epimorphisms in FTSα2.
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[1] J. Adámek, H. Herrlich, G.E. Strecker, Abstract and Concrete Categories, Wiley, New York,
1990.

[2] I. W. Alderton, “Function spaces in fuzzy topology,” Fuzzy Sets and Systems 32 (1989),
115-124.

[3] S. Baron, “A note on epi in T0,” Canad. Math. Bull. 11 (1968), 503-504.

[4] G. Castellini, “Closure operators, monomorphisms and epimorphisms in categories of
groups,” Cahiers Topologie Géom. Différentielle Catégoriques 27(2) (1986), 151-167.
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