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ABSTRACT: The Galois connection given in 1985 by Pumpliin and Rohrl between
the classes of objects and the classes of morphisms in any category is shown (under ordinary
circumstances) to have a “natural” factorization through the system of all idempotent closure
operators over the category. Furthermore, each “component” of the factorization is a Galois
connection in its own right. The first factor is obtained by using a generalization of the process,
given by Salbany in 1975, that yields a closure operator for any class of topological spaces,
while the second factor can be used to form the weakly hereditary core of an idempotent closure
operator.
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0 INTRODUCTION

In [PR], Pumpliin and Rohrl presented for any category X an important Galois connection
between the collection S(X) of all classes of X -objects, ordered by containment, and the col-
lection H(X) of all classes of X -morphisms, ordered by inclusion. This connection is a polarity
determined by a “separating” relation o C Mor(X) x Ob(X), cf. Definition 1.03. Examples of

pairs of object classes and morphism classes related by this connection can be found in [HSS].

In 1975, S. Salbany, [S], introduced certain closure operators induced by classes A of
topological spaces. The A-closure of any subset M of a space X is obtained by intersecting
the set of all those subsets of X that contain M and are precisely the set of points for which

some pair of continuous functions to some space in A agree.
By generalizing the Salbany process to categorical situations, Castellini and Strecker ([CS])
showed that it is typically part of another Galois connection — between classes of objects in a

category X and idempotent closure operators over X .
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In this paper we obtain a third Galois connection, this time between the idempotent closure
operators over X and the classes of morphisms of X', and show that its composition with the
Galois connection of Salbany type provides a factorization of the Pumpliin-Rohrl connection. It
is shown that the new Galois connection can be used to obtain the weakly hereditary core of an

idempotent closure operator.

We use the terminology of [HS] throughout.

1 PRELIMINARIES

Throughout we assume that X is an ( E, M )-category for sinks, i.e., E is a collection of sinks,
and M is a class of X' -morphisms such that:
(1) each of E and M is closed under compositions with isomorphisms.
(2) M has (E, M)-factorizations (of sinks); i.e., each sink S in X has a factorization
S=mokF with E€E and m € M, and
(3) X has the unique (E, M)-diagonalization property; i.e., if B -2+ D and C 25 D are
X -morphisms with m € M, and E = (4; = B); and S = (4; =5 C); are sinks
in X with F € E, such that m oS = go E, then there exists a unique diagonal, i.e., a
morphism B —4, € such that for each i € I the both triangles of the diagram

A, — B
St
¢cC — D

commute.
(Morphisms will always be identified with singleton sinks.)
In addition, we require X to have equalizers and M to contain all regular monomor-
phisms. We list some consequences of these assumptions:
(i) every m in M is a monomorphism;
(ii) every E in E is an epi-sink;
(i

M is closed under composition;

)
)
(iv) M is closed under relative first factors, i.e., if nom € M, and n € M, then m € M;
(v) pullbacks of morphisms in M exist and belong to M ;

(vi) the M-subobjects of every X-object form a (possibly large) complete lattice.

We regard M as a full subcategory of the arrow category of X, with the codomain functor
from M to X denoted by U .



1.00 DEFINITION

A closure operator on M (over X)is a pair F' = (y,C), where C is an endofunctor on
M that satisfies UC = U, and < is a natural transformation from idxs to C that satisfies
(ZdU)’y = 7dU .

Thus, given a closure operator F' = (vy,C), every member m of M has a canonical

factorization

where [m], = C(m) is called the F-closure of m , and |m[, isthe domain of the m -component
of . In particular, [ ], induces an order-preserving increasing function on the M -subobject
lattice of every X -object. Also, these functions are related in the following sense: if p is the
pullback of a morphism m € M along some X -morphism f, and ¢ is the pullback of [m],
along f, then [p]. < q. Conversely, every family of functions on the M -subobject lattices that

has the above properties uniquely determines a closure operator.

1.01 DEFINITION

Given a closure operator F', we say that m € M is F-closed if |m[, is an isomorphism.
A sink S in X is called F-dense if for every (E, M)-factorization (E,m) of S we have that
[m] . is an isomorphism. We call F idempotent provided that [],.o[], =[], , i.e., provided
that [m], is F-closed for every m € M. F is called weakly hereditary if |m],. is F -dense for
every m € M.

Notice that | [, may be viewed as an endofunctor on M that preserves domains. Then

~

the condition that F' is weakly hereditary is equivalent to | [, o | [ =] [» -
For more background on closure operators see, e.g., [T], [DG1], [C], [K], and [DGT].

A special case of an idempotent closure operator arises in the following way. Given any
class A of X-objects and M 2+ X in M, define [m]* to be the intersection of all equalizers
of pairs of X'-morphisms r,s from X to some A-object A that satisfy rom = som, and let
Jm[A€ M be the unique X-morphism by which m factors through [m]* . It is easy to see that
(] [4,[]#) forms an idempotent closure operator, which we denote by K (A). This generalizes
the Salbany construction of closure operators induced by classes of topological spaces, cf. [S]. To

simplify the notation, instead of “[]*-dense” we usually write “ A-dense”.



We denote the collection of all idempotent closure operators on M by iCL(X, M) pre-
ordered as follows: F C G if [m], < [m], for all m € M (where < is the usual order on

subobjects).

For every (idempotent) closure operator F' let D(F) be the class of all X-objects A
that satisfy the following condition: whenever M =+ X belongs to M and X %; A satisfy
rom = som, then ro[m], =so[m],. If X has squares, this is equivalent to requiring the
diagonal A B4, Ax A tobe F-closed.

1.02 THEOREM (cf. [CS, Theorem 2.5])
(D, K) is an (order-preserving) Galois connection between S(X) and iCL(X, M). L[]

Next we recall the Pumpliin-Rohr]l Galois connection.

1.03 DEFINITION
For any category X, let the relation o C Mor(X) x Ob(X) consist of all pairs (e,Y)

with the property that for any two A -morphisms r,s from the codomain of e to Y, roe = soe
implies r =s.

Given a class E of X-morphisms, a(E) ={Y € Ob(X)|ecY for every e € E'} is called
the class of E-separated objects in X . For A C Ob(X) the class of A-epimorphisms in X is
given by B(A) ={e € Mor(X)|ecY forevery Y € A}.

1.04 THEOREM (cf. [PR, Lemma A.1])
(a, B) is an (order-preserving) Galois connection between S(X) and H(X). L]

2 MAIN RESULTS

The following proposition and its corollary provide a link between the Galois connections pre-

sented in the previous section.

2.00 PROPOSITION (cf. [C, Theorem 1.11])

For any class A of X-objects, an X -morphism is an A-epimorphism iff it is .4-dense.

Proof:
Let (e,m) be an (E, M)-factorization of an A-epimorphism f. To show that [m]* is

an isomorphism, it suffices to show that any two morphisms r,s from the codomain of f to
some object in A that agree on m must coincide. But rom = som implies that ro f = so f,
and since f € B(A) we have r =s. Thus f is A-dense.



Conversely, let f be A-dense, and let r, s be morphisms with codomain in A such that

rof=sof.If (e,m) is an (E, M)-factorization of f, then since e is an epimorphism we

have 7om = som . But this implies that r and s agree on the isomorphism [m]* i.e., r =s.
Thus f is an .A-epimorphism. U]
2.01 COROLLARY
Let iCL(X, M) & H(X) be given by
R(F)={feMor(X)| f is F-dense} .
Then RK = (3. U]

We now proceed to define the operator H(X) - iCL(X, M) : Given p € H(X), let p

consist of all those ¢t € M such that for all commutative squares

with f € p there exists a unique diagonal d with do f =r and tod=3s.

2.02 PROPOSITION
For any M ™+ X in M let

[m]s(p):ﬂ{n€ﬁ|Ni>X and mgn}

have the property that m = [m] Im| Then S(p) is a weakly hereditary

s ©

and let ]m[S(p) s(p) *

idempotent closure operator on M .

Proof:

Clearly, m < [m]g,y. If m < n, then whenever n factors through some p € p, so

does m. Therefore is order-preserving on the M-subobject lattices. Let p be the

[ s
pullback of a morphism m € M along some X-morphism f, and let ¢ be the pullback of

[m], along f. Since limits commute, by the construction of [m] as an intersection, ¢ is

S(p)
an intersection of pullbacks of members of p along f, each of which is larger than or equal

to p. But p clearly is pullback-stable, hence [p] < ¢. This establishes S(p) as a closure

5(p)
operator. Since p by construction is closed under arbitrary intersections, the idempotency of

S(p) is immediate. Notice that since M is closed under composition, so is p. Hence, whenever

]m[s(p) factors through p € p, the composition [m]s(p) op belongs to p, and therefore was used

in the construction of [m] . This implies that []m[,, ] " is an isomorphism. Thus S(p) is
S(p

weakly hereditary. U]



2.03 THEOREM

(S, R) is an (order-preserving) Galois connection.

Proof:

If pC ¢, then p D €, hence [mlg,, < [mlge , for all m € M. Thus S is order-
preserving.

Given F € iCL(X, M), we have [m], € R/(F') for all m € M. So by construction,
[M]spry < [M]y, ie., SR is decreasing.

Let FC G, and let (e,m) be an (E, M)-factorization of f € R(F). Since [m], is an
isomorphism, and [m], < [m]

an isomorphism. Thus f € R(G). This shows that R is order-preserving.

it follows that [m], is a monomorphic retraction, and hence

F G

Now consider an (E, M)-factorization (e,m) of f € p. Since [m] belongs to p,
sy ©d=71d. Then [m] =
an isomorphism. This shows that f € RS(p). Consequently RS is increasing. L]

S(p)

there exists a d with [m] is a monomorphic retraction, and thus is

2.04 THEOREM

The Galois connections (S, R) and (D, K) provide a factorization of the Pumpliin-Réhrl
connection, ie., (o, ) =(S,R)o (D, K).

Proof:
Since a 4 3, S 4 R, and D - K, this follows directly from the fact that § = RK
(Corollary 2.01). L]

Next we investigate the relationship between weakly hereditary idempotent closure oper-
ators and the new Galois connection (S, R) obtained above. By the general theory on closure
operators it can be seen that for every idempotent closure operator F' the collection of weakly
hereditary idempotent closure operators G with G'C F has a supremum, F , called the weakly
hereditary core of F | cf. [DGy, Theorem 4.2] and [K, Proposition 1.13].

We now show that the operator SR obtained from the new Galois connection yields these

cores. First we recall the following result:

2.05 LEMMA (cf. [K, Proposition 1.09].)

A closure operator F' is weakly hereditary iff every M -object m satisfies:

[m], =sup{pe M|m=pon and n is F-dense} .



2.06 THEOREM

If F is an idempotent closure operator, then SR(F) is its weakly hereditary core.

Proof:

By Proposition 2.02, SR(F) is weakly hereditary, and the Galois connection implies that
SR(F) T F. Thus if F is the weakly hereditary core of F, we get SR(F) C F C F.
Applying R yields RSR(F) C R(F) C R(F) = RSR(F), so SR(F) and F have the same
dense morphisms. By Lemma 2.05, SR(F) and F agree. L]

2.07 COROLLARY
For a class A of X-objects K(A) is weakly hereditary iff K(A)= SB(A). L]

2.08 PROPOSITION

If A C Ob(X) has a coseparating class of objects each of which is injective with respect
to K (A)-closed morphisms, then K(A) is weakly hereditary.

Proof:

Let C be a coseparating subclass of A such that each C € C is injective with respect
to K (A)-closed morphisms. Since C is coseparating for A we have K(C) = K(A), cf. [C,
Proposition 1.4].

For m € M consider morphisms h,k with codomain C € C such that ho]m]|
ko]m]
h and k, respectively, along [m]
k' o [m)]

KA) —

Since C' is injective with respect to [m], ,, , there exist extensions A’ and k' of

. Now hom =k om and C € A implies h'o[m)]

K(A)

K(A) K(A) —

and hence h = k. Therefore [Jm[, ] is an isomorphism.
K

K(A)? (4)

3 EXAMPLES

We now explore the implications of the general theory for some examples.

3.00 EXAMPLE

Let X be the category Top of topological spaces, let M be the class of usual topological
embeddings, and let A be the category Haus of Hausdorff spaces. Then ((Haus) properly
contains the class of all continuous functions that are dense (in the ordinary sense), cf. [PR].
Thus SB(Haus) is strictly larger than the usual closure operator T for topological spaces, even
though both agree on Haus, and D(T) = DSB(Haus) = Haus. Moreover, K(Haus) is not
weakly hereditary. Thus K(Haus) # SG(Haus) . In particular, this implies that Haus has no

coseparating class of objects that are M -injective.



3.01 EXAMPLE
Let X and M be as above, and let A be the category Top,. Then F(Top,) is the

class of all b-dense continuous functions (cf. [B], [NW]), and K(Top,) is the b-closure operator
for topological spaces. Since the Sierpinski space is injective with respect to embeddings and is

a coseparator for Topy , the b-closure is weakly hereditary. Therefore K (Top,) = S3(Top,) .

3.02 EXAMPLE

Let X be the category Ab of abelian groups, let M be the class of monomorphisms in
Ab, and let A be the category TfAb of torsion-free abelian groups. Then B(TfAb) is the
class of all homomorphisms X L,y with the property that Y/f[X] is a torsion group. The
closure operator K(TfAb) can be described as follows: For any monomorphism M - X the
closure [m], peap, 18 the smallest subgroup N of X that contains M and for which X/N is
torsion-free. Since K (TfAb) is weakly hereditary, K(TfAb)= S5(TfADb).

3.03 EXAMPLE

Let X and M be as in Example 3.02, and let A be the category RdAb of reduced
abelian groups. Then B(RdAb) is the class of all homomorphisms X L Y with the prop-
erty that Y/f[X] is divisible. The closure operator K(RdAb) can be described as follows:
For any monomorphism M —=» X the closure [m], 4., 1S the smallest subgroup N of
X that contains M and for which X/N is reduced. Since K(RdADb) is weakly hereditary,
K(RdADb) = SG(RdAD) .

3.04 EXAMPLE

More generally, for a fixed ring R with unity let X be the category R-Mod of left R-
modules, let M be the class of monomorphisms in R-Mod , and let (7, F) be a torsion theory.
Then B(F) is the class of all homomorphisms X —+ Y with the property that Y/fIX]eT.
The K (F)-closed submodules can be described as follows: A submodule M ™ X is K(F)-
closed iff X/M € F. Since K(F) is weakly hereditary, K(F) = SB(F) (cf. [DG2]).
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