REGULAR CLOSURE OPERATORS AND COMPACTNESS

G. Castellini

Résumé. Une légère modification de la notion de compacité relativement à un opérateur de fermeture permet d'étendre à la catégorie TOP des espaces topologiques divers résultats sur les opérateurs de fermeture réguliers obtenus pour la catégorie AB des groups abéliens. Ainsi les épimorphismes dans les sous-catégories des objets compacts ou compactsséparés pour un opérateur de fermeture régulier additif sont surjectifs. L'auteur montre aussi que sous certaines conditions sur une sous-catégorie \mathcal{A} de TOP, la sous-catégorie engendrée par les objets compacts-séparés pour l'opérateur de fermeture régulier induit sur \mathcal{A} a plusieurs bonnes propriétés normalement obtenues dans des catégories algébriques.

INTRODUCTION

Let \mathcal{A} be a subcategory of a given category \mathcal{X} . The notion of compactness with respect to a closure operator introduced in [2] (cf. also [6] and [7]) seems to yield more interesting results if, in the case of a regular closure operator induced by \mathcal{A} , we restrict our attention to objects of the subcategory only. This allows us to prove that in **AB** and **TOP** the epimorphisms in subcategories of compact and compact-separated objects with respect to a regular closure operator are surjective. Moreover, we are able to extend Theorem 2.6 of [2], in a modified form, to the categories **TOP**, **GR** (groups) and **TG** (topological groups).

Let \mathcal{A} be a subcategory of **TOP**. The behavior of compact Hausdorff topological spaces gives rise to the question of whether the subcategory $\operatorname{Com}_{\mathcal{X}}(\mathcal{A})\cap\mathcal{A}$ of compact-separated objects with respect to $[]_{\mathcal{A}}$ might form an algebraic category in the sense of [9]. Unfortunately, the answer in general is no and the subcategory **TOP**₁ of T₁ topological spaces provides the needed counterexample. As a matter of fact, $\operatorname{Comp}_{\mathbf{TOP}}(\mathbf{TOP}_1)\cap\mathbf{TOP}_1 = \mathbf{TOP}_1$, which is not an algebraic category. However, such a category has coequalizers and the forgetful functor $U: \mathbf{TOP}_1 \to \mathbf{SET}$ has a left adjoint and preserves regular epimorphisms. In the last section of the paper we show that, under certain assumptions on the subcategory \mathcal{A} , the above mentioned properties of \mathbf{TOP}_1 are normally satisfied by any subcategory of \mathbf{TOP} of the form $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A})\cap\mathcal{A}$.

All the subcategories will be full and isomorphism closed.

We use the terminology of [9] throughout.

1 PRELIMINARIES

Throughout we consider a category \mathcal{X} and a fixed class \mathcal{M} of \mathcal{X} -monomorphisms, which contains all \mathcal{X} -isomorphisms. It is assumed that:

- (1) \mathcal{M} is closed under composition
- (2) Pullbacks of *M*-morphisms exist and belong to *M*, and multiple pullbacks of (possibly large) families of *M*-morphisms with common codomain exist and belong to *M*.

In addition, we require \mathcal{X} to have equalizers and \mathcal{M} to contain all regular monomorphisms.

One of the consequences of the above assumptions is that there is a uniquely determined class \mathcal{E} of morphisms in \mathcal{X} such that $(\mathcal{E}, \mathcal{M})$ is a factorization structure for morphisms in \mathcal{X} (cf. [5]).

We regard \mathcal{M} as a full subcategory of the arrow category of \mathcal{X} , with the codomain functor from \mathcal{M} to \mathcal{X} denoted by U. Since U is faithful, \mathcal{M} is concrete over \mathcal{X} .

As in [5], by a *closure operator* on \mathcal{X} (with respect to \mathcal{M}) we mean a pair $C = (\gamma, []_C)$, where $[]_C$ is an endofunctor on \mathcal{M} that satisfies $U[]_C = U$, and γ is a natural transformation from $id_{\mathcal{M}}$ to $[]_C$ that satisfies $(id_U)\gamma = id_U$.

Thus, given a closure operator $C = (\gamma, []_C)$, every member m of \mathcal{M} has a canonical factorization

where $[m]_{C}^{x} = F(m)$ is called the *C*-closure of m, and $]m[_{C}^{x}$ is the domain of the m-component of γ . Subscripts and superscripts will be omitted when not necessary. Notice that, in particular, $[\]_{C}$ induces an order-preserving increasing function on the \mathcal{M} -subobject lattice of every \mathcal{X} -object. Also, these functions are related in the following sense: if p is the pullback of a morphism $m \in \mathcal{M}$ along some \mathcal{X} -morphism f, and q is the pullback of $[m]_{C}$ along f, then $[p]_{C} \leq q$. Conversely, every family of functions on the \mathcal{M} -subobject lattices that has the above properties uniquely determines a closure operator.

Given a closure operator C, we say that $m \in \mathcal{M}$ is C-closed if $]m[_{C}$ is an isomorphism. An \mathcal{X} -morphism f is called C-dense if for every $(\mathcal{E}, \mathcal{M})$ -factorization (e, m) of f we have that $[m]_{C}$ is an isomorphism. We call C idempotent provided that $[m]_{C}$ is C-closed for every $m \in \mathcal{M}$. C is called weakly hereditary if $]m[_{C}$ is C-dense for every $m \in \mathcal{M}$. The class of all C-closed \mathcal{M} -subobjects and the class of all C-dense \mathcal{X} -morphisms will be denoted by \mathcal{M}^{C} and \mathcal{E}^{C} , respectively. If m and n are \mathcal{M} -subobjects of the same object X, with $m \leq n$ and m_n denotes the morphism such that $n \circ m_n = m$, then C is called hereditary if $n \circ [m_n]_{C} \simeq n \cap [m]_{C}$ holds for

every $X \in \mathcal{X}$ and for every pair of \mathcal{M} -subobjects of X, m and n with $m \leq n$. C is called *additive* if it preserves finite suprema, i.e., $sup([m]_{C}^{x}, [n]_{C}^{x}) \simeq [sup(m, n)]_{C}^{x}$ for every pair m,n of \mathcal{M} -subobjects of the same object X.

For more background on closure operators see, e.g., [1], [3], [4], [5], [8] and [10].

For every (idempotent) closure operator F let D(F) be the class of all \mathcal{X} objects A that satisfy the following condition: whenever $M \xrightarrow{m} X$ belongs to \mathcal{M} and $X \xrightarrow{r} A$ satisfy $r \circ m = s \circ m$, then $r \circ [m]_F = s \circ [m]_F$. If \mathcal{X} has squares, this
is equivalent to requiring the diagonal $A \xrightarrow{\Delta_A} A \times A$ to be F-closed. D(F) is called
the class of F-separated objects of \mathcal{X} .

A special case of an idempotent closure operator arises in the following way. Given any class \mathcal{A} of \mathcal{X} -objects and $M \xrightarrow{m} X$ in \mathcal{M} , define $[m]_{\mathcal{A}}$ to be the intersection of all equalizers of pairs of \mathcal{X} -morphisms r, s from X to some \mathcal{A} -object Y that satisfy $r \circ m = s \circ m$, and let $]m[_{\mathcal{A}} \in \mathcal{M}$ be the unique \mathcal{X} -morphism by which m factors through $[m]_{\mathcal{A}}$. It is easy to see that (] $[_{\mathcal{A}}, []_{\mathcal{A}}$) forms an idempotent closure operator. Since this generalizes the Salbany construction of closure operators induced by classes of topological spaces, cf. [11], we will often refer to it as the Salbany-type closure operator induced by \mathcal{A} . In [5] such a type of closure operator was called *regular*. To simplify the notation, instead of "[]_{\mathcal{A}}-dense" and "[]_{\mathcal{A}}-closed" we usually write " \mathcal{A} -dense" and " \mathcal{A} -closed", respectively.

Notice that the objects of \mathcal{A} are always []_{\mathcal{A}}-separated (cf. [3]).

 $\mathbf{iCL}(\mathcal{X}, \mathcal{M})$ will denote the collection of all idempotent closure operators on \mathcal{M} , pre-ordered as follows: $C \sqsubseteq D$ if $[m]_C \leq [m]_D$ for all $m \in \mathcal{M}$ (where \leq is the usual order on subobjects).

2 BASIC DEFINITIONS AND PRELIMINARY RESULTS

In what follows \mathcal{X} will be a category with finite products and \mathcal{A} will be one of its full and isomorphism-closed subcategories.

Definition 2.1. An \mathcal{X} -morphism $X \xrightarrow{f} Y$ is said to be \mathcal{A} -closed preserving, if for every \mathcal{A} -closed \mathcal{M} -subobject $M \xrightarrow{m} X$, in the $(\mathcal{E}, \mathcal{M})$ -factorization $m_1 \circ e_1 = f \circ m$, m_1 is \mathcal{A} -closed.

Definition 2.2. We say that an \mathcal{X} -object X is \mathcal{A} -compact with respect to \mathcal{A} if for every \mathcal{A} -object Z, the projection $X \times Z \xrightarrow{\pi_Z} Z$ is \mathcal{A} -closed preserving.

 $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A})$ will denote the subcategory of all \mathcal{A} -compact objects with respect to \mathcal{A} and $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$ will be called the subcategory of compact-separated objects with respect to \mathcal{A} .

Notice that a more general version of Definition 2.2 has been recently introduced by Dikranjan and Giuli in [7]. However, in the context of this paper, since we are only dealing with idempotent closure operators, Definition 2.2 can be seen as a special case of the notion of (C, \mathcal{A}) -compactness that appears in [7]. In our case Cis the Salbany-type closure operator induced by the subcategory \mathcal{A} .

A relevant number of examples of (C, \mathcal{A}) -compactness can be found in [6] and [7]. At the end of this section, we will only list some examples where C is the Salbany-type closure operator induced by the subcategory \mathcal{A} .

Notice also that Definition 2.2 only slightly differs from our previous definition of compactness with respect to a closure operator that appeared in [2]. The difference being that we now require that only the projections onto objects of the subcategory \mathcal{A} be \mathcal{A} -closed preserving.

The proofs of the following four results are very similar to the ones in [2], so we omit them.

Proposition 2.3. If $M \in Comp_{\mathcal{X}}(\mathcal{A})$ and M is an \mathcal{M} -subobject of $X \in \mathcal{A}$, then M is \mathcal{A} -closed.

Proposition 2.4.

- (a) Let A be a subcategory of X such that []_A is weakly hereditary. Then Comp_X(A) is closed under A-closed M-subobjects.
- (b) Let \mathcal{A} be a subcategory of \mathcal{X} closed under finite products and \mathcal{M} -subobjects. If $[]_{\mathcal{A}}$ is weakly hereditary in \mathcal{A} , then $Comp_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$ is closed under \mathcal{A} -closed \mathcal{M} -subobjects.

Proposition 2.5. Suppose that for $e \in \mathcal{E}$, the pullback of $e \times 1$ along any \mathcal{A} -closed subobject belongs to \mathcal{E} . If $X \xrightarrow{f} Y$ is an \mathcal{X} -morphism and (e,m) is its $(\mathcal{E}, \mathcal{M})$ -factorization, then if $X \in Comp_{\mathcal{X}}(\mathcal{A})$, so does f(X) (where f(X) is the middle object of the $(\mathcal{E}, \mathcal{M})$ -factorization).

For the next result we assume that \mathcal{X} has arbitrary products and that in the $(\mathcal{E}, \mathcal{M})$ -factorization structure of \mathcal{X}, \mathcal{E} is a class of epimorphisms.

Definition 2.6. (Cf. [2, Definition 3.2]). Let \mathcal{A} be a subcategory of \mathcal{X} . The closure operator $[]_{\mathcal{A}}$ is called compactly productive iff $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A})$ is closed under products.

Proposition 2.7. (Cf. [2, Proposition 3.4]). Let \mathcal{A} be an extremal epireflective and co-well powered subcategory of \mathcal{X} , such that $[]_{\mathcal{A}}$ is weakly hereditary in \mathcal{A} . If $[]_{\mathcal{A}}$ is compactly productive, then $Comp_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$ is epireflective in \mathcal{A} .

We recall the following result from [2]

Proposition 2.8. (Cf. [2, Proposition 1.16]). Let \mathcal{X} be a regular well-powered category with products and let \mathcal{A} be a subcategory of \mathcal{X} closed under the formation of products and \mathcal{M} -subobjects. Then $[]_{\mathcal{A}}$ is weakly hereditary in \mathcal{A} iff the regular monomorphisms in \mathcal{A} are closed under composition.

In the following examples we see that some nice and well known categories can be seen as compact-separated objects with respect to a regular closure operator. Notice that we take $(\mathcal{E}, \mathcal{M}) =$ (epimorphisms, extremal monomorphisms).

Examples 2.9.

- (a) Let $\mathcal{X} = \mathbf{TOP}$ and let $\mathcal{A} = \mathbf{TOP_2}$. Then $\operatorname{Comp}_{\mathbf{TOP}}(\mathbf{TOP_2}) \cap \mathbf{TOP_2} = \mathbf{COMP_2}$ (compact Hausdorff topological spaces).
- (b) Let $\mathcal{X} = \mathbf{TOP}$ and let $\mathcal{A} = \mathbf{TOP}$. Then $\operatorname{Comp}_{_{\mathbf{TOP}}}(\mathbf{TOP}) \cap \mathbf{TOP} = \mathbf{TOP}$.
- (c) Let $\mathcal{X} = \mathbf{TOP}$. For any bireflective subcategory \mathcal{A} of \mathbf{TOP} , we have that $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A} = \mathcal{A}$.
- (d) Let $\mathcal{X} = \mathbf{TOP}$ and let $\mathcal{A} = \mathbf{TOP_0}$. Then $\operatorname{Comp}_{\mathbf{TOP}}(\mathbf{TOP_0}) \cap \mathbf{TOP_0} = \{b\text{-compact topological spaces}\} \cap \mathbf{TOP_0}$ (cf. [6, Example 3.2]).
- (e) Let $\mathcal{X} = \mathbf{TOP}$ and let $\mathcal{A} = \mathbf{TOP}_1$. Then $\operatorname{Comp}_{_{\mathbf{TOP}}}(\mathbf{TOP}_1) \cap \mathbf{TOP}_1 = \mathbf{TOP}_1$ (cf. Theorem 3.03).
- (f) Let $\mathcal{X} = \mathbf{TOP}$ and let $\mathcal{A} = \mathbf{TOP}_3$ or \mathbf{TYCH} . Then $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A} = \mathbf{COMP}_2$.
- (g) Let $\mathcal{X} = \mathbf{GR}$ and let $\mathcal{A} = \mathbf{AB}$. Then $\operatorname{Comp}_{\mathbf{AB}}(\mathbf{AB}) \cap \mathbf{AB} = \mathbf{AB}$.

3 A-COMPACTNESS AND EPIMORPHISMS

In this section, we will be working in the categories **AB**, **TOP**, **GR** and **TG**. In each of these categories \mathcal{M} will be the class of all extremal monomorphisms. Therefore $(\mathcal{E}, \mathcal{M}) =$ (epimorphisms, extremal monomorphisms).

We start by recalling a result that in a slightly modified form can be found in [2]. The only changes we made were to replace $\text{Comp}(\mathcal{A})$ by $\text{Comp}_{\mathcal{X}}(\mathcal{A})$ and to add the cases $\mathcal{X} = \mathbf{GR}$ and $\mathcal{X} = \mathbf{TG}$. Its proof is not affected by such changes.

Proposition 3.1. (Cf. [2, Proposition 2.5]). If \mathcal{A} is a subcategory of AB, **TOP**, **GR** or **TG** and \mathcal{A} is contained in $Comp_{\mathcal{X}}(\mathcal{A})$, then the epimorphisms in \mathcal{A} are surjective.

A different version of the following theorem for epireflective subcategories of **AB** was proved in [2]. This weakened form for subcategories that are not necessarily epireflective yields an interesting consequence in **AB** and **TOP**.

Theorem 3.2. Let \mathcal{A} be a subcategory of **AB** (**TOP**). Let us consider the following statements:

- (a) A is closed under quotients
- (b) Each M-subobject of an A-object is A-closed
- (c) The projections onto objects of A are A-closed preserving
- (d) $Comp_{\mathcal{X}}(\mathcal{A}) = \mathbf{AB} \ (= \mathbf{TOP})$
- (e) $\mathcal{A} \subseteq Comp_{\mathcal{X}}(\mathcal{A})$
- (f) The epimorphisms in \mathcal{A} are surjective. We have that $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (f)$. $(f) \neq (a)$.

Proof: (a) \Rightarrow (b). Let $M \xrightarrow{m} X$ be an \mathcal{M} -subobject of $X \in \mathcal{A}$.

For $\mathcal{A} \subseteq \mathbf{AB}$, consider the pair of morphisms $X \stackrel{q}{\longrightarrow} X/M$, where q and 0 denote the quotient and the zero-homomorphism, respectively. Clearly $m \simeq equ(q, 0)$.

For $\mathcal{A} \subseteq \mathbf{TOP}$, consider the pair of continuous functions $X \xrightarrow{q}_{c_M} X/M$ where q is the canonical function onto the quotient set X/M, c_M is the constant morphism into $\{M\}$ and X/M has the quotient topology induced by q. We have that $m \simeq equ(q, c_M)$.

Since $X/M \in \mathcal{A}$ in both cases, we obtain that *m* is \mathcal{A} -closed.

- (b) \Rightarrow (c). Straightforward.
- (c) \Rightarrow (d). Straightforward.
- $(d) \Rightarrow (e)$. Obvious.
- (e) \Rightarrow (f). It follows from Proposition 3.1.

(f) \neq (a). In **AB** take $\mathcal{A} = \mathbf{AC}$ = algebraically compact abelian groups and in **TOP** take $\mathcal{A} = \mathbf{TOP}_1$.

Corollary 3.3. If \mathcal{A} is a subcategory of **AB** or **TOP**, then the epimorphisms in $Comp_{\mathcal{X}}(\mathcal{A})$ are surjective.

Proof: ¿From Proposition 2.5, $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A})$ is closed under quotients and by applying Theorem 3.2, we get that the epimorphisms in $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A})$ are surjective.

Notice that the above corollary is not a consequence of Proposition 2.9 of [2], since for $F = []_{\mathcal{A}}$, Comp $_{\mathcal{X}}(\mathcal{A})$ is usually larger than Comp(F).

Also notice that if we remove item (a) in Theorem 3.2, the implications (b) trough (e) hold for subcategories of **GR** and **TG** as well.

Furthermore, the notion of compactness presented in this paper allows us to extend the equivalence of some items in Theorem 2.06 of [2] to epireflective subcategories of **TOP**, **GR** and **TG**, as the following theorem shows.

Theorem 3.4. Let \mathcal{A} be an epireflective subcategory in either **TOP**, **GR** or **TG**. The following are equivalent:

- (a) $Comp_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A} = \mathcal{A}$ and the regular monomorphisms in \mathcal{A} are closed under composition
- (b) The epimorphisms in \mathcal{A} are surjective and $[]_{\mathcal{A}}$ is weakly hereditary in \mathcal{A}
- (c) Each \mathcal{M} -subobject of an \mathcal{A} -object is \mathcal{A} -closed.

Proof: (a) \Rightarrow (b). It follows from Propositions 3.1 and 2.8.

- (b) \Rightarrow (c). The same proof of e) \Rightarrow f) in Theorem 2.6 of [2] applies here.
- $(c) \Rightarrow (a)$. Let us consider the commutative diagram

$$\begin{array}{cccc} X \times Z & \xrightarrow{\pi_Z} & Z \\ m & & \uparrow m_1 \\ M & \xrightarrow{e_1} & M_1 \end{array}$$

where $X, Z \in \mathcal{A}$, (e_1, m_1) is the $(\mathcal{E}, \mathcal{M})$ -factorization of $\pi_z \circ m$ and M is \mathcal{A} -closed. Clearly, M_1 is \mathcal{A} -closed by hypothesis, so π_z is \mathcal{A} -closed preserving, i.e., X is \mathcal{A} compact with respect to \mathcal{A} . Since $[]_{\mathcal{A}}$ is weakly hereditary in \mathcal{A} , from Proposition 2.8 we get that the regular monomorphisms in \mathcal{A} are closed under composition. \Box

We next extend, under certain assumptions, the result in Corollary 3.3 to subcategories of the form $\text{Comp}_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$. This generalizes the fact that the epimorphisms in the category of compact Hausdorff topological spaces are surjective.

Proposition 3.5. Let \mathcal{A} be an epireflective subcategory of AB. Then, the epimorphisms in $Comp_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$ are surjective.

Proof: Let $X \xrightarrow{f} Y$ be an epimorphism in $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$. Then, from Proposition 2.5, $f(X) \in \operatorname{Comp}_{\mathcal{X}}(\mathcal{A})$. Since $Y \in \mathcal{A}$, $f(X) \xrightarrow{i} Y$ is \mathcal{A} -closed (cf. Proposition 2.3). So, $i \simeq equ(f,g)$, with $Y \xrightarrow{f} Z$, $Z \in \mathcal{A}$. This implies that $Y/f(X) \in \mathcal{A}$ and again from Proposition 2.5, $Y/f(X) \in \operatorname{Comp}_{\mathcal{X}}(\mathcal{A})$. Let us consider $Y \xrightarrow{q} Y/f(X)$. If $f(X) \neq Y$ we would have that $q \circ f = 0 \circ f$ with $q \neq 0$, which contradicts the fact that f is an epimorphism in $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$. Therefore f is surjective.

To show a similar result in **TOP** is a bit more laborious.

Let Y + Y denote the topological sum (coproduct) of two copies of the topological space Y. If M is an extremal subobject of Y, we denote by $Y +_M Y$ the quotient of Y + Y with respect to the equivalence relation $(x, i) \sim (y, j)$, i, j = 1, 2 iff either $i \neq j$ and $x = y \in M$ or (x, i) = (y, j) (cf. [4, Definition 1.11]).

Proposition 3.6. (Cf. [4, Proposition 1.12]). Let \mathcal{A} be an extremal epireflective subcategory of **TOP**. For every $Y \in \mathcal{A}$ and for every extremal subobject M of Y, the following are equivalent

$$\begin{array}{ll} (a) \ Y+_{_{M}}Y\in \mathcal{A} \\ (b) \ M=[M]_{\mathcal{A}} \end{array}$$

Corollary 3.7. Let \mathcal{A} be an extremal epireflective subcategory of **TOP**, let $X \xrightarrow{f} Y$ be a \mathcal{A} -morphism and let $M = [f(X)]_{\mathcal{A}}$. Then, $Y +_{M} Y$ belongs to \mathcal{A} . **Proof:** It follows directly from Proposition 3.6.

Lemma 3.8. Let \mathcal{A} be an extremal epireflective subcategory of **TOP** such that $[]_{\mathcal{A}}$ is additive in \mathcal{A} . Then, if $Y \in Comp_{\mathcal{X}}(\mathcal{A})$, so does Y + Y.

Proof: Let $Z \in \mathcal{A}$ and let $M \xrightarrow{m} (Y+Y) \times Z$ be \mathcal{A} -closed. Notice that $(Y+Y) \times Z$ is homeomorphic to $(Y \times Z) + (Y \times Z)$. Let us call such a homeomorphism i. Thus, $i \circ m$ is the equalizer of two morphisms $(Y \times Z) + (Y \times Z) \xrightarrow{f} T$, $T \in \mathcal{A}$. Let f_1 , g_1 and f_2 , g_2 denote the restrictions of f and g to the first and the second addend of $(Y \times Z) + (Y \times Z)$, respectively. Let $M_1 \xrightarrow{m_1} Y \times Z$ and $M_2 \xrightarrow{m_2} Y \times Z$ be two morphisms such that $m_1 = equ(f_1, g_1)$ and $m_2 = equ(f_2, g_2)$. Then $(i \circ m)(M) = m_1(M_1) + m_2(M_2)$. Let π_z^1 and π_z^2 denote the projections onto Z of the first and the second addend of $(Y \times Z) + (Y \times Z) + (Y \times Z) + (Y \times Z) = M = (\pi_z^1, \pi_z^2) + (Y \times Z) + (Y \times Z) = \pi_z$. Now, $(\pi_z \circ m)(M) = (([\pi_z^1, \pi_z^2]) \circ i \circ m)(M) = ([\pi_z^1, \pi_z^2])(m_1(M_1) + m_2(M_2)) = \pi_z^1(m_1(M_1)) \cup \pi_z^2(m_2(M_2))$. Since $Y \in \text{Comp}_{\mathcal{X}}(\mathcal{A})$, $\pi_z^1(m_1(M_1))$ and $\pi_z^2(m_2(M_2))$ are both \mathcal{A} -closed and so is their union, since $[]_{\mathcal{A}}$ is additive in \mathcal{A} .

Proposition 3.9. Let \mathcal{A} be an extremal epireflective subcategory of **TOP** such that $[]_{\mathcal{A}}$ is additive in \mathcal{A} . Let $X \xrightarrow{f} Y$ be an \mathcal{X} -morphism and let $M = [f(X)]_{\mathcal{A}}$. Then, if $Y \in Comp_{\mathcal{X}}(\mathcal{A})$, so does $Y + _{M}Y$.

Proof: ¿From Lemma 3.8, $Y + Y \in \text{Comp}_{\mathcal{X}}(\mathcal{A})$ and from Proposition 2.5, so does $Y +_M Y$.

Theorem 3.10. Let \mathcal{A} be an extremal epireflective subcategory of **TOP** such that $[]_{\mathcal{A}}$ is additive in \mathcal{A} . Then the epimorphisms in $Comp_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$ are surjective.

Proof: Let $X \xrightarrow{f} Y$ be an epimorphism in $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$ and let M denote the subspace $[f(X)]_{\mathcal{A}}$. We have that $Y +_M Y \in \operatorname{Comp}_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$ (cf. Corollary 3.7 and Proposition 3.9). From Proposition 2.5, $f(X) \in \operatorname{Comp}_{\mathcal{X}}(\mathcal{A})$ and from Proposition 2.3, f(X) is \mathcal{A} -closed. Thus, $Y +_M Y = Y +_{f(X)} Y$. Let i and j be the left and the right inclusions of Y into Y + Y and let $Y + Y \xrightarrow{q} Y +_{f(X)} Y$ be the quotient map. Clearly, $q \circ i \circ f = q \circ j \circ f$. If f is not surjective, then we have that $q \circ i \neq q \circ j$. This contradicts our assumption of f being an epimorphism in $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$.

⁸

4 A-COMPACTNESS AND ALGEBRAIC CATEGORIES

It is well known that $\mathbf{COMP_2}$, i.e., the category of compact Hausdorff topological spaces, forms an algebraic category in the sense that $\mathbf{COMP_2}$ has coequalizers and the forgetful functor $U: \mathbf{COMP_2} \to \mathbf{SET}$ has a left adjoint and preserves and reflects regular epimorphisms (cf. [9]). It is quite natural to wonder whether this result could be extended in \mathbf{TOP} to categories of compact-separated objects with respect to a regular closure operator. Unfortunately the subcategory $\mathbf{TOP_1}$ shows that this is not the case. As a matter of fact, $\mathbf{Comp_{TOP}}(\mathbf{TOP_1}) \cap \mathbf{TOP_1} = \mathbf{TOP_1}$ (cf. Example 2.9(e)) and $\mathbf{TOP_1}$ is not an algebraic category, since the forgetful functor $U: \mathbf{TOP_1} \to \mathbf{SET}$ fails to reflect regular epimorphisms. However, the remaining conditions are all satisfied. We will see that, under certain assumptions on the subcategory \mathcal{A} , $\mathbf{TOP_1}$ outlines the behavior of $\mathbf{Comp_{\mathcal{X}}}(\mathcal{A}) \cap \mathcal{A}$.

Proposition 4.1. If \mathcal{A} is an extremal epireflective subcategory of **TOP**, then $Comp_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$ has coequalizers.

Proof: Let $X \xrightarrow{f} Y$ be two morphisms in $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$ and let $Y \xrightarrow{q} Q$ be their coequalizer in **TOP**. From Proposition 2.5, $Q \in \operatorname{Comp}_{\mathcal{X}}(\mathcal{A})$. Since \mathcal{A} is extremal epireflective in **TOP**, we can consider the reflection $Q \xrightarrow{r} rQ$ of Q in \mathcal{A} . From Proposition 2.5 $rQ \in \operatorname{Comp}_{\mathcal{X}}(\mathcal{A})$. Now, it is easily shown that $Y \xrightarrow{r \circ q} rQ$ is the coequalizer of f and g in $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$.

Proposition 4.2. Let \mathcal{A} be an extremal epireflective subcategory of **TOP** such that $[]_{\mathcal{A}}$ is additive in \mathcal{A} . Then, the forgetful functor $U: Comp_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A} \to \mathbf{SET}$ preserves regular epimorphisms.

Proof: Let $X \xrightarrow{f} Y$ be a regular epimorphism in $\operatorname{Comp}_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$. Then, from Theorem 3.10, f is surjective. Therefore U(f) is a regular epimorphism in **SET**.

Proposition 4.3. Let \mathcal{A} be an extremal epireflective and co-well powered subcategory of **TOP**. Suppose that $[]_{\mathcal{A}}$ is weakly hereditary in \mathcal{A} and compactly productive. Then, the forgetful functor $U: Comp_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A} \to \mathbf{SET}$ has a left adjoint. **Proof:** The case $\mathcal{A} = \{x\}$ is trivial. So, Let $\mathcal{A} \neq \{x\}$. Let X be a set and let X_d be the discrete topological space with underlying set X. Clearly $X_d \in \mathcal{A}$, since \mathcal{A} is an extremal epireflective subcategory of **TOP**. Let βX be the \mathcal{A} -dense-reflection of X_d into $Comp_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$ (cf. Proposition 2.7) and let $X_d \xrightarrow{\beta_X} \beta X$ be the reflection morphism. If $Y \in Comp_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$ and $X \xrightarrow{f} UY$ is a morphism in **SET**, then $X_d \xrightarrow{g} Y$ such that U(g) = f is continuous. From Proposition 2.7, there exists a unique $\beta X \xrightarrow{f'} Y$ such that $f' \circ \beta_x = g$ (notice that f' is unique because β_x is a \mathcal{A} -epimorphism). Clearly we have that $Uf' \circ U\beta_x = f$.

The results in Propositions 4.1, 4.2 and 4.3 can be summerized in the following

Theorem 4.4. Let \mathcal{A} be an extremal epireflective and co-well powered subcategory of **TOP** such that $[]_{\mathcal{A}}$ is compactly productive, weakly hereditary in \mathcal{A} and additive in \mathcal{A} . Then, $Comp_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A}$ has coequalizers and the forgetful functor $U:Comp_{\mathcal{X}}(\mathcal{A}) \cap \mathcal{A} \to \mathbf{SET}$ has a left adjoint and preserves regular epimorphisms.

REFERENCES

- G. Castellini, "Closure operators, monomorphisms and epimorphisms in categories of groups," *Cahiers Topologie Geom. Differentielle Categoriques* 27(2) (1986), 151-167.
- [2] G. Castellini, "Compact objects, surjectivity of epimorphisms and compactifications," *Cahiers Topologie Geom. Differentielle Categoriques* **31(1)** (1990), 53-65.
- [3] G. Castellini, G. E. Strecker, "Global closure operators vs. subcategories," Quaestiones Mathematicae 13 (1990), 417-424.
- [4] D. Dikranjan, E. Giuli, "Closure operators induced by topological epireflections," Coll. Math. Soc. J. Bolyai 41 (1983), 233-246.
- [5] D. Dikranjan, E. Giuli, "Closure operators I," *Topology Appl.* 27 (1987), 129-143.
- [6] D. Dikranjan, E. Giuli, "Compactness, minimality and closedness with respect to a closure operator I," *Proceedings of the Conference in Categorical Topology* (Prague, 1988) World Scientific (1989), 284-296.
- [7] D. Dikranjan, E. Giuli, "C-perfect morphisms and C-compactness," preprint.
- [8] D. Dikranjan, E. Giuli, W. Tholen, "Closure operators II," Proceedings of the Conference in Categorical Topology (Prague, 1988) World Scientific (1989), 297-335.
- [9] H. Herrlich, G. E. Strecker, *Category Theory*, 2nd ed., Helderman Verlag, Berlin, 1979.
- [10] J. Koslowski, "Closure operators with prescribed properties," *Category Theory and its Applications* (Louvain-la-Neuve, 1987) Springer L.N.M. **1248** (1988), 208–220.
- [11] S. Salbany, "Reflective subcategories and closure operators," Proceedings of the Conference in Categorical Topology (Mannheim, 1975), Springer L.N.M. 540 (1976), 548-565.

Gabriele Castellini Department of Mathematics University of Puerto Rico P.O. Box 5000 Mayagüez, PR 00709-5000 U.S.A.