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0 INTRODUCTION

The development of a general theory of topological connectedness was started by Preuß (cf.

[Pr1−3]). Afterwards, a considerable number of papers were published on this subject and on

possible generalizations of it. Most of them used the common approach of first defining a notion of

constant morphism and then using it to introduce a notion of connectedness and disconnectedness,

accordingly. The categorical notion of closure operator that in the meantime was introduced and

developed provided two further approaches to the above problem. Two different notions of

connectedness with respect to a closure operator in an arbitrary category were introduced and

studied by Clementino and Tholen ([CT], [Cl]) and independently by Castellini ([C1−6]). The

main aim of this paper is to provide a link between these two approaches.

The setting for this paper is a category X with an (E,M)-factorization structure for sinks.

Let S(X ) denote the collection of all subcategories of X , ordered by inclusion and let N be

a fixed subclass of M. For a closure operator C on the category X , the two assignments:

AN (C) = {X ∈ X : every m ∈ N with domain X is C-closed} and BN (C) = {X ∈ X :

every m ∈ N with domain X is C-dense}, were proven in [CH] to preserve suprema and in-
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fima, respectively. Consequently, they yield two Galois connections CL(X ,M)
AN-�
PN

S(X )op

and S(X )
QN-�
BN

CL(X ,M). The general properties of these Galois connections are studied in

[CH]. In this paper, their composition is described in terms of morphism orthogonality. In

the case that N consists of diagonal morphisms, this yields a more general description of the

connectedness-separation Galois connection introduced in [CT]. Using a similar but dual ap-

proach, the connectedness-disconnectedness Galois connection introduced in [C1−4] is also de-

scribed in terms of morphism orthogonality.

As a consequence, this allows us to construct a “butterfly” of Galois connections that puts

into perspective a long sought relationship between the Clementino-Tholen notion of connected-

ness ([CT]) and the one of Castellini ([C4]).

We use the terminology of [AHS] throughout the paper3.

1 PRELIMINARIES

Throughout we consider a category X and a fixed class M of X -monomorphisms, which contains

all X -isomorphisms. It is assumed that X is an (E,M)-category for sinks.

This implies the following features of M and E (cf. [AHS] for the dual case):

PROPOSITION 1.1

(1) Every isomorphism is in both M and E (as a singleton sink).

(2) M is closed under M-relative first factors, i.e. if n ◦ m ∈ M, and n ∈ M, then m ∈ M.

(3) M is closed under composition.

(4) Pullbacks of X -morphisms in M exist and belong to M.

(5) The M-subobjects of every X -object form a (possibly large) complete lattice; suprema are

formed via (E,M)-factorizations and infima are formed via intersections.

If X
f

−→ Y is an X -morphism and M
m
−→ X is an M-subobject, then M

ef◦m
−→ Mf

mf
−→ Y

will denote the (E,M)-factorization of f ◦ m. Mf

mf

−→ Y will be called the direct image of m

along f and M
ef◦m
−→ Mf will be called the restriction of the morphism f to the M-subobject m.

If N
n

−→ Y is an M-subobject, then the pullback f−1(N)
f−1(n)
−−−−→ X of n along f will be called

the inverse image of n along f . Whenever no confusion is likely to arise, to simplify the notation

we will denote the morphism ef◦m simply ef .

3 Paul Taylor’s Commutative Diagrams in TEX macro package was used to typeset most of the

diagrams in this paper.
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DEFINITION 1.2

A closure operator C on X (with respect to M) is a family {( )
C

X
}X∈X of functions on the

M-subobject lattices of X with the following properties that hold for each X ∈ X :

(a) m ≤ (m)
C

X
, for every M-subobject M

m
−→ X ;

(b) m ≤ n ⇒ (m)
C

X
≤ (n)

C

X
for every pair of M-subobjects of X ;

(c) If p is the pullback of the M-subobject M
m
−→ Y along some X -morphism X

f
−→ Y and q

is the pullback of (m)
C

Y
along f , then (p)

C

X
≤ q, i.e., the closure of the inverse image of m is

less than or equal to the inverse image of the closure of m.

Condition (a) implies that for every closure operator C on X , every M-subobject M
m
−→ X

has a canonical factorization

M
t

−→ (M)
C

X

m ց




y
(m)

C

X

X

where (m)
C

X
is called the C-closure of the subobject m.

When no confusion is likely we will write m
C

rather than (m)
C

X
and for notational symmetry

we will denote the morphism t by m
C
.

DEFINITION 1.3

Given a closure operator C, we say that m ∈ M is C-closed if m
C

is an isomorphism. An

X -morphism f is called C-dense if for every (E,M)-factorization (e, m) of f we have that m
C

is an isomorphism. We call C idempotent provided that m
C

is C-closed for every m ∈ M. C is

called weakly hereditary if m
C

is C-dense for every m ∈ M.

Notice that Definition 1.2(c) implies that pullbacks of C-closed M-subobjects are C-closed.

We denote the collection of all closure operators on M by CL(X ,M) pre-ordered as follows:

C ⊑ D if m
C

≤ m
D

for all m ∈ M (where ≤ is the usual order on subobjects). Notice that

arbitrary suprema and infima exist in CL(X ,M), they are formed pointwise in the M-subobject

fibers.

For more background on closure operators see, e.g., [CKS1−2], [DG] and [DGT]. For a recent

survey on the same topic, one could check [C7]. Detailed proofs can be found in [H] and [DT].

DEFINITION 1.4

For pre-ordered classes X = (X,≤) and Y = (Y,≤), a Galois connection X
F-�
G

Y consists

of order preserving functions F and G that satisfy F ⊣ G, i.e. x ≤ GF (x) for every x ∈ X and
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FG(y) ≤ y for every y ∈ Y. (G is adjoint and has F as coadjoint).

If x ∈ X and y ∈ Y are such that F (x) = y and G(y) = x, then x and y are said to be

corresponding fixed points of the Galois connection (X , F, G,Y).

Properties and many examples of Galois connections can be found in [EKMS].

2 A DESCRIPTION VIA ORTHOGONALITY

The main aim of this Section is to provide a description of the composition of two Galois con-

nections introduced in [CH] by means of the notion of morphism orthogonality. Then, this will

be used to provide an alternative description of the composition of two other Galois connections

studied in [CT].

We begin by recalling the Galois connections from [CH].

Let S(X ) denote the collection of all subcategories of X , ordered by inclusion. Throughout,

N will be a fixed subclass of M. Then, we have the following:

PROPOSITION 2.1

Let CL(X ,M)
AN−→ S(X )op and S(X )op PN−→ CL(X ,M) be defined by:

AN (C) = {X ∈ X : every m ∈ N with domain X is C-closed}

PN (A) = Sup{C ∈ CL(X ,M) : AN (C) ⊇ A}.

Then, CL(X ,M)
AN-�
PN

S(X )op is a Galois connection.

PROPOSITION 2.2

Let CL(X ,M)
BN−→ S(X ) and S(X )

QN
−→ CL(X ,M) be defined by:

BN (C) = {X ∈ X : every m ∈ N with domain X is C-dense}

QN (B) = Inf{C ∈ CL(X ,M) : BN (C) ⊇ B}.

Then, S(X )
QN-�
BN

CL(X ,M) is a Galois connection.

The following characterizations of the closure operators PN (B) and QN (A) for A ∈ S(X )op

and B ∈ S(X ), were also obtained in [CH]. We report them here, since they will be useful later.

PROPOSITION 2.3

Let A ∈ S(X )op. For every X ∈ X and for every M-subobject M
m
−→ X , consider all

commutative squares of the form
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M
m - X

Ai

ri
?

ni

- Bi

si
?

with Ai ∈ A and ni ∈ N , indexed by I. If we form all pullbacks mi of ni along si, then we have

that mPN (A) ≃
∧

i∈I mi. Moreover, PN (A) is idempotent.

PROPOSITION 2.4

Let B ∈ S(X ). For every Y ∈ X and for every M-subobject M
m
−→ Y , consider all

commutative squares of the form

Ai

ni - Bi

M

ri
?

m
- X

si
?

with Ai ∈ B and ni ∈ N , indexed by I. Take the (E,M)-factorization of the sink (si)i∈I ∪ {m}.

Thus we obtain the following commutative diagram

Ai

ni - Bi

+�����
ei

Q

�����
k

3 QQQQQ
m̄

s
M

ri

?

m
- X

si

?

where (ei)i∈I ∪ {k} ∈ E and m̄ ∈ M satisfy m̄ ◦ ei = si for every i ∈ I and m̄ ◦ k = m. Then, we

have that mQN (B) ≃ m̄. Moreover QN (B) is weakly hereditary.

The two Galois connections introduced in Propositions 2.1 and 2.2 yield via composition a

third Galois connection between S(X ) and S(X )op. In this Section we present a direct description

of it by means of a familiar concept.

For X ∈ X and P ⊆ MorX we set PX = {f ∈ P : dom(f) = X} and dually PX = {f ∈ P :

cod(f) = X}.
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For P ,Q ⊆ MorX , we write P ⊥ Q if every commutative diagram:

X
p - W

Y

u
?

q
- Z

v
?

with p ∈ P and q ∈ Q, has a unique diagonal, that is, there is a unique morphism W
d

−→ Y

such that d ◦ p = u and q ◦ d = v. Using the classical terminology, this means that every element

of P is “left orthogonal” to every element of Q (or equivalently, every element of Q is “right

orthogonal” to every element of P).

The above notion of orthogonality yields a Galois connection S(X )
ρN-�
λN

S(X )op where for

B ∈ S(X ), ρN (B) = {Y ∈ X : ∀X ∈ B,NX ⊥ N Y } and for A ∈ S(X )op, λN (A) = {X ∈ X :

∀Y ∈ A,NX ⊥ N Y }. This newly obtained Galois connection is not really new, as the following

theorem shows.

THEOREM 2.5

For any subclass N of M, the Galois connection S(X )
ρN-�
λN

S(X )op factors through

CL(X ,M) via the Galois connections S(X )
QN-�
BN

CL(X ,M) and CL(X ,M)
AN-�
PN

S(X )op.

Proof:

Let A ∈ S(X )op and let X ∈ λN (A). Take all commutative squares ni ◦ ri = si ◦ n, where

n ∈ N , ni ∈ N and Ai ∈ A, indexed by I. Form the inverse images s−1
i (ni).

X
n - Y

�������
s−1

i (ni)
*

Pi

��������
s′i

Ai

ri

?

ni

- Bi

si

?

Since NX ⊥ NAi , for every i ∈ I, we have that the above diagram has a diagonal. As it is

easily checked, this implies that s−1
i (ni) ≃ idY , for every i ∈ I. Hence, nPN (A) ≃ idY and so,

X ∈ BN (PN (A)).

Now let X ∈ BN (PN (A)) and let us consider the following commutative diagram:
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X
n - Y

�����
s−1(m)

3

P

+�����
s′

A

f

?

m
- B

s

?

where m, n ∈ N and A ∈ A. Clearly, we have that idY ≃ nPN (A) ≤ s−1(m) ≤ idY , which implies

that s−1(m) ≃ idY . Hence d = s′ ◦ (s−1(m))−1 is the sought diagonal. Uniqueness is implied by

the fact that m is a monomorphism. Hence, X ∈ λN (A). Thus, we conclude that λN = BN ◦PN .

Since, from the general properties of Galois connections, ρN and λN uniquely determine

each other (cf. [EKMS]), then we can conclude that ρN = AN ◦ QN .

At this point we observe that under the assumption of M containing all regular monomor-

phisms, if N consists of all diagonal morphisms then the Galois connections in Propositions 2.1

and 2.2 reduce to the Galois connections used by Clementino and Tholen ([CT]) to study the

notions of separation and connectedness in an arbitrary category. As a matter of fact the above

theorem yields an interesting description of their composition. In this case we have that for

B ∈ S(X ) and A ∈ S(X )op:

ρN (B) = {Y ∈ X : ∀X ∈ B, δX ⊥ δY }

λN (A) = {X ∈ X : ∀Y ∈ A, δX ⊥ δY }.

In [CT], the composition of the two Galois connections arising from the case of N consisting

of diagonal morphisms was given in terms of the “left-right constant” Galois connection. In what

follows we show that under appropriate hypotheses the Galois connection S(X )
ρN-�
λN

S(X )op

reduces to that one.

First we recall the following concepts from [CT].

DEFINITION 2.6

(a) An X -object P is called preterminal if |X (X, P )| ≤ 1, for each X ∈ X .

(b) An X -morphism X
f

−→ Y is called constant if in its (E,M)-factorization X
e

−→ P
m
−→ Y ,

P is preterminal.

(c) An M-subobject P
p

−→ X of X ∈ X , with P preterminal, is called a quasipoint of X if

P is isomorphic to the middle object of the (E,M)-factorization of the unique morphism

X −→ T , with T denoting the terminal object.

(d) An object X ∈ X is said to have enough quasipoints if the supremum of all quasipoints of
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X is isomorphic to idX . If this is true for every X ∈ X , then the category X is said to have

enough quasipoints.

We write X ||Y if and only if every morphism X
f

−→ Y is constant. The relation || gives

rise to the “left-right constant” Galois connection: S(X )
r-�
l

S(X )op, where for B ∈ S(X ),

r(B) = {Y ∈ X : ∀X ∈ B, X ||Y } and for A ∈ S(X )op, l(A) = {X ∈ X : ∀Y ∈ A, X ||Y }.

From here on we assume that X has squares and that M contains all regular monomorphisms.

LEMMA 2.7

For every X, Y ∈ X , we have that X2||Y 2 implies that δX ⊥ δY .

Proof:

Let us consider the following diagram:

X
δX - X × X

@@@
e
R 	��

�e′

P Q

	���
m

@@@m′ R
Y

f

?

δY

- Y × Y

g

?

where f = m ◦ e and g = m′ ◦ e′ are (E,M)-factorizations.

If g◦δX = δY ◦f , then the (E,M)-diagonalization property yields a morphism P
h

−→ Q such

that h◦e = e′ ◦δX and m′ ◦h = δY ◦m. Since Q is preterminal, we have that h◦e◦p1 = e′, where

X×X
p1

−→ X denotes the first projection. Consequently, δY ◦m◦e◦p1 = m′◦h◦e◦p1 = m′◦e′ = g

and m ◦ e ◦ p1 ◦ δX = m ◦ e ◦ idX = f . Thus, since δY is a monomorphism, m ◦ e ◦ p1 is the sought

unique diagonal and so δX ⊥ δY .

We observe that since the morphism h in the above proof is a monomorphism , it also shows

that X2||Y 2 implies that X ||Y .

Let E denote the class of singleton E-sinks.

LEMMA 2.8

If E is closed under the formation of squares, then for every X, Y ∈ X , we have that δX ⊥ δY

implies that X ||Y .

Proof:

Let us consider the following commutative diagram:
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X
δX - X × X

@
@

@
@

@

e

R

@
@

@
@

@

e2

R
M

δM -

f2

M × M

	�
�

�
�

�

m
	�

�
�

�
�

m2

Y

f

?

δY

- Y × Y
?

where (e, m) is the (E,M)-factorization of f .

By assumption there is a unique diagonal d satisfying d ◦ δX = f and δY ◦ d = f × f .

Let X × X
p1

−→ X , M × M
q1

−→ M and Y × Y
r1−→ Y denote first projections. Then we have

that m2 ◦ δM ◦ q1 ◦ e2 = δY ◦ m ◦ q1 ◦ e2 = δY ◦ m ◦ e ◦ p1 = δY ◦ f ◦ p1 = δY ◦ r1 ◦ f2 =

δY ◦ r1 ◦ δY ◦ d = δY ◦ d = f2 = m2 ◦ e2. Since m2 ∈ M and by assumption e2 ∈ E , it follows that

δM ◦ q1 ◦ e2 = e2 ∈ E . Hence, the E-morphism e2 factors through the M-morphism δM , which

from the general properties of (E,M)-factorization structures implies that δM is an isomorphism.

Thus, M ≃ M2, which, as it is easily seen, implies that M is preterminal and so f is constant.

REMARK 2.9

It is easy to verify that for B ∈ S(X ), r(B) is closed under the formation of monosources

and so in particular under the formation of products. Consequently, A||B implies that A||B2.

However, in general l(A) for A ∈ S(X )op may fail to be closed under the formation of squares.

A result in this direction was presented in [CT, Corollary 6.2].

As a consequence of the previous two lemmas and of the above remark, we obtain the

following:

PROPOSITION 2.10

If E is closed under the formation of squares and X ||Y implies X2||Y for every X, Y ∈ X ,

then X ||Y if and only if δX ⊥ δY .

COROLLARY 2.11

If E is closed under the formation of squares and if l({Y }) is closed under the formation of

squares for every X -object Y , then X ||Y if and only if δX ⊥ δY .
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There are several regularly used properties of the category X under which the conditions in

the above corollary hold. For instance, if E is pullback stable, then as a consequence it is closed

under squares. This last condition implies that preterminal objects are closed under E-images, so

by using [CT, Corollary 6.2] we can conclude that under appropriate hypotheses our description

in terms of morphism orthogonality of the composition of the two Galois connections arising

from the case of N consisting of diagonal morphisms turns out to agree with the one given in

terms of constant morphisms, which yields as a special case what was already shown in [CT]. We

formalize these thoughts under the following:

THEOREM 2.12

Assume that E is pullback stable and that X has squares and enough quasipoints. If

N consists of diagonal morphisms, then the two Galois connections S(X )
ρN-�
λN

S(X )op and

S(X )
r-�
l

S(X )op coincide.

3 A BUTTERFLY OF GALOIS CONNECTIONS

The special case of N consisting of diagonal morphisms in the Galois connections of the previous

Section was used by Clementino and Tholen ([CT]) to introduce a notion of connectedness with

respect to a closure operator. Independently, another approach to a general theory of connect-

edness and disconnectedness was presented by Castellini ([C1−6]). In this Section we provide the

appropriate link between the two theories.

We begin by recalling the main results in Castellini’s approach. Let N be a subclass of M.

The following two propositions were proved in [C1].

PROPOSITION 3.1

Let CL(X ,M)
DN−→ S(X )op and S(X )op TN−→ CL(X ,M) be defined by:

DN (C) = {X ∈ X : every n ∈ NX is C-closed}

TN (A) = Sup{C ∈ CL(X ,M) : DN (C) ⊇ A}.

Then, CL(X ,M)
DN-�
TN

S(X )op is a Galois connection.

PROPOSITION 3.2

Let CL(X ,M)
IN−→ S(X ) and S(X )

JN−→ CL(X ,M) be defined by:

IN (C) = {X ∈ X : every n ∈ NX is C-dense}
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JN (B) = Inf{C ∈ CL(X ,M) : IN (C) ⊇ B}.

Then, S(X )
JN-�
IN

CL(X ,M) is a Galois connection.

In [C1], some characterizations of the functions TN and JN were also presented. For reference

purposes we collect them under the following:

PROPOSITION 3.3

For every A ∈ S(X )op and M-subobject M
m
−→ X , with X ∈ X , we have that

mTN (A) = inf{f−1(n) : Y ∈ A, X
f

−→ Y, N
n

−→ Y ∈ NY and m ≤ f−1(n)}.

Moreover, for every B ∈ S(X ) and M-subobject M
m
−→ Y , with Y ∈ X , we have that

mJN (B) = sup
(

{m} ∪ {(idX)f : X ∈ B, X
f

−→ Y and ∃n ∈ NX with nf ≤ m}
)

.

DEFINITION 3.4 ([C5])

A morphism X
f

−→ Y is N -dependent if for every n ∈ NX and every p ∈ NY , nf ≤ p implies

f−1(p) ≃ idX .

Clearly, the above definition yields the following relation among X -objects: XRNY if and

only if every morphism X
f

−→ Y is N -dependent. This in turn yields a Galois connection

S(X )
∆N-�
∇N

S(X )op where for A ∈ S(X ), ∆N (A) = {Y ∈ X : ∀X ∈ A, X
f

−→ Y is N -dependent}

and for B ∈ S(X )op, ∇N (B) = {X ∈ X : ∀Y ∈ B, X
f

−→ Y is N -dependent}.

In [C5] the following result was proved:

THEOREM 3.5

Let N be a subclass of M. Then the Galois connection S(X )
∆N-�
∇N

S(X )op factors through

CL(X ,M) via the Galois connections S(X )
JN-�
IN

CL(X ,M) and CL(X ,M)
DN-�
TN

S(X )op.

We next recall the two definitions of C-connectedness at stake.

DEFINITION 3.6 ([C4])

An X -object X is called (C,N )-connected if X ∈ IN (TN (DN (C))) = ∇N (DN (C)).

DEFINITION 3.7 ([CT])

An X -object X is called C-connected if the diagonal morphism X
δX−→ X × X is C-dense.
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REMARK 3.8

It is an easy consequence of Proposition 3.3 that for A = B = X , the functions TN and

JN agree with the functions PN and QN , respectively. However, for arbitrary subcategories,

the definitions are different but in a symmetric way. Precisely, while in the definition of PN

and QN , the dependence on the subcategory applies to domains of N -subobjects, in the case

of TN and JN this dependence applies to codomains of N -subobjects. This very difference,

dependence on domain versus codomain, is the main factor that distinguishes the two approaches

to connectedness. This is already evident in Definitions 3.6 and 3.7 and we expand thereon below.

In order to find a more detailed relation between the two definitions, we reinterpret the

notion of N -dependent morphism in terms of morphism orthogonality.

PROPOSITION 3.9

Any morphism X
f

−→ Y is N -dependent if and only if every commutative square f◦n = m◦g,

with n, m ∈ N has a diagonal. Thus, for X, Y ∈ X , XRNY if and only if NX ⊥ NY .

Proof:

(⇒). Let us consider the following commutative diagram:

N
n - X

@
@

@
@

@R �����������

f−1(m)

*

f−1(M)

	�
�

�
�

�

f ′

M

g

?

m
- Y

f

?

where n, m ∈ N . Using the (E,M)-diagonalization property, it is easily seen that nf ≤ m and

so XRNY implies that f−1(m) is an isomorphism. Hence, d = f ′ ◦ (f−1(m))−1 is the sought

diagonal.

(⇐). Let X
f

−→ Y be a morphism and let n ∈ NX and m ∈ NY be such that nf ≤ m.

Hence, we have the following commutative diagram:
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N
ef - Nf

- M
QQQQQQQQ

nf

s
X

n

?

f
- Y

m

?

Since NX ⊥ NY , there is a diagonal X
d

−→ M . The fact that m is a monomorphism implies

that the following diagram is a pullback:

X
d - M

X

idX
?

f
- Y

m
?

Thus, we conclude that XRNY .

As a consequence of the above proposition, the Galois connection S(X )
∆N-�
∇N

S(X )op can

be described in terms of orthogonality, that is for A ∈ S(X ) and B ∈ S(X )op we have:

∆N (A) = {Y ∈ X : ∀X ∈ A,NX ⊥ NY }

∇N (B) = {X ∈ X : ∀Y ∈ B,NX ⊥ NY }.

This contrasts with the definitions of ρN and λN , and again bears out the difference of

domain versus codomain.

The following “butterfly” illustrates the symmetry that arises from Theorems 2.5 and 3.5.

S(X )
∆N -�
∇N

S(X )op

I@
@

@
@

@
@

@

IN

@
@

@
@

@
@

@

JN

R 	�
�

�
�

�
�

�

TN

�
�

�
�

�
�

�

DN

�

CL(X ,M)

	�
�

�
�

�
�

�

BN

�
�

�
�

�
�

�

QN

� I@
@

@
@

@
@

@

PN

@
@

@
@

@
@

@

AN

R
S(X )

ρN -�
λN

S(X )op
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REMARK 3.10

(a) The upper triangle summarizes Castellini’s approach to connectedness and the lower one

extends the approach taken by Clementino and Tholen.

(b) Theorem 2.12 reveals how the lower triangle with N the class of diagonal morphisms reduces

to the classical approach to connectedness, using constant morphisms into certain subcate-

gories of X . However, if N = {T
m
−→ X : T is terminal , m ∈ M} then we have that X ||Y

if and only if NX ⊥ NY , provided that NX 6= ∅. (This can be obtained by putting together

Proposition 3.9 and [C5, Lemma 3.4], where an even larger class N is used.) Thus, for this

choice of N , the upper triangle also reduces to the classical approach to connectedness.

(c) The above diagram also puts into perspective the difference in philosophy between the two

connetedness notions. The Clementino-Tholen approach defines connectedness as a right

fixed point of the Galois connection S(X )
QN-�
BN

CL(X ,M) in the case that N consists of

diagonal morphisms. However, Castellini’s approach does not use the symmetric counterpart

IN (C) for the definition of connectedness but uses IN (TN (DN (C))) instead. This is a

fixed point of the Galois connection S(X )
∆N-�
∇N

S(X )op and so necessarily a fixed point of

S(X )
JN-�
IN

CL(X ,M), while IN (C) need not be a fixed point of S(X )
∆N-�
∇N

S(X )op.

(d) We also observe that the diagonals of the above diagram, when composed, automatically

yield two new Galois connections that can still be described via orthogonality and that

not surprisingly, switch from domains to codomains. Precisely, we have that for every

A ∈ S(X )op, BN (TN (A)) = {X : NX ⊥ NA, ∀A ∈ A} and IN (PN (A)) = {X : NX ⊥

NA, ∀A ∈ A}. Moreover, for every B ∈ S(X ), DN (QN (B)) = {X : NB ⊥ NX , ∀B ∈ B} and

AN (JN (B)) = {X : NB ⊥ NX , ∀B ∈ B}.

Other interesting compositions can be considered, although they do not (automatically)

yield Galois connections. For instance, BN (TN (DN (JN (B)))) = {X : NX ⊥ NY , ∀Y ∈

DN (JN (B))} = {X : NX ⊥ NY , ∀Y : NY ⊥ NB, ∀B ∈ B} = {X : NX ⊆ (N⊥
B ∩ N )⊥, ∀B ∈

B}. Notice that here we have used the notations: N⊥ = {f : f ⊥ n, ∀n ∈ N} and

symmetrically N⊥ = {f : n ⊥ f, ∀n ∈ N}.

To the reader who is interested in seeing examples of the above mentioned connectedness

notions we recommend [CT] and the sequence [C1−6].
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