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Résumé. Une légère modification de la notion de compacité relative-

ment à un opérateur de fermeture permet d’étendre à la catégorie TOP

des espaces topologiques divers résultats sur les opérateurs de fermeture

réguliers obtenus pour la catégorie AB des groups abéliens. Ainsi les

épimorphismes dans les sous-catégories des objets compacts ou compacts-

séparés pour un opérateur de fermeture régulier additif sont surjectifs.

L’auteur montre aussi que sous certaines conditions sur une sous-catégorie

A de TOP, la sous-catégorie engendrée par les objets compacts-séparés

pour l’opérateur de fermeture régulier induit sur A a plusieurs bonnes

propriétés normalement obtenues dans des catégories algébriques.

INTRODUCTION

Let A be a subcategory of a given category X . The notion of compactness with

respect to a closure operator introduced in [2] (cf. also [6] and [7]) seems to yield

more interesting results if, in the case of a regular closure operator induced by
A, we restrict our attention to objects of the subcategory only. This allows us to

prove that in AB and TOP the epimorphisms in subcategories of compact and

compact-separated objects with respect to a regular closure operator are surjective.

Moreover, we are able to extend Theorem 2.6 of [2], in a modified form, to the

categories TOP, GR (groups) and TG (topological groups).

Let A be a subcategory of TOP. The behavior of compact Hausdorff topolog-

ical spaces gives rise to the question of whether the subcategory CompX (A)∩A of

compact-separated objects with respect to [ ]
A

might form an algebraic category

in the sense of [9]. Unfortunately, the answer in general is no and the subcategory
TOP1 of T1 topological spaces provides the needed counterexample. As a matter of

fact, Comp
TOP

(TOP1)∩TOP1 = TOP1, which is not an algebraic category. How-

ever, such a category has coequalizers and the forgetful functor U :TOP1 → SET

has a left adjoint and preserves regular epimorphisms. In the last section of the

paper we show that, under certain assumptions on the subcategory A, the above

mentioned properties of TOP1 are normally satisfied by any subcategory of TOP

of the form CompX (A)∩A.

All the subcategories will be full and isomorphism closed.

We use the terminology of [9] throughout.
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1 PRELIMINARIES
Throughout we consider a category X and a fixed class M of X -monomorphisms,

which contains all X -isomorphisms. It is assumed that:

(1) M is closed under composition

(2) Pullbacks of M-morphisms exist and belong to M, and multiple pullbacks of

(possibly large) families of M-morphisms with common codomain exist and

belong to M.

In addition, we require X to have equalizers and M to contain all regular

monomorphisms.
One of the consequences of the above assumptions is that there is a uniquely

determined class E of morphisms in X such that (E ,M) is a factorization structure

for morphisms in X (cf. [5]).

We regard M as a full subcategory of the arrow category of X , with the

codomain functor from M to X denoted by U . Since U is faithful, M is concrete

over X .

As in [5], by a closure operator on X (with respect to M) we mean a pair

C = (γ, [ ]
C
), where [ ]

C
is an endofunctor on M that satisfies U [ ]

C
= U , and γ is

a natural transformation from idM to [ ]
C

that satisfies (idU )γ = idU .

Thus, given a closure operator C = (γ, [ ]
C
), every member m of M has a

canonical factorization

M
]m[

X

C−→ [M ]
X

C

m ց




y

[m]
X

C

X

where [m]
X

C
= F (m) is called the C-closure of m, and ]m[

X

C
is the domain of the

m-component of γ. Subscripts and superscripts will be omitted when not necessary.

Notice that, in particular, [ ]
C

induces an order-preserving increasing function on

the M-subobject lattice of every X -object. Also, these functions are related in the

following sense: if p is the pullback of a morphism m ∈ M along some X -morphism

f , and q is the pullback of [m]
C

along f , then [p]
C
≤ q. Conversely, every family

of functions on the M-subobject lattices that has the above properties uniquely

determines a closure operator.

Given a closure operator C, we say that m ∈ M is C-closed if ]m[
C

is an
isomorphism. An X -morphism f is called C-dense if for every (E ,M)-factorization

(e, m) of f we have that [m]
C

is an isomorphism. We call C idempotent provided

that [m]
C

is C-closed for every m ∈ M. C is called weakly hereditary if ]m[
C

is

C-dense for every m ∈ M. The class of all C-closed M-subobjects and the class of

all C-dense X -morphisms will be denoted by MC and EC , respectively. If m and n

are M-subobjects of the same object X, with m ≤ n and mn denotes the morphism

such that n ◦mn = m, then C is called hereditary if n ◦ [mn]
C
≃ n∩ [m]

C
holds for
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every X ∈ X and for every pair of M-subobjects of X, m and n with m ≤ n. C

is called additive if it preserves finite suprema, i.e., sup([m]
X

C
, [n]

X

C
) ≃ [sup(m, n)]

X

C

for every pair m,n of M-subobjects of the same object X.

For more background on closure operators see, e.g., , [1], [3], [4], [5], [8] and

[10].

For every (idempotent) closure operator F let D(F ) be the class of all X -

objects A that satisfy the following condition: whenever M
m
−→ X belongs to M

and X −→−→
r

s
A satisfy r ◦ m = s ◦ m, then r ◦ [m]

F
= s ◦ [m]

F
. If X has squares, this

is equivalent to requiring the diagonal A
∆A−→ A × A to be F -closed. D(F) is called

the class of F -separated objects of X .

A special case of an idempotent closure operator arises in the following way.

Given any class A of X -objects and M
m
−→ X in M, define [m]

A
to be the in-

tersection of all equalizers of pairs of X -morphisms r, s from X to some A-object

Y that satisfy r ◦ m = s ◦ m, and let ]m[
A
∈ M be the unique X -morphism by

which m factors through [m]
A
. It is easy to see that (] [

A
, [ ]

A
) forms an idem-

potent closure operator. Since this generalizes the Salbany construction of closure

operators induced by classes of topological spaces, cf. [11], we will often refer to it
as the Salbany-type closure operator induced by A. In [5] such a type of closure

operator was called regular. To simplify the notation, instead of “[ ]
A
-dense” and

“[ ]
A
-closed” we usually write “A-dense” and “A-closed”, respectively.

Notice that the objects of A are always [ ]A-separated (cf. [3]).

iCL(X ,M) will denote the collection of all idempotent closure operators on

M, pre-ordered as follows: C ⊑ D if [m]
C
≤ [m]

D
for all m ∈ M (where ≤ is the

usual order on subobjects).

2 BASIC DEFINITIONS AND PRELIMINARY RESULTS
In what follows X will be a category with finite products and A will be one of its

full and isomorphism-closed subcategories.

Definition 2.1. An X -morphism X
f

−→ Y is said to be A-closed preserving, if for

every A-closed M-subobject M
m
−→ X , in the (E ,M)-factorization m1 ◦ e1 = f ◦m,

m1 is A-closed.

Definition 2.2. We say that an X -object X is A-compact with respect to A if for

every A-object Z, the projection X × Z
π

Z−→ Z is A-closed preserving.

CompX (A) will denote the subcategory of all A-compact objects with respect

to A and CompX (A)∩A will be called the subcategory of compact-separated objects

with respect to A.
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Notice that a more general version of Definition 2.2 has been recently intro-

duced by Dikranjan and Giuli in [7]. However, in the context of this paper, since we

are only dealing with idempotent closure operators, Definition 2.2 can be seen as a

special case of the notion of (C,A)-compactness that appears in [7]. In our case C

is the Salbany-type closure operator induced by the subcategory A.

A relevant number of examples of (C,A)-compactness can be found in [6] and

[7]. At the end of this section, we will only list some examples where C is the

Salbany-type closure operator induced by the subcategory A.

Notice also that Definition 2.2 only slightly differs from our previous defini-

tion of compactness with respect to a closure operator that appeared in [2]. The

difference being that we now require that only the projections onto objects of the

subcategory A be A-closed preserving.

The proofs of the following four results are very similar to the ones in [2], so

we omit them.

Proposition 2.3. If M ∈ CompX (A) and M is an M-subobject of X ∈ A, then

M is A-closed.

Proposition 2.4.

(a) Let A be a subcategory of X such that [ ]
A

is weakly hereditary.Then CompX (A)

is closed under A-closed M-subobjects.

(b) Let A be a subcategory of X closed under finite products and M-subobjects. If

[ ]
A

is weakly hereditary in A, then CompX (A) ∩ A is closed under A-closed

M-subobjects.

Proposition 2.5. Suppose that for e ∈ E, the pullback of e × 1 along any

A-closed subobject belongs to E. If X
f

−→ Y is an X -morphism and (e, m) is its

(E ,M)-factorization, then if X ∈ CompX (A), so does f(X) (where f(X) is the

middle object of the (E ,M)-factorization).

For the next result we assume that X has arbitrary products and that in the

(E ,M)-factorization structure of X , E is a class of epimorphisms.

Definition 2.6. (Cf. [2, Definition 3.2]). Let A be a subcategory of X . The

closure operator [ ]
A

is called compactly productive iff CompX (A) is closed under

products.

Proposition 2.7. (Cf. [2, Proposition 3.4]). Let A be an extremal epireflective

and co-well powered subcategory of X , such that [ ]
A

is weakly hereditary in A. If

[ ]
A

is compactly productive, then CompX (A) ∩ A is epireflective in A.
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We recall the following result from [2]

Proposition 2.8. (Cf. [2, Proposition 1.16]). Let X be a regular well-powered

category with products and let A be a subcategory of X closed under the formation

of products and M-subobjects. Then [ ]
A

is weakly hereditary in A iff the regular
monomorphisms in A are closed under composition.

In the following examples we see that some nice and well known categories can

be seen as compact-separated objects with respect to a regular closure operator.

Notice that we take (E ,M) = (epimorphisms,extremal monomorphisms).

Examples 2.9.

(a) Let X = TOP and let A = TOP2. Then Comp
TOP

(TOP2) ∩ TOP2 =
COMP2 (compact Hausdorff topological spaces).

(b) Let X = TOP and let A = TOP. Then Comp
TOP

(TOP) ∩ TOP = TOP.

(c) Let X = TOP. For any bireflective subcategory A of TOP, we have that

CompX (A) ∩ A = A.

(d) Let X = TOP and let A = TOP0. Then Comp
TOP

(TOP0) ∩ TOP0 =

{b-compact topological spaces} ∩ TOP0 (cf. [6, Example 3.2]).

(e) Let X = TOP and let A = TOP1. Then Comp
TOP

(TOP1)∩TOP1 = TOP1

(cf. Theorem 3.03).

(f) Let X = TOP and let A = TOP3 or TYCH. Then CompX (A) ∩ A =
COMP2.

(g) Let X = GR and let A = AB. Then Comp
AB

(AB) ∩AB = AB.

3 A-COMPACTNESS AND EPIMORPHISMS
In this section, we will be working in the categories AB, TOP, GR and TG.

In each of these categories M will be the class of all extremal monomorphisms.

Therefore (E ,M) = (epimorphisms,extremal monomorphisms).

We start by recalling a result that in a slightly modified form can be found in

[2]. The only changes we made were to replace Comp(A) by CompX (A) and to add

the cases X = GR and X = TG. Its proof is not affected by such changes.

Proposition 3.1. (Cf. [2, Proposition 2.5]). If A is a subcategory of AB,

TOP, GR or TG and A is contained in CompX (A), then the epimorphisms in A

are surjective.

A different version of the following theorem for epireflective subcategories of

AB was proved in [2]. This weakened form for subcategories that are not necessarily

epireflective yields an interesting consequence in AB and TOP.
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Theorem 3.2. Let A be a subcategory of AB (TOP). Let us consider the

following statements:

(a) A is closed under quotients

(b) Each M-subobject of an A-object is A-closed

(c) The projections onto objects of A are A-closed preserving

(d) CompX (A) = AB (= TOP)

(e) A ⊆ CompX (A)

(f) The epimorphisms in A are surjective.

We have that (a)⇒(b)⇒(c)⇒(d)⇒(e)⇒(f). (f)6⇒(a).

Proof: (a)⇒(b). Let M
m
−→ X be an M-subobject of X ∈ A.

For A ⊆ AB, consider the pair of morphisms X −→−→
q

0
X/M , where q and 0 denote

the quotient and the zero-homomorphism, respectively. Clearly m ≃ equ(q, 0).

For A ⊆ TOP, consider the pair of continuous functions X −→−→
q

cM

X/M where q

is the canonical function onto the quotient set X/M , cM is the constant morphism

into {M} and X/M has the quotient topology induced by q. We have that m ≃

equ(q, cM ).

Since X/M ∈ A in both cases, we obtain that m is A-closed.

(b)⇒(c). Straightforward.

(c)⇒(d). Straightforward.

(d)⇒(e). Obvious.

(e)⇒(f). It follows from Proposition 3.1.

(f)6⇒(a). In AB take A = AC = algebraically compact abelian groups and in

TOP take A = TOP1.

Corollary 3.3. If A is a subcategory of AB or TOP, then the epimorphisms

in CompX (A) are surjective.

Proof: ¿From Proposition 2.5, CompX (A) is closed under quotients and by ap-

plying Theorem 3.2, we get that the epimorphisms in CompX (A) are surjective.

Notice that the above corollary is not a consequence of Proposition 2.9 of [2],

since for F =[ ]A, CompX (A) is usually larger than Comp(F).

Also notice that if we remove item (a) in Theorem 3.2, the implications (b)

trough (e) hold for subcategories of GR and TG as well.

Furthermore, the notion of compactness presented in this paper allows us to

extend the equivalence of some items in Theorem 2.06 of [2] to epireflective subcat-

egories of TOP, GR and TG, as the following theorem shows.

Theorem 3.4. Let A be an epireflective subcategory in either TOP, GR or

TG. The following are equivalent:
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(a) CompX (A) ∩ A = A and the regular monomorphisms in A are closed under

composition

(b) The epimorphisms in A are surjective and [ ]
A

is weakly hereditary in A

(c) Each M-subobject of an A-object is A-closed.

Proof: (a)⇒(b). It follows from Propositions 3.1 and 2.8.

(b)⇒(c). The same proof of e) ⇒ f) in Theorem 2.6 of [2] applies here.

(c)⇒(a). Let us consider the commutative diagram

X × Z
π

Z−→ Z

m

x





x





m1

M −→
e1

M1

where X , Z ∈ A, (e1, m1) is the (E ,M)-factorization of π
Z
◦ m and M is A-closed.

Clearly, M1 is A-closed by hypothesis, so π
Z

is A-closed preserving, i.e., X is A-

compact with respect to A. Since [ ]
A

is weakly hereditary in A, from Proposition

2.8 we get that the regular monomorphisms in A are closed under composition.

We next extend, under certain assumptions, the result in Corollary 3.3 to

subcategories of the form CompX (A) ∩ A. This generalizes the fact that the epi-

morphisms in the category of compact Hausdorff topological spaces are surjective.

Proposition 3.5. Let A be an epireflective subcategory of AB. Then, the

epimorphisms in CompX (A) ∩ A are surjective.

Proof: Let X
f

−→ Y be an epimorphism in CompX (A)∩A. Then, from Proposition

2.5, f(X) ∈CompX (A). Since Y ∈ A, f(X)
i

−→ Y is A-closed (cf. Proposition 2.3).

So, i ≃ equ(f, g), with Y −→−→
f

g
Z, Z ∈ A. This implies that Y/f(X) ∈ A and again

from Proposition 2.5, Y/f(X) ∈CompX (A). Let us consider Y −→−→
q

0
Y/f(X). If

f(X) 6= Y we would have that q ◦ f = 0 ◦ f with q 6= 0, which contradicts the fact

that f is an epimorphism in CompX (A) ∩ A. Therefore f is surjective.

To show a similar result in TOP is a bit more laborious.

Let Y + Y denote the topological sum (coproduct) of two copies of the topo-

logical space Y . If M is an extremal subobject of Y , we denote by Y +
M

Y the

quotient of Y + Y with respect to the equivalence relation (x, i) ∼ (y, j), i, j = 1,

2 iff either i 6= j and x = y ∈ M or (x, i) = (y, j) (cf. [4, Definition 1.11]).

Proposition 3.6. (Cf. [4, Proposition 1.12]). Let A be an extremal epireflective

subcategory of TOP. For every Y ∈ A and for every extremal subobject M of Y ,

the following are equivalent
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(a) Y +
M

Y ∈ A

(b) M = [M ]
A

Corollary 3.7. Let A be an extremal epireflective subcategory of TOP, let

X
f

−→ Y be a A-morphism and let M = [f(X)]
A
. Then, Y +

M
Y belongs to A.

Proof: It follows directly from Proposition 3.6.

Lemma 3.8. Let A be an extremal epireflective subcategory of TOP such that

[ ]
A

is additive in A. Then, if Y ∈ CompX (A), so does Y + Y .

Proof: Let Z ∈ A and let M
m
−→ (Y +Y )×Z be A-closed. Notice that (Y +Y )×Z

is homeomorphic to (Y ×Z)+(Y ×Z). Let us call such a homeomorphism i. Thus,

i ◦ m is the equalizer of two morphisms (Y × Z) + (Y × Z) −→−→
f

g
T , T ∈ A. Let f1,

g1 and f2, g2 denote the restrictions of f and g to the first and the second addend

of (Y × Z) + (Y × Z), respectively. Let M1
m1−→ Y × Z and M2

m2−→ Y × Z be two

morphisms such that m1 = equ(f1, g1) and m2 = equ(f2, g2). Then (i ◦ m)(M) =

m1(M1) + m2(M2). Let π1
Z

and π2
Z

denote the projections onto Z of the first and

the second addend of (Y × Z) + (Y × Z) and let [π1
Z
, π2

Z
]: (Y × Z) + (Y × Z) → Z

denote the induced continuous function. If π
Z

is the usual projection of (Y +Y )×Z

onto Z, then ([π1
Z
, π2

Z
]) ◦ i = π

Z
. Now, (π

Z
◦ m)(M) = (([π1

Z
, π2

Z
]) ◦ i ◦ m)(M) =

([π1
Z
, π2

Z
])(m1(M1)+m2(M2)) = π1

Z
(m1(M1))∪π2

Z
(m2(M2)). Since Y ∈CompX (A),

π1
Z
(m1(M1)) and π2

Z
(m2(M2)) are both A-closed and so is their union, since [ ]

A
is

additive in A.

Proposition 3.9. Let A be an extremal epireflective subcategory of TOP such

that [ ]A is additive in A. Let X
f

−→ Y be an X -morphism and let M = [f(X)]A.
Then, if Y ∈CompX (A), so does Y +

M
Y .

Proof: ¿From Lemma 3.8, Y + Y ∈CompX (A) and from Proposition 2.5, so does

Y +
M

Y .

Theorem 3.10. Let A be an extremal epireflective subcategory of TOP such

that [ ]
A

is additive in A. Then the epimorphisms in CompX (A)∩A are surjective.

Proof: Let X
f

−→ Y be an epimorphism in CompX (A) ∩ A and let M denote the

subspace [f(X)]
A
. We have that Y +

M
Y ∈CompX (A) ∩ A (cf. Corollary 3.7 and

Proposition 3.9). From Proposition 2.5, f(X) ∈CompX (A) and from Proposition

2.3, f(X) is A-closed. Thus, Y +
M

Y = Y +
f(X)

Y . Let i and j be the left and the

right inclusions of Y into Y + Y and let Y + Y
q

−→ Y +
f(X)

Y be the quotient map.

Clearly, q ◦ i ◦ f = q ◦ j ◦ f . If f is not surjective, then we have that q ◦ i 6= q ◦ j.

This contradicts our assumption of f being an epimorphism in CompX (A) ∩ A.
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4 A-COMPACTNESS AND ALGEBRAIC CATEGORIES
It is well known that COMP2, i.e., the category of compact Hausdorff topological

spaces, forms an algebraic category in the sense that COMP2 has coequalizers and

the forgetful functor U :COMP2 →SET has a left adjoint and preserves and reflects

regular epimorphisms (cf. [9]). It is quite natural to wonder whether this result

could be extended in TOP to categories of compact-separated objects with respect

to a regular closure operator. Unfortunately the subcategory TOP1 shows that

this is not the case. As a matter of fact, Comp
TOP

(TOP1) ∩ TOP1 = TOP1 (cf.

Example 2.9(e)) and TOP1 is not an algebraic category, since the forgetful functor
U :TOP1 → SET fails to reflect regular epimorphisms. However, the remaining

conditions are all satisfied. We will see that, under certain assumptions on the

subcategory A, TOP1 outlines the behavior of CompX (A) ∩ A.

Proposition 4.1. If A is an extremal epireflective subcategory of TOP, then

CompX (A) ∩ A has coequalizers.

Proof: Let X −→−→
f

g
Y be two morphisms in CompX (A)∩A and let Y

q
−→ Q be their

coequalizer in TOP. From Proposition 2.5, Q ∈ CompX (A). Since A is extremal

epireflective in TOP, we can consider the reflection Q
r

−→ rQ of Q in A. From

Proposition 2.5 rQ ∈CompX (A). Now, it is easily shown that Y
r◦q
−→ rQ is the

coequalizer of f and g in CompX (A) ∩ A.

Proposition 4.2. Let A be an extremal epireflective subcategory of TOP such

that [ ]
A

is additive in A. Then, the forgetful functor U : CompX (A) ∩ A → SET

preserves regular epimorphisms.

Proof: Let X
f

−→ Y be a regular epimorphism in CompX (A) ∩ A. Then, from

Theorem 3.10, f is surjective. Therefore U(f) is a regular epimorphism in SET.

Proposition 4.3. Let A be an extremal epireflective and co-well powered

subcategory of TOP. Suppose that [ ]
A

is weakly hereditary in A and compactly

productive. Then, the forgetful functor U : CompX (A)∩A → SET has a left adjoint.

Proof: The case A = {x} is trivial. So, Let A 6= {x}. Let X be a set and let Xd

be the discrete topological space with underlying set X . Clearly Xd ∈ A, since A is

an extremal epireflective subcategory of TOP. Let βX be the A-dense-reflection of

Xd into CompX (A) ∩ A (cf. Proposition 2.7) and let Xd
βX
−→ βX be the reflection

morphism. If Y ∈ CompX (A) ∩ A and X
f

−→ UY is a morphism in SET, then

Xd
g

−→ Y such that U(g) = f is continuous. ¿From Proposition 2.7, there exists a

unique βX
f ′

−→ Y such that f ′ ◦ βx = g (notice that f ′ is unique because βx is a

A-epimorphism). Clearly we have that Uf ′ ◦ Uβx = f .
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The results in Propositions 4.1, 4.2 and 4.3 can be summerized in the following

Theorem 4.4. Let A be an extremal epireflective and co-well powered sub-
category of TOP such that [ ]

A
is compactly productive, weakly hereditary in A

and additive in A. Then, CompX (A)∩A has coequalizers and the forgetful functor

U : CompX (A) ∩ A → SET has a left adjoint and preserves regular epimorphisms.
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