REGULAR CLOSURE OPERATORS
AND COMPACTNESS

G. Castellini

Résumé. Une légère modification de la notion de compacité relativement à un opérateur de fermeture permet d’étendre à la catégorie TOP des espaces topologiques divers résultats sur les opérateurs de fermeture réguliers obtenus pour la catégorie AB des groupes abéliens. Ainsi les épimorphismes dans les sous-catégories des objets compacts ou compacts-séparés pour un opérateur de fermeture régulier additif sont surjectifs. L’auteur montre aussi que sous certaines conditions sur une sous-catégorie \(A \) de TOP, la sous-catégorie engendrée par les objets compacts-séparés pour l’opérateur de fermeture régulier induit sur \(A \) a plusieurs bonnes propriétés normalement obtenues dans des catégories algébriques.

INTRODUCTION

Let \(A \) be a subcategory of a given category \(\mathcal{X} \). The notion of compactness with respect to a closure operator introduced in [2] (cf. also [6] and [7]) seems to yield more interesting results if, in the case of a regular closure operator induced by \(A \), we restrict our attention to objects of the subcategory only. This allows us to prove that in \(\text{AB} \) and \(\text{TOP} \) the epimorphisms in subcategories of compact and compact-separated objects with respect to a regular closure operator are surjective. Moreover, we are able to extend Theorem 2.6 of [2], in a modified form, to the categories \(\text{TOP}, \text{GR} \) (groups) and \(\text{TG} \) (topological groups).

Let \(A \) be a subcategory of \(\text{TOP} \). The behavior of compact Hausdorff topological spaces gives rise to the question of whether the subcategory \(\text{Comp}_X(A) \cap A \) of compact-separated objects with respect to \(\lceil \cdot \rceil_A \) might form an algebraic category in the sense of [9]. Unfortunately, the answer in general is no and the subcategory \(\text{TOP}_1 \) of \(T_1 \) topological spaces provides the needed counterexample. As a matter of fact, \(\text{Comp}_{\text{TOP}}(\text{TOP}_1) \cap \text{TOP}_1 = \text{TOP}_1 \), which is not an algebraic category. However, such a category has coequalizers and the forgetful functor \(U: \text{TOP}_1 \to \text{SET} \) has a left adjoint and preserves regular epimorphisms. In the last section of the paper we show that, under certain assumptions on the subcategory \(A \), the above mentioned properties of \(\text{TOP}_1 \) are normally satisfied by any subcategory of \(\text{TOP} \) of the form \(\text{Comp}_X(A) \cap A \).

All the subcategories will be full and isomorphism closed.

We use the terminology of [9] throughout.
1 PRELIMINARIES
Throughout we consider a category \mathcal{X} and a fixed class \mathcal{M} of \mathcal{X}-monomorphisms, which contains all \mathcal{X}-isomorphisms. It is assumed that:

1. \mathcal{M} is closed under composition
2. Pullbacks of \mathcal{M}-morphisms exist and belong to \mathcal{M}, and multiple pullbacks of (possibly large) families of \mathcal{M}-morphisms with common codomain exist and belong to \mathcal{M}.

In addition, we require \mathcal{X} to have equalizers and \mathcal{M} to contain all regular monomorphisms.

One of the consequences of the above assumptions is that there is a uniquely determined class \mathcal{E} of morphisms in \mathcal{X} such that $(\mathcal{E}, \mathcal{M})$ is a factorization structure for morphisms in \mathcal{X} (cf. [5]).

We regard \mathcal{M} as a full subcategory of the arrow category of \mathcal{X}, with the codomain functor from \mathcal{M} to \mathcal{X} denoted by U. Since U is faithful, \mathcal{M} is concrete over \mathcal{X}.

As in [5], by a closure operator on \mathcal{X} (with respect to \mathcal{M}) we mean a pair $C = (\gamma, [\]_C)$, where $[\]_C$ is an endofunctor on \mathcal{M} that satisfies $U[\]_C = U$, and γ is a natural transformation from $\text{id}_\mathcal{M}$ to $[\]_C$ that satisfies $(\text{id}_U)\gamma = \text{id}_U$.

Thus, given a closure operator $C = (\gamma, [\]_C)$, every member m of \mathcal{M} has a canonical factorization

$$
\begin{array}{cccc}
M & \xrightarrow{m_C} & [M]^X_C \\
\downarrow & & \downarrow [m]^X_C \\
X & & [m]^X_C \\
\end{array}
$$

where $[m]^X_C = F(m)$ is called the C- closure of m, and $[m]^X_C$ is the domain of the m-component of γ. Subscripts and superscripts will be omitted when not necessary. Notice that, in particular, $[\]_C$ induces an order-preserving increasing function on the \mathcal{M}-subobject lattice of every \mathcal{X}-object. Also, these functions are related in the following sense: if p is the pullback of a morphism $m \in \mathcal{M}$ along some \mathcal{X}-morphism f, and q is the pullback of $[m]^X_C$ along f, then $[p]^X_C \leq q$. Conversely, every family of functions on the \mathcal{M}-subobject lattices that has the above properties uniquely determines a closure operator.

Given a closure operator C, we say that $m \in \mathcal{M}$ is C-closed if $[m]^X_C$ is an isomorphism. An \mathcal{X}-morphism f is called C-dense if for every $(\mathcal{E}, \mathcal{M})$-factorization (e, m) of f we have that $[m]^X_C$ is an isomorphism. We call C idempotent provided that $[m]^X_C$ is C-closed for every $m \in \mathcal{M}$. C is called weakly hereditary if $[m]^X_C$ is C-dense for every $m \in \mathcal{M}$. The class of all C-closed \mathcal{M}-subobjects and the class of all C-dense \mathcal{X}-morphisms will be denoted by \mathcal{M}^C and \mathcal{E}^C, respectively. If m and n are \mathcal{M}-subobjects of the same object X, with $m \leq n$ and m_n denotes the morphism such that $n \circ m_n = m$, then C is called hereditary if $n \circ [m_n]^X_C \simeq n \cap [m]^X_C$ holds for
every $X \in \mathcal{X}$ and for every pair of \mathcal{M}-subobjects of X, m and n with $m \leq n$. C is called additive if it preserves finite suprema, i.e., $\sup([m]^X_C, [n]^X_C) \simeq [\sup(m, n)]^X_C$ for every pair m,n of \mathcal{M}-subobjects of the same object X.

For more background on closure operators see, e.g., [1], [3], [4], [5], [8] and [10].

For every (idempotent) closure operator F let $D(F)$ be the class of all \mathcal{X}-objects A that satisfy the following condition: whenever $M \xrightarrow{m} X$ belongs to \mathcal{M} and $X \xrightarrow{r,s} A$ satisfy $r \circ m = s \circ m$, then $r \circ [m]_F = s \circ [m]_F$. If \mathcal{X} has squares, this is equivalent to requiring the diagonal $A \xrightarrow{\Delta A} A \times A$ to be F-closed. $D(F)$ is called the class of F-separated objects of X.

A special case of an idempotent closure operator arises in the following way. Given any class \mathcal{A} of \mathcal{X}-objects and $M \xrightarrow{m} X$ in \mathcal{M}, define $[m]_\mathcal{A}$ to be the intersection of all equalizers of pairs of \mathcal{X}-morphisms r,s from X to some \mathcal{A}-object Y that satisfy $r \circ m = s \circ m$, and let $\delta m[\mathcal{A}] \in \mathcal{M}$ be the unique \mathcal{X}-morphism by which m factors through $[m]_\mathcal{A}$. It is easy to see that $(\mathcal{A}, [\mathcal{A}])$ forms an idempotent closure operator. Since this generalizes the Salbany construction of closure operators induced by classes of topological spaces, cf. [11], we will often refer to it as the Salbany-type closure operator induced by \mathcal{A}. In [5] such a type of closure operator was called regular. To simplify the notation, instead of “[m]_\mathcal{A}$-dense” and “[m]_\mathcal{A}$-closed” we usually write “\mathcal{A}-dense” and “\mathcal{A}-closed”, respectively.

Notice that the objects of \mathcal{A} are always [m]_\mathcal{A}$-separated (cf. [3]).

For every (idempotent) closure operator F let $D(F)$ be the class of all \mathcal{X}-objects A that satisfy the following condition: whenever $M \xrightarrow{m} X$ belongs to \mathcal{M} and $X \xrightarrow{r,s} A$ satisfy $r \circ m = s \circ m$, then $r \circ [m]_F = s \circ [m]_F$. If \mathcal{X} has squares, this is equivalent to requiring the diagonal $A \xrightarrow{\Delta A} A \times A$ to be F-closed. $D(F)$ is called the class of F-separated objects of X.

A special case of an idempotent closure operator arises in the following way. Given any class \mathcal{A} of \mathcal{X}-objects and $M \xrightarrow{m} X$ in \mathcal{M}, define $[m]_\mathcal{A}$ to be the intersection of all equalizers of pairs of \mathcal{X}-morphisms r,s from X to some \mathcal{A}-object Y that satisfy $r \circ m = s \circ m$, and let $\delta m[\mathcal{A}] \in \mathcal{M}$ be the unique \mathcal{X}-morphism by which m factors through $[m]_\mathcal{A}$. It is easy to see that $(\mathcal{A}, [\mathcal{A}])$ forms an idempotent closure operator. Since this generalizes the Salbany construction of closure operators induced by classes of topological spaces, cf. [11], we will often refer to it as the Salbany-type closure operator induced by \mathcal{A}. In [5] such a type of closure operator was called regular. To simplify the notation, instead of “[m]_\mathcal{A}$-dense” and “[m]_\mathcal{A}$-closed” we usually write “\mathcal{A}-dense” and “\mathcal{A}-closed”, respectively.

Notice that the objects of \mathcal{A} are always [m]_\mathcal{A}$-separated (cf. [3]).

IEL(\mathcal{X}, \mathcal{M}) will denote the collection of all idempotent closure operators on \mathcal{M}, pre-ordered as follows: $C \subseteq D$ if $[m]_C \leq [m]_D$ for all $m \in \mathcal{M}$ (where \leq is the usual order on subobjects).

2 BASIC DEFINITIONS AND PRELIMINARY RESULTS

In what follows \mathcal{X} will be a category with finite products and \mathcal{A} will be one of its full and isomorphism-closed subcategories.

Definition 2.1. An \mathcal{X}-morphism $X \xrightarrow{f} Y$ is said to be \mathcal{A}-closed preserving, if for every \mathcal{A}-closed \mathcal{M}-subobject $M \xrightarrow{m} X$ in the (E,M)-factorization $m \circ e_1 = f \circ m$, m_1 is \mathcal{A}-closed.

Definition 2.2. We say that an \mathcal{X}-object X is \mathcal{A}-compact with respect to \mathcal{A} if for every \mathcal{A}-object Z, the projection $X \times Z \xrightarrow{\pi_2} Z$ is \mathcal{A}-closed preserving.

Comp$_\mathcal{X}(\mathcal{A})$ will denote the subcategory of all \mathcal{A}-compact objects with respect to \mathcal{A} and Comp$_\mathcal{X}(\mathcal{A}) \cap \mathcal{A}$ will be called the subcategory of compact-separated objects with respect to \mathcal{A}.
Notice that a more general version of Definition 2.2 has been recently introduced by Dikranjan and Giuli in [7]. However, in the context of this paper, since we are only dealing with idempotent closure operators, Definition 2.2 can be seen as a special case of the notion of (C,A)-compactness that appears in [7]. In our case C is the Salbany-type closure operator induced by the subcategory A.

A relevant number of examples of (C,A)-compactness can be found in [6] and [7]. At the end of this section, we will only list some examples where C is the Salbany-type closure operator induced by the subcategory A.

Notice also that Definition 2.2 only slightly differs from our previous definition of compactness with respect to a closure operator that appeared in [2]. The difference being that we now require that only the projections onto objects of the subcategory A be A-closed preserving.

The proofs of the following four results are very similar to the ones in [2], so we omit them.

Proposition 2.3. If $M \in \text{Comp}_X(A)$ and M is an M-subobject of $X \in A$, then M is A-closed.

Proposition 2.4.
(a) Let A be a subcategory of X such that $\lfloor \rfloor_A$ is weakly hereditary. Then $\text{Comp}_X(A)$ is closed under A-closed M-subobjects.
(b) Let A be a subcategory of X closed under finite products and M-subobjects. If $\lfloor \rfloor_A$ is weakly hereditary in A, then $\text{Comp}_X(A) \cap A$ is closed under A-closed M-subobjects.

Proposition 2.5. Suppose that for $e \in E$, the pullback of $e \times 1$ along any A-closed subobject belongs to E. If $X \xrightarrow{f} Y$ is an X-morphism and (e,m) is its (E,M)-factorization, then if $X \in \text{Comp}_X(A)$, so does $f(X)$ (where $f(X)$ is the middle object of the (E,M)-factorization).

For the next result we assume that X has arbitrary products and that in the (E,M)-factorization structure of X, E is a class of epimorphisms.

Definition 2.6. (Cf. [2, Definition 3.2]). Let A be a subcategory of X. The closure operator $\lfloor \rfloor_A$ is called compactly productive iff $\text{Comp}_X(A)$ is closed under products.

Proposition 2.7. (Cf. [2, Proposition 3.4]). Let A be an extremal epireflective and co-well powered subcategory of X, such that $\lfloor \rfloor_A$ is weakly hereditary in A. If $\lfloor \rfloor_A$ is compactly productive, then $\text{Comp}_X(A) \cap A$ is epireflective in A.

4
We recall the following result from [2]

Proposition 2.8. (Cf. [2, Proposition 1.16]). Let \(\mathcal{X} \) be a regular well-powered category with products and let \(\mathcal{A} \) be a subcategory of \(\mathcal{X} \) closed under the formation of products and \(\mathcal{M} \)-subobjects. Then \(\mathcal{A} \) is weakly hereditary in \(\mathcal{A} \) iff the regular monomorphisms in \(\mathcal{A} \) are closed under composition.

In the following examples we see that some nice and well known categories can be seen as compact-separated objects with respect to a regular closure operator. Notice that we take \((\mathcal{E}, \mathcal{M}) = (\text{epimorphisms}, \text{extremal monomorphisms})\).

Examples 2.9.

(a) Let \(\mathcal{X} = \text{TOP} \) and let \(\mathcal{A} = \text{TOP}_2 \). Then \(\text{Comp}_{\text{top}}(\text{TOP}_2) \cap \text{TOP}_2 = \text{COMP}_2 \) (compact Hausdorff topological spaces).

(b) Let \(\mathcal{X} = \text{TOP} \) and let \(\mathcal{A} = \text{TOP} \). Then \(\text{Comp}_{\text{top}}(\text{TOP}) \cap \text{TOP} = \text{TOP} \).

(c) Let \(\mathcal{X} = \text{TOP} \). For any bireflective subcategory \(\mathcal{A} \) of \(\text{TOP} \), we have that \(\text{Comp}_\mathcal{X}(\mathcal{A}) \cap \mathcal{A} = \mathcal{A} \).

(d) Let \(\mathcal{X} = \text{TOP} \) and let \(\mathcal{A} = \text{TOP}_0 \). Then \(\text{Comp}_{\text{top}}(\text{TOP}_0) \cap \text{TOP}_0 = \{\text{b-compact topological spaces}\} \cap \text{TOP}_0 \) (cf. [6, Example 3.2]).

(e) Let \(\mathcal{X} = \text{TOP} \) and let \(\mathcal{A} = \text{TOP}_1 \). Then \(\text{Comp}_{\text{top}}(\text{TOP}_1) \cap \text{TOP}_1 = \text{TOP}_1 \) (cf. Theorem 3.03).

(f) Let \(\mathcal{X} = \text{TOP} \) and let \(\mathcal{A} = \text{TOP}_3 \) or \(\text{TYCH} \). Then \(\text{Comp}_\mathcal{X}(\mathcal{A}) \cap \mathcal{A} = \text{COMP}_2 \).

(g) Let \(\mathcal{X} = \text{GR} \) and let \(\mathcal{A} = \text{AB} \). Then \(\text{Comp}_{\text{AB}}(\text{AB}) \cap \text{AB} = \text{AB} \).

3 A-COMPACTNESS AND EPIMORPHISMS

In this section, we will be working in the categories \(\text{AB}, \text{TOP}, \text{GR} \) and \(\text{TG} \). In each of these categories \(\mathcal{M} \) will be the class of all extremal monomorphisms. Therefore \((\mathcal{E}, \mathcal{M}) = (\text{epimorphisms}, \text{extremal monomorphisms})\).

We start by recalling a result that in a slightly modified form can be found in [2]. The only changes we made were to replace \(\text{Comp}(\mathcal{A}) \) by \(\text{Comp}_\mathcal{X}(\mathcal{A}) \) and to add the cases \(\mathcal{X} = \text{GR} \) and \(\mathcal{X} = \text{TG} \). Its proof is not affected by such changes.

Proposition 3.1. (Cf. [2, Proposition 2.5]). If \(\mathcal{A} \) is a subcategory of \(\text{AB}, \text{TOP}, \text{GR} \) or \(\text{TG} \) and \(\mathcal{A} \) is contained in \(\text{Comp}_\mathcal{X}(\mathcal{A}) \), then the epimorphisms in \(\mathcal{A} \) are surjective.

A different version of the following theorem for epireflective subcategories of \(\text{AB} \) was proved in [2]. This weakened form for subcategories that are not necessarily epireflective yields an interesting consequence in \(\text{AB} \) and \(\text{TOP} \).
Theorem 3.2. Let \mathcal{A} be a subcategory of \mathcal{AB} (TOP). Let us consider the following statements:

(a) \mathcal{A} is closed under quotients
(b) Each \mathcal{M}-subobject of an \mathcal{A}-object is \mathcal{A}-closed
(c) The projections onto objects of \mathcal{A} are \mathcal{A}-closed preserving
(d) $\text{Comp}_X(\mathcal{A}) = \mathcal{AB} (= \text{TOP})$
(e) $\mathcal{A} \subseteq \text{Comp}_X(\mathcal{A})$
(f) The epimorphisms in \mathcal{A} are surjective.

We have that $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (f)$. $(f) \not\Rightarrow (a)$.

Proof: $(a) \Rightarrow (b)$. Let $M \longrightarrow X$ be an \mathcal{M}-subobject of $X \in \mathcal{A}$.

For $\mathcal{A} \subseteq \mathcal{AB}$, consider the pair of morphisms $X \xrightarrow{q} X/M$, where q and 0 denote the quotient and the zero-homomorphism, respectively. Clearly $m \simeq \text{equ}(q, 0)$.

For $\mathcal{A} \subseteq \text{TOP}$, consider the pair of continuous functions $X \xrightarrow{q} X/M$ where q is the canonical function onto the quotient set X/M, c_M is the constant morphism into $\{M\}$ and X/M has the quotient topology induced by q. We have that $m \simeq \text{equ}(q, c_M)$.

Since $X/M \in \mathcal{A}$ in both cases, we obtain that m is \mathcal{A}-closed.

$(b) \Rightarrow (c)$. Straightforward.

$(c) \Rightarrow (d)$. Straightforward.

$(d) \Rightarrow (e)$. Obvious.

$(e) \Rightarrow (f)$. It follows from Proposition 3.1.

$(f) \not\Rightarrow (a)$. In \mathcal{AB} take $\mathcal{A} = \mathcal{AC}$ = algebraically compact abelian groups and in TOP take $\mathcal{A} = \text{TOP}_1$.

Corollary 3.3. If \mathcal{A} is a subcategory of \mathcal{AB} or TOP, then the epimorphisms in $\text{Comp}_X(\mathcal{A})$ are surjective.

Proof: From Proposition 2.5, $\text{Comp}_X(\mathcal{A})$ is closed under quotients and by applying Theorem 3.2, we get that the epimorphisms in $\text{Comp}_X(\mathcal{A})$ are surjective.

Notice that the above corollary is not a consequence of Proposition 2.9 of [2], since for $F = \lfloor \mathcal{A} \rfloor$, $\text{Comp}_X(\mathcal{A})$ is usually larger than $\text{Comp}(F)$.

Also notice that if we remove item (a) in Theorem 3.2, the implications (b) through (e) hold for subcategories of GR and TG as well.

Furthermore, the notion of compactness presented in this paper allows us to extend the equivalence of some items in Theorem 2.06 of [2] to epireflective subcategories of TOP, GR and TG, as the following theorem shows.

Theorem 3.4. Let \mathcal{A} be an epireflective subcategory in either TOP, GR or TG. The following are equivalent:
(a) \(\text{Comp}_X(A) \cap A = A \) and the regular monomorphisms in \(A \) are closed under composition.

(b) The epimorphisms in \(A \) are surjective and \(\| \|_A \) is weakly hereditary in \(A \).

(c) Each \(M \)-subobject of an \(A \)-object is \(A \)-closed.

Proof:

(a)⇒(b). It follows from Propositions 3.1 and 2.8.

(b)⇒(c). The same proof of e) ⇒ f) in Theorem 2.6 of [2] applies here.

(c)⇒(a). Let us consider the commutative diagram

\[
\begin{array}{ccc}
X \times Z & \xrightarrow{\pi_z} & Z \\
\downarrow m & & \uparrow m_1 \\
M & \xrightarrow{e_1} & M_1
\end{array}
\]

where \(X, Z \in A \), \((e_1, m_1)\) is the \((\mathcal{E}, \mathcal{M})\)-factorization of \(\pi_z \circ m \) and \(M \) is \(A \)-closed. Clearly, \(M_1 \) is \(A \)-closed by hypothesis, so \(\pi_z \) is \(A \)-closed preserving, i.e., \(X \) is \(A \)-compact with respect to \(A \). Since \(\| \|_A \) is weakly hereditary in \(A \), from Proposition 2.8 we get that the regular monomorphisms in \(A \) are closed under composition.

We next extend, under certain assumptions, the result in Corollary 3.3 to subcategories of the form \(\text{Comp}_X(A) \cap A \). This generalizes the fact that the epimorphisms in the category of compact Hausdorff topological spaces are surjective.

Proposition 3.5. Let \(A \) be an epireflective subcategory of \(AB \). Then, the epimorphisms in \(\text{Comp}_X(A) \cap A \) are surjective.

Proof: Let \(X \xrightarrow{f} Y \) be an epimorphism in \(\text{Comp}_X(A) \cap A \). Then, from Proposition 2.5, \(f(X) \in \text{Comp}_X(A) \). Since \(Y \in A \), \(f(X) \xrightarrow{i} Y \) is \(A \)-closed (cf. Proposition 2.3). So, \(i \simeq \text{equ}(f, g) \), with \(Y \xrightarrow{g} Z \), \(Z \in A \). This implies that \(Y/f(X) \in A \) and again from Proposition 2.5, \(Y/f(X) \in \text{Comp}_X(A) \). Let us consider \(Y \xrightarrow{g} Y/f(X) \). If \(f(X) \neq Y \) we would have that \(q \circ f = 0 \circ f \) with \(q \neq 0 \), which contradicts the fact that \(f \) is an epimorphism in \(\text{Comp}_X(A) \cap A \). Therefore \(f \) is surjective.

To show a similar result in \(\text{TOP} \) is a bit more laborious.

Let \(Y + Y \) denote the topological sum (coproduct) of two copies of the topological space \(Y \). If \(M \) is an extremal subobject of \(Y \), we denote by \(Y +_MY \) the quotient of \(Y + Y \) with respect to the equivalence relation \((x, i) \sim (y, j) \), \(i, j = 1, 2 \) iff either \(i \neq j \) and \(x = y \in M \) or \((x, i) = (y, j) \) (cf. [4, Definition 1.11]).

Proposition 3.6. (Cf. [4, Proposition 1.12]). Let \(A \) be an extremal epireflective subcategory of \(\text{TOP} \). For every \(Y \in A \) and for every extremal subobject \(M \) of \(Y \), the following are equivalent.

7
(a) $Y +_M Y \in \mathcal{A}$
(b) $M = [M]_A$

Corollary 3.7. Let \mathcal{A} be an extremal epireflective subcategory of TOP, let $X \xrightarrow{f} Y$ be a \mathcal{A}-morphism and let $M = [f(X)]_\mathcal{A}$. Then, $Y +_M Y$ belongs to \mathcal{A}.

Proof: It follows directly from Proposition 3.6.

Lemma 3.8. Let \mathcal{A} be an extremal epireflective subcategory of TOP such that $[\]_\mathcal{A}$ is additive in \mathcal{A}. Then, if $Y \in \text{Comp}_X(\mathcal{A})$, so does $Y + Y$.

Proof: Let $Z \in \mathcal{A}$ and let $M -\xrightarrow{m} (Y + Y) \times Z$ be \mathcal{A}-closed. Notice that $(Y + Y) \times Z$ is homeomorphic to $(Y \times Z) + (Y \times Z)$. Let us call such a homeomorphism i. Thus, $i \circ m$ is the equalizer of two morphisms $(Y \times Z) + (Y \times Z) \xrightarrow{g} T$, $T \in \mathcal{A}$. Let f_1, g_1 and f_2, g_2 denote the restrictions of f and g to the first and the second addend of $(Y \times Z) + (Y \times Z)$, respectively. Let $M_1 -\xrightarrow{m_1} Y \times Z$ and $M_2 -\xrightarrow{m_2} Y \times Z$ be two morphisms such that $m_1 = \text{equ}(f_1, g_1)$ and $m_2 = \text{equ}(f_2, g_2)$. Then $(i \circ m)(M) = m_1(M_1) + m_2(M_2)$. Let π_2 and π_2 denote the projections onto Z of the first and the second addend of $(Y \times Z) + (Y \times Z)$ and let $[\pi_2, \pi_2]: (Y \times Z) + (Y \times Z) \rightarrow Z$ denote the induced continuous function. If π_2 is the usual projection of $(Y + Y) \times Z$ onto Z, then $([\pi_2, \pi_2]) \circ i = \pi_2$. Now, $(\pi_2 \circ m)(M) = ([\pi_2, \pi_2]) \circ (i \circ m)(M) = ([\pi_2, \pi_2])(m_1(M_1) + m_2(M_2)) = \pi_2(m_1(M_1) \cup \pi_2(m_2(M_2)))$. Thus, $Y \in \text{Comp}_X(\mathcal{A})$, $\pi_2(m_1(M_1))$ and $\pi_2(m_2(M_2))$ are both \mathcal{A}-closed and so is their union, since $[\]_\mathcal{A}$ is additive in \mathcal{A}.

Proposition 3.9. Let \mathcal{A} be an extremal epireflective subcategory of TOP such that $[\]_\mathcal{A}$ is additive in \mathcal{A}. Let $X \xrightarrow{f} Y$ be an \mathcal{X}-morphism and let $M = [f(X)]_\mathcal{A}$. Then, if $Y \in \text{Comp}_X(\mathcal{A})$, so does $Y +_M Y$.

Proof: From Lemma 3.8, $Y + Y \in \text{Comp}_X(\mathcal{A})$ and from Proposition 2.5, so does $Y +_M Y$.

Theorem 3.10. Let \mathcal{A} be an extremal epireflective subcategory of TOP such that $[\]_\mathcal{A}$ is additive in \mathcal{A}. Then, the epimorphisms in $\text{Comp}_X(\mathcal{A}) \cap \mathcal{A}$ are surjective.

Proof: Let $X \xrightarrow{f} Y$ be an epimorphism in $\text{Comp}_X(\mathcal{A}) \cap \mathcal{A}$ and let M denote the subspace $[f(X)]_\mathcal{A}$. We have that $Y +_M Y \in \text{Comp}_X(\mathcal{A}) \cap \mathcal{A}$ (cf. Corollary 3.7 and Proposition 3.9). From Proposition 2.5, $f(X) \in \text{Comp}_X(\mathcal{A})$ and from Proposition 2.3, $f(X)$ is \mathcal{A}-closed. Thus, $Y +_M Y = Y +_{f(X)} Y$. Let i and j be the left and the right inclusions of Y into $Y + Y$ and let $Y + Y -\xrightarrow{q} Y +_{f(X)} Y$ be the quotient map. Clearly, $q \circ i \circ f = q \circ j \circ f$. If f is not surjective, then we have that $q \circ i \neq q \circ j$. This contradicts our assumption of f being an epimorphism in $\text{Comp}_X(\mathcal{A}) \cap \mathcal{A}$.
4 A-COMPACTNESS AND ALGEBRAIC CATEGORIES

It is well known that COMP_2, i.e., the category of compact Hausdorff topological spaces, forms an algebraic category in the sense that COMP_2 has coequalizers and the forgetful functor $U: \text{COMP}_2 \to \text{SET}$ has a left adjoint and preserves and reflects regular epimorphisms (cf. [9]). It is quite natural to wonder whether this result could be extended in TOP to categories of compact-separated objects with respect to a regular closure operator. Unfortunately the subcategory TOP_1 shows that this is not the case. As a matter of fact, $\text{Comp}_{\text{TOP}}(\text{TOP}_1) \cap \text{TOP}_1 = \text{TOP}_1$ (cf. Example 2.9(e)) and TOP_1 is not an algebraic category, since the forgetful functor $U: \text{TOP}_1 \to \text{SET}$ fails to reflect regular epimorphisms. However, the remaining conditions are all satisfied. We will see that, under certain assumptions on the subcategory \mathcal{A}, TOP_1 outlines the behavior of $\text{Comp}_X(\mathcal{A}) \cap \mathcal{A}$.

Proposition 4.1. If \mathcal{A} is an extremal epireflective subcategory of TOP, then $\text{Comp}_X(\mathcal{A}) \cap \mathcal{A}$ has coequalizers.

Proof: Let $X \xrightarrow{f} Y$ be two morphisms in $\text{Comp}_X(\mathcal{A}) \cap \mathcal{A}$ and let $Y \xrightarrow{q} Q$ be their coequalizer in TOP. From Proposition 2.5, $Q \in \text{Comp}_X(\mathcal{A})$. Since \mathcal{A} is extremal epireflective in TOP, we can consider the reflection $Q \xrightarrow{rQ} rQ$ of Q in \mathcal{A}. From Proposition 2.5 $rQ \in \text{Comp}_X(\mathcal{A})$. Now, it is easily shown that $Y \xrightarrow{rQ} rQ$ is the coequalizer of f and g in $\text{Comp}_X(\mathcal{A}) \cap \mathcal{A}$. □

Proposition 4.2. Let \mathcal{A} be an extremal epireflective subcategory of TOP such that $\lfloor \rfloor_\mathcal{A}$ is additive in \mathcal{A}. Then, the forgetful functor $U: \text{Comp}_X(\mathcal{A}) \cap \mathcal{A} \to \text{SET}$ preserves regular epimorphisms.

Proof: Let $X \xrightarrow{f} Y$ be a regular epimorphism in $\text{Comp}_X(\mathcal{A}) \cap \mathcal{A}$. Then, from Theorem 3.10, f is surjective. Therefore $U(f)$ is a regular epimorphism in SET. □

Proposition 4.3. Let \mathcal{A} be an extremal epireflective and co-well powered subcategory of TOP. Suppose that $\lfloor \rfloor_\mathcal{A}$ is weakly hereditary in \mathcal{A} and compactly productive. Then, the forgetful functor $U: \text{Comp}_X(\mathcal{A}) \cap \mathcal{A} \to \text{SET}$ has a left adjoint.

Proof: The case $\mathcal{A} = \{x\}$ is trivial. So, Let $\mathcal{A} \neq \{x\}$. Let X be a set and let X_d be the discrete topological space with underlying set X. Clearly $X_d \in \mathcal{A}$, since \mathcal{A} is an extremal epireflective subcategory of TOP. Let βX be the \mathcal{A}-dense-reflection of X_d into $\text{Comp}_X(\mathcal{A}) \cap \mathcal{A}$ (cf. Proposition 2.7) and let $X_d \xrightarrow{\beta X} \beta X$ be the reflection morphism. If $Y \in \text{Comp}_X(\mathcal{A}) \cap \mathcal{A}$ and $X \xrightarrow{f} UY$ is a morphism in SET, then $X_d \xrightarrow{g} Y$ such that $U(g) = f$ is continuous. From Proposition 2.7, there exists a unique $\beta X \xrightarrow{f'} Y$ such that $f' \circ \beta_x = g$ (notice that f' is unique because β_x is a \mathcal{A}-epimorphism). Clearly we have that $Uf' \circ U\beta_x = f$. □
The results in Propositions 4.1, 4.2 and 4.3 can be summarized in the following

Theorem 4.4. Let \(\mathcal{A} \) be an extremal epireflective and co-well powered subcategory of \(\text{TOP} \) such that \(\| \cdot \|_\mathcal{A} \) is compactly productive, weakly hereditary in \(\mathcal{A} \) and additive in \(\mathcal{A} \). Then, \(\text{Comp}_X(\mathcal{A}) \cap \mathcal{A} \) has coequalizers and the forgetful functor \(U : \text{Comp}_X(\mathcal{A}) \cap \mathcal{A} \to \text{SET} \) has a left adjoint and preserves regular epimorphisms.

REFERENCES

Gabriele Castellini
Department of Mathematics
University of Puerto Rico
P.O. Box 5000
Mayagüez, PR 00709-5000
U.S.A.