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0 INTRODUCTION

The development of a general theory of topological connectedness was started by Preuß ([Pr1])

and by Herrlich ([H]). Afterwards, a considerable number of papers have been publised on this

subject and on possible generalizations of it (e.g. [AW], [CC], [CT], [HP], [L], [P], [Pr2−3],

[SV] and [T]). However, most of these papers used the common approach of first defining a

notion of constant morphism and then use it to introduce the notions of connectedness and

disconnectedness, accordingly. So did we in [CH] and [C2−3].

Let X be an arbitrary category with an (E,M)-factorization structure for sinks and let

N ⊆ M. In [C2] an X -morphism X
f

−→ Y was called N -constant if the direct image of X under

f was isomorphic to the direct image under f of every N -subobject of X . If S(X ) denotes the

collection of all subclasses of objects of X , ordered by inclusion, for every N ⊆ M, the relation:

XR
N

Y if and only if every X -morphism X
f

−→ Y is N -constant yields a Galois connection

S(X )
∆N-�
∇N

S(X )op. For clarity we observe that for every B ∈ S(X ), ∆N (B) = {Y ∈ X :

∀X ∈ B, X
f

−→ Y is N -constant} and for every A ∈ S(X )op, ∇N (A) = {X ∈ X : ∀Y ∈

A, X
f

−→ Y is N -constant}. Again in [C2] it was proved that if N is closed under direct

images, we have that this Galois connection factors through CL(X ,M), i.e., the collection of all

1 This paper was partially supported by the Research Office of the Faculty of Arts and Sciences of

the University of Puerto Rico – Mayagüez campus.
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closure operators on X with respect to M, via two Galois connections S(X )
JN-�
IN

CL(X ,M)

and CL(X ,M)
DN-�
TN

S(X )op (see 2.1 and 2.2 below).

The main point of this paper is to free the notions of connectedness and disconnected-

ness from their dependence on constant morphisms. More precisely, the composition of the

two Galois connections S(X )
JN-�
IN

CL(X ,M) and CL(X ,M)
DN-�
TN

S(X )op will be called the

connectedness-disconnectedness Galois connection.

Nevertheless, it is still quite useful to have some notion of constant morphism available

because it can be used, under certain circumstances, to give an alternative description of the

connectedness-disconnectedness Galois connection. The notion of N -constant morphism intro-

duced in [C2] can be used to describe this Galois connection in the case that N is closed under

the formation of direct images. Here we introduce a notion of N -fixed morphism and show that

under the assumption of N being closed under the formation of pullbacks it provides an alterna-

tive description of the same connectedness-disconnectedness Galois connection. Examples show

the advantage of having these two different decriptions available.

Furthermore, basic closedness properties of the Galois connections S(X )
JN-�
IN

CL(X ,M)

and CL(X ,M)
DN-�
TN

S(X )op are analyzed as well as some properties of the closure operators

TN (A) and JN (B).

We use the terminology of [AHS] throughout the paper2.

1 PRELIMINARIES

Throughout we consider a category X and a fixed class M of X -monomorphisms, which contains

all X -isomorphisms. It is assumed that X is M-complete; i.e.,

(1) M is closed under composition

(2) Pullbacks of M-morphisms exist and belong to M, and multiple pullbacks of (possibly large)

families of M-morphisms with common codomain exist and belong to M.

One of the consequences of the above assumptions is that there is a uniquely determined

class E of sinks in X such that X is an (E,M)-category for sinks, that is:

(a) each of E and M is closed under compositions with isomorphisms;

(b) X has (E,M)-factorizations (of sinks); i.e., each sink s in X has a factorization s = m ◦ e

2 Paul Taylor’s commutative diagrams macro package was used to typeset most of the diagrams in

this paper.
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with e ∈ E and m ∈ M, and

(c) X has the unique (E,M)-diagonalization property; i.e., if B
g

−→ D and C
m
−→ D are X -

morphisms with m ∈ M, and e = (Ai
ei−→ B)I and s = (Ai

si−→ C)I are sinks in X with

e ∈ E, such that m ◦ s = g ◦ e, then there exists a unique diagonal B
d

−→ C such that for

every i ∈ I the following diagrams commute:

Ai
ei−→ B

si





y
ւd

C

and

B

d ւ




y

g

C −→
m

D

That X is an (E,M)-category implies the following features of M and E (cf. [AHS] for the

dual case):

PROPOSITION 1.1

(0) Every isomorphism is in both M and E (as a singleton sink). Moreover, every morphism

that is in both M and E is an isomorphism.

(1) Every m in M is a monomorphism.

(2) M is closed under M-relative first factors, i.e., if n ◦ m ∈ M, and n ∈ M, then m ∈ M.

(3) M is closed under composition.

(4) Pullbacks of X -morphisms in M exist and belong to M.

(5) The M-subobjects of every X -object form a (possibly large) complete lattice; suprema are

formed via (E,M)-factorizations and infima are formed via intersections.

If X
f

−→ Y is an X -morphism and M
m
−→ X is an M-subobject, then X

ef◦m

−→ Mf

mf

−→ Y

will denote the (E,M)-factorization of f ◦ m. Mf

mf
−→ Y will be called the direct image of m

along f . If N
n

−→ Y is an M-subobject, then the pullback f−1(N)
f−1(n)
−→ X of n along f will be

called the inverse image of n along f . Whenever no confusion is likely to arise, to simplify the

notation we will denote the morphism ef◦m simply ef .

DEFINITION 1.2

A closure operator C on X (with respect to M) is a family {( )
C

X
}X∈X of functions on the

M-subobject lattices of X with the following properties that hold for each X ∈ X :

(a) [expansiveness] m ≤ (m)
C

X
, for every M-subobject M

m
−→ X ;

(b) [order-preservation] m ≤ n ⇒ (m)
C

X
≤ (n)

C

X
for every pair of M-subobjects of X ;

(c) [morphism-consistency] If p is the pullback of the M-subobject M
m
−→ Y along some X -

morphism X
f

−→ Y and q is the pullback of (m)
C

Y
along f , then (p)

C

X
≤ q, i.e., the closure
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of the inverse image of m is less than or equal to the inverse image of the closure of m.

Condition (a) implies that for every closure operator C on X , every M-subobject M
m
−→ X

has a canonical factorization

M
t

−→ (M)
C

X

m ց




y
(m)

C

X

X

where ((M)
C

X
, (m)

C

X
) is called the C-closure of the subobject (M, m).

When no confusion is likely we will write m
C

rather than (m)
C

X
and for notational symmetry

we will denote the morphism t by m
C
.

REMARK 1.3

(1) Notice that in the above definition, under condition (b), the morphism-consistency condition

(c) is equivalent to the following statement concerning direct images: if M
m
−→ X is an M-

subobject and X
f

−→ Y is a morphism, then ((m)
C

Y
)f ≤ (mf )

C

Y
, i.e., the direct image of the

closure of m is less than or equal to the closure of the direct image of m; (cf. [DG]).

(2) Under condition (a), both order-preservation and morphism-consistency, i.e., conditions (b)

and (c) together are equivalent to the following: given (M, m) and (N, n) M-subobjects of

X and Y , respectively, if f and g are morphisms such that n ◦ g = f ◦ m, then there exists

a unique morphism d such that the following diagram

M
g - N

@@@
m

C

R
@@@

n
C

R
M

C d -

n

N
C

	��
�
m

C 	���
n

C

X

m

?

f
- Y

?

commutes.

DEFINITION 1.4

Given a closure operator C, we say that m ∈ M is C-closed if m
C

is an isomorphism. An

X -morphism f is called C-dense if for every (E,M)-factorization (e, m) of f we have that m
C

is an isomorphism. We call C idempotent provided that m
C

is C-closed for every m ∈ M. C is
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called weakly hereditary if m
C

is C-dense for every m ∈ M. Furthermore, if M′ ⊆ M, then C

is said to be hereditary with respect to M′ if whenever M
m
−→ X , M

t
−→ N and N

n
−→ X are

morphisms in M with n ◦ t = m and n ∈ M′, we have that t
C

is the pullback of m
C

along n (cf.

[CG]).

Notice that Definition 1.2(c) implies that pullbacks of C-closed M-subobjects are C-closed.

We denote the collection of all closure operators on M by CL(X ,M) pre-ordered as follows:

C ⊑ D if m
C

≤ m
D

for all m ∈ M (where ≤ is the usual order on subobjects). Notice that

arbitrary suprema and infima exist in CL(X ,M), they are formed pointwise in the M-subobject

fibers.

For more background on closure operators see, e.g., [C1], [CKS1], [CKS2], [DG], [DGT] and

[K]. For a detailed survey on the same topic, one could check [Ho].

DEFINITION 1.5

For pre-ordered classes X = (X,⊑) and Y = (Y,⊑), a Galois connection X
F-�
G

Y consists

of order preserving functions F and G that satisfy F ⊣ G, i.e., x ⊑ GF (x) for every x ∈ X and

FG(y) ⊑ y for every y ∈ Y. (G is adjoint and has F as coadjoint).

If x ∈ X and y ∈ Y are such that F (x) = y and G(y) = x, then x and y are said to be

corresponding fixed points of the Galois connection (X , F, G,Y).

Properties and many examples of Galois connections can be found in [EKMS].

2 GENERAL RESULTS

Throughout the paper we assume that X is an (E,M)-category for sinks.

Let S(X ) denote the collection of all subcategories of X , ordered by inclusion and let N be

a fixed subclass of M. For X ∈ X , NX will denote the class of all N -subobjects of X .

We begin by recalling the following two propositions from [C2].

PROPOSITION 2.1

Let CL(X ,M)
DN−→ S(X )op and S(X )op TN−→ CL(X ,M) be defined by:

DN (C) = {X ∈ X : every n ∈ NX is C-closed}

TN (A) = Sup{C ∈ CL(X ,M) : DN (C) ⊇ A}.

Then, CL(X ,M)
DN-�
TN

S(X )op is a Galois connection.
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PROPOSITION 2.2

Let CL(X ,M)
IN−→ S(X ) and S(X )

JN−→ CL(X ,M) be defined by:

IN (C) = {X ∈ X : every n ∈ NX is C-dense}

JN (B) = Inf{C ∈ CL(X ,M) : IN (C) ⊇ B}.

Then, S(X )
JN-�
IN

CL(X ,M) is a Galois connection.

As a consequence of the above propositions we obtain a Galois connection between S(X )

and S(X )op. Therefore we give the following:

DEFINITION 2.3

The Galois connection S(X )
DN ◦JN-�
IN ◦TN

S(X )op will be called the connectedness-disconnected-

ness Galois connection.

In [C2] we showed that when N is closed under the formation of direct images, the above

Galois connection is precisely the one given by N -constant morphisms and we presented some

characterizations of the functions TN and JN . For reference purposes we collect them under the

following:

PROPOSITION 2.4

For every A ∈ S(X )op and M-subobject M
m
−→ X , with X ∈ X , we have that

mTN (A) = ∩{f−1(n) : Y ∈ A, X
f

−→ Y, N
n

−→ Y ∈ NY and m ≤ f−1(n)}.

Moreover, for every B ∈ S(X ) and M-subobject M
m
−→ Y , with Y ∈ X , we have that

mJN (B) = sup
(

{m} ∪ {(idX)f : X ∈ B, X
f

−→ Y and ∃n ∈ NX with nf ≤ m}
)

.

Next we analyze some closedness properties of the Galois connections in Propositions 2.1

and 2.2.

PROPOSITION 2.5

If N is closed under pullbacks along morphisms in E, then for every closure operator C,

IN (C) is closed under E-quotients.

Proof:

Let the morphism X
q

−→ Q belong to E with X ∈ IN (C) and consider the N -subobject

N
n

−→ Q. By hypothesis q−1(n) belongs to N and so (q−1(n))
C

≃ idX . From the property (c) of

closure operators we obtain that (q−1(n))
C

≤ q−1(n
C

). Therefore we conclude that q−1(n
C

) ≃
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idX . Consequently we obtain that n
C

≥ (q−1(n
C

))q ≃ (idX)q ≃ idQ. Notice that the last

isomorphism is a consequence of the fact that q ∈ E. Hence we have that n
C

≃ idQ, i.e.,

Q ∈ IN (C).

PROPOSITION 2.6

Let N be closed under pullbacks and let C be a closure operator. If Xi ∈ IN (C) for every

i ∈ I and the coproduct ∐Xi exists, then it also belongs to IN (C).

Proof:

Consider the coproduct (Xi
ki−→ ∐Xi)i∈I with Xi ∈ IN (C) for every i ∈ I. If N

n
−→

∐Xi belongs to N then, since by hypothesis k−1
i (n) ∈ N for every i ∈ I, we have that each

(k−1
i (n))

C

≃ idXi
. From the general properties of C (cf. Remark 1.3(2)), for every i ∈ I we

obtain a morphism ti such that the following diagram commutes

Xi

ki - ∐Xi

I@@@
(k−1

i (n))
C

I@@@
n

C

(k−1
i (N))

C ti -

n
6

N
C

���� ��
�
n

C

�

k−1
i (N)

k−1
i (n)

6

- N

To simplify the notation, let ri = (k−1
i (n))

C

. Since each ri is an isomorphism, the universal

property of coproducts implies the existence of a morphism ∐Xi
d

−→ N
C

such that d◦ki = ti◦r−1
i ,

for every i ∈ I. This, together with n
C

◦ ti ◦ r−1
i = ki implies that n

C

◦ d ◦ ki = id∐Xi
◦ ki,

for every i ∈ I. The fact that (ki)i∈I is an epi-sink implies that n
C

◦ d = id∐Xi
. Finally, this

together with the fact that n
C

is a monomorphism implies that n
C

is an isomorphism. Thus,

∐Xi ∈ IN (C).

It may be worthwhile to observe that in the case that X is well-powered and has coproducts,

if N is closed under pullbacks, Propositions 2.5 and 2.6 imply that for any closure operator C,

IN (C) is an M-coreflective subcategory of X (cf. [AHS, Theorem 16.8], dual).

PROPOSITION 2.7

Let C be a closure operator. If N is closed under the formation of direct images along

elements of M, then DN (C) is closed under the formation of M-subobjects.

Proof:

Let M
m
−→ X be an M-subobject of X with X ∈ DN (C) and let N

n
−→ M be an N -

subobject of M . Let (e1, m1) be the (E,M)-factorization of m ◦ n. By hypothesis m1 is an
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N -subobject of X and therefore it is C-closed. Since m ◦ n ∈ M, we obtain that e1 is an

isomorphism. Thus n is the pullback of m1 along m and from the general theory of closure

operators it is C-closed.

LEMMA 2.8

Let C be a closure operator and let X ∈ X . Suppose that for every n ∈ NX , there is a

source (X
fi
−→ Yi)i∈I with Yi ∈ DN (C) for every i ∈ I and n ≃ ∩f−1

i (ni), for some ni ∈ NYi
.

Then X ∈ DN (C).

Proof:

Consider the N -subobject N
n

−→ X and a source (X
fi
−→ Yi)i∈I such that n ≃ ∩f−1

i (ni),

with ni ∈ NYi
. Then we have that n

C

≃ (∩f−1
i (ni))

C

≤ ∩(f−1
i (ni))

C

≤ ∩f−1
i (n

C

i ) ≃ ∩f−1
i (ni) ≃

n. Notice that in the above inequalities we have used the usual properties of closure operators

(e.g., 1.3(2)). Moreover the fact that every N -subobject of Yi is C-closed was used to obtain the

final isomorphisms. Thus, we conclude that n ≃ n
C

and so X ∈ DN (C).

PROPOSITION 2.9

Let C be a closure operator. Suppose that E consists of episinks and that X has a terminal

object T . Consider the class of morphisms N = {T
n

−→ X with X ∈ X and n ∈ M}. Then

every product of X -objects belongs to DN (C).

Proof:

Let (
∏

Xi −→ Xi)i∈I be a product in X . We need only show that it satisfies the hypothesis

of Lemma 2.8.

Let n ∈ N and let (ei, mi) be the (E,M)-factorization of πi ◦ n. Notice that since ei is

an epimorphism and T is a terminal object, we can easily conclude that ei is an isomorphism.

Therefore, mi ∈ N . Now, let us consider the pullback diagram

∏

Xi

πi- Xi

Pi

π−1
i (mi)

6

ri

- Tπi

6
mi

We would like to show that n = ∩π−1
i (mi). Since πi ◦ n = mi ◦ ei, we have that for every

i ∈ I, there is a morphism T
ti−→ Pi such that π−1

i (mi) ◦ ti = n and ri ◦ ti = ei. Now, suppose

that there is a morphism D
d

−→
∏

Xi and a family of morphisms (D
di−→ Pi)i∈I such that

π−1
i (mi) ◦ di = d, for every i ∈ I. Since T is a terminal object, there is a unique morphism
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D
t

−→ T such that t = e−1
i ◦ ri ◦ di. Consequently we have that ei ◦ t = ri ◦ di and so,

πi ◦ d = πi ◦ π−1
i (mi) ◦ di = mi ◦ ri ◦ di = mi ◦ ei ◦ t = πi ◦ n ◦ t for every i ∈ I. The universal

property of products implies that n ◦ t = d. Therefore we can conclude that n ≃ ∩π−1
i (mi).

We observe that in many concrete categories such as for instance topological spaces and

groups, under the appropriate assumptions, Propositions 2.7 and 2.9 yield that DN (C) is an

epireflective subcategory (cf. [AHS, Theorem 16.8]).

Another consequence of Lemma 2.8 is the following:

PROPOSITION 2.10

Let A ∈ S(X )op. An X -object X belongs to DN (TN (A)) if and only if for every n ∈ NX

there is a source (X
fi
−→ Yi)i∈I with Yi ∈ A for every i ∈ I, such that n ≃ ∩f−1(ni) for some

ni ∈ NY i.

Proof:

First notice that if X ∈ DN (TN (A)), then every n ∈ NX is TN (A)-closed, that is n ≃

nTN (A)) = ∩{f−1(p) : Y ∈ A, X
f

−→ Y, P
p

−→ Y ∈ NY and n ≤ f−1(p)} (cf. Proposition 2.4).

Conversely, if X ∈ X satisfies the condition in the statement, then again from the char-

acterization of TN (A) in Proposition 2.4, we obtain that every n ∈ NX is TN (A)-closed and

consequently X ∈ DN (TN (A)).

We recall that in [C2] the following definition of N -constant morphism was given for any

subclass N of M: a morphism X
f

−→ Y is N -constant if for every n ∈ NX , nf ≃ (idX)f .

This notion was then used to obtain what was called the connectedness-disconnectedness Galois

connection. Furthermore, this Galois connection was shown to factor via the collection of all

closure operators on X with respect to M. This result was proved under the assumption of N

being closed under the formation of direct images. However, there are interesting subclasses of

M that do not have this property but they are closed under the formation of pullbacks. We are

going to show that a new notion of N -fixed morphism can be formulated in order to provide a

description of the connectedness-disconnectedness Galois connection in Definition 2.3, in the case

that N is closed under the formation of pullbacks. Consequently, by putting together the results

in [C2] with the ones in this paper we obtain two different ways of describing the connectedness-

disconnectedness Galois connection depending on whether the subclass N is closed under the

formation of direct images or pullbacks.

DEFINITION 2.11

An X -morphism X
f

−→ Y is called N -fixed if for every n ∈ NY we have that f−1(n) ≃ idX .
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PROPOSITION 2.12 (cf. [H])

Let N ⊆ M. Define S(X )
∆̂N−→ S(X )op and S(X )op ∇̂N−→ S(X ) as follows:

∇̂N (A) = {X ∈ X : ∀Y ∈ A, X
f

−→ Y is N -fixed}

∆̂N (B) = {Y ∈ X : ∀X ∈ B, X
f

−→ Y is N -fixed}

Then, S(X )
∆̂N-�
∇̂N

S(X )op is a Galois connection.

THEOREM 2.13

Let N be a subclass of M closed under the formation of pullbacks. Then we have that

the Galois connection S(X )
∆̂N-�
∇̂N

S(X )op factors through CL(X ,M) via the Galois connections

S(X )
JN-�
IN

CL(X ,M) and CL(X ,M)
DN-�
TN

S(X )op described above; i.e., it is precisely the Ga-

lois connection of Definition 2.3.

Proof:

Let A ∈ S(X )op and let X ∈ (IN ◦ TN )(A). Consider X
f

−→ Y with Y ∈ A and let

N
n

−→ Y belong to NY . Since n is TN (A)-closed, from the properties of closure operators, we

have that also f−1(n) is TN (A)-closed; i.e., f−1(n)TN (A) ≃ f−1(n). Since X ∈ (IN ◦TN )(A) and

f−1(n) ∈ N , we have that f−1(n)TN (A) ≃ idX . So, f−1(n) ≃ idX . Thus (IN ◦TN )(A) ⊆ ∇̂N (A).

Now, let X ∈ ∇̂N (A). Consider X
f

−→ Y with Y ∈ A and an N -subobject N
n

−→ X . If

N1
n1−→ Y belongs to N , then by our assumption on X , the pullback f−1(n1) ≃ idX . Thus,

we obtain that nTN (A) ≃ idX (cf. Proposition 2.4). So, X ∈ (IN ◦ TN )(A) and therefore

IN ◦ TN = ∇̂N .

Let B ∈ S(X ) and let Y ∈ (DN ◦ JN )(B). Consider X
f

−→ Y with X ∈ B. If N
n

−→ Y

belongs to NY , then from the assumption on N , we have that f−1(n) ∈ NX . Since X ∈ B,

we have that f−1(n)JN (B) ≃ idX . Since Y ∈ (DN ◦ JN )(B), n is JN (B)-closed and from the

properties of closure operators, so is f−1(n). Thus, we have that f−1(n) ≃ f−1(n)JN (B) ≃ idX .

Therefore, we have that Y ∈ ∆̂N (B) and so (DN ◦ JN )(B) ⊆ ∆̂N (B).

Now, let Y ∈ ∆̂N (B) and let N
n

−→ Y ∈ NY . Consider X
f

−→ Y with X ∈ B. By the

assumption on N , f−1(n) ∈ NX . Since (f−1(n))f ≤ n, (idX)f occurs in the construction of

nJN (B). Since f−1(n) ≃ idX , we obtain that (idX)f ≃ (f−1(n))f ≤ n and therefore nJN (B) ≃ n.

Thus, Y ∈ (DN ◦ JN )(B). Therefore we conclude that DN ◦ JN = ∆̂N .

Notice that since the adjoint part of a Galois connection completely determines the coadjoint

part, we could have omitted the second part of the above proof. However, we included it for the

purpose of clarity.

The following proposition shows that there is a strong relationship between the definition of

N -constant morphism that appeared in [C2] and the one of N -fixed morphism in this paper.
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PROPOSITION 2.14

Let X
f

−→ Y be an X -morphism. Then we have the following:

(a) If N is closed under the formation of pullbacks, then every N -constant morphism is N -fixed;

(b) If N is closed under the formation of direct images, then every N -fixed morphism is N -

constant;

(c) If N is closed under the formation of both pullbacks and direct images, then the two notions

of N -constant and N -fixed morphism are equivalent.

Proof:

(a). Suppose that N is closed under the formation of pullbacks. If n ∈ NY , then by

hypothesis f−1(n) ∈ NX . Then, the fact that f is N -constant implies that (idX)f ≃ (f−1(n))f .

Thus, we have that idX = f−1((idX)f ) ≃ f−1((f−1(n))f ) ≃ f−1(n). Therefore we conclude that

f−1(n) ≃ idX , i.e., f is N -fixed.

(b). Suppose now that N is closed under the formation of direct images. If n ∈ NX ,

then nf ∈ NY , and since f is N -fixed, we have that f−1(nf ) ≃ idX . Thus we obtain that

nf ≃ (f−1(nf ))f ≃ (idX)f . So, f is N -constant.

(c). This follows immediately from (a) and (b).

Next we analyze some closedness properties of the Galois connection in Proposition 2.12.

PROPOSITION 2.15

For every A ∈ S(X )op, ∇̂N (A) is closed under E-quotients.

Proof:

Let us consider the following commutative diagram

X
q - Q

f - Y

q−1(f−1(N))

q−1(f−1(n))
6

- f−1(N)

f−1(n)
6

p
- N

n
6

where, X ∈ ∇̂N (A), q ∈ E, Y ∈ A and n ∈ NY . Since q−1(f−1(n)) ≃ (f ◦ q)−1(n) ≃ idX , we

have that (idX)q ≃ (q−1(f−1(n))q ≤ f−1(n). Since q ∈ E, we have that (idX)q ≃ idQ, that is,

idQ ≤ f−1(n). This implies that f−1(n) ≃ idQ. Thus we conclude that Q ∈ ∇̂N (A).

PROPOSITION 2.16

Let A ∈ S(X )op and let Xi ∈ ∇̂N (A) for every i ∈ I. If the coproduct ∐Xi exists, then it

also belongs to ∇̂N (A).
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Proof:

Let us consider the following commutative diagram

Xi

ki - ∐Xi

f- Y

k−1
i (f−1(N))

si

6

ti
- f−1(N)

f−1(n)
6

f̄
- N

6
n

where Xi ∈ ∇̂N (A) for every i ∈ I, Y ∈ A and si = k−1
i (f−1(n)) with n ∈ NY . Notice that by

hypothesis si is an isomorphism for every i ∈ I. The universal property of coproducts implies

the existence of a unique morphism ∐Xi
d

−→ f−1(N) such that d ◦ ki = ti ◦ s−1
i , for every i ∈ I.

Therefore we have that f−1(n) ◦ d ◦ ki = f−1(n) ◦ ti ◦ s−1
i = ki ◦ si ◦ s−1

i = ki = id∐Xi
◦ ki, for

every i ∈ I. The universal property of coproducts implies that f−1(n) ◦ d = id∐Xi
. Thus, since

f−1(n) is a monomorphism and a retraction, we can conclude that it is an isomorphism. Hence,

∐Xi belongs to ∇̂N (A).

It is interesting to notice that if X is well powered and has coproducts, as a consequence

of Propositions 2.15 and 2.16, we have that for every A ∈ S(X )op, ∇̂N (A) is an M-coreflective

subcategory of X (cf. [AHS, Theorem 16.8], dual).

PROPOSITION 2.17

Let N be closed under direct images along morphisms in M. For every subcategory B ∈

S(X ), ∆̂N (B) is closed under M-subobjects.

Proof:

Let M
m
−→ Y be an M-subobject with Y ∈ ∆̂N (B), let X ∈ B and let N

n
−→ M be an

N -subobject of M . Consider the X -morphism X
f

−→ M . If (e1, n1) is the (E,M)-factorization

of m ◦ n then we obtain the following commutative diagram

X
f- M

m- Y

f−1(N)

f−1(n)
6

- N

n
6

e1

- N1

n1

6

We first observe that since m ◦ n ∈ M, we have that e1 is an isomorphism. Let h be

the morphism such that m ◦ f ◦ (m ◦ f)−1(n1) = n1 ◦ h. Then, by the universal property

of pullbacks, there exists a morphism t such that (m ◦ f)−1(n1) ◦ t = f−1(n). Since n1 =
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m ◦ n ◦ e−1
1 , we obtain that m ◦ f ◦ (m ◦ f)−1(n1) = m ◦ n ◦ e−1

1 ◦ h. The fact that m is a

monomorphism implies that f ◦ (m ◦ f)−1(n1) = n ◦ e−1
1 ◦ h. Thus, again from the universal

property of pullbacks applied to the left square of the above diagram, we obtain a morphism d

such that (m ◦ f)−1(n1) = f−1(n) ◦ d. This, together with (m ◦ f)−1(n1) ◦ t = f−1(n), implies

that f−1(n) ◦ d ◦ t = f−1(n) = f−1(n) ◦ idf−1(N). Since f−1(n) is a monomorphism, we obtain

that d ◦ t = idf−1(N). Therefore, d is a monomorphism and a retraction and so it is also an

isomorphism. Hence f must be N -fixed.

PROPOSITION 2.18

Let X have a terminal object T and assume that any morphism with T as domain belongs

to M. If E is contained in the class of episinks and N consists of all morphisms having T as

domain, then for every subclass B ∈ S(X ), we have that ∆̂N (B) is closed under monosources.

Proof:

Let X ∈ B and let (Y
pi
−→ Yi)i∈I be a monosource with Yi ∈ ∆̂N (B), for every i ∈ I. Let us

consider the following commutative diagram

X
f - Y

pi- Yi

f−1(T )

f−1(t)
6

- T

t
6

epi

- Tpi

6
tpi

where (epi
, tpi

) is the (E,M)-factorization of pi◦t. Notice that the fact that T is a terminal object

implies that epi
is an epimorphism and a section and consequently it is also an isomorphism. By

hypothesis (pi ◦ f)−1(tpi
) ≃ idX . It is just a technicality to show that f−1(t) ≃ ∩(pi ◦ f)−1(tpi

),

so we omit the lengthy details. This implies that f−1(t) ≃ idX . Thus, Y ∈ ∆̂N (B).

We observe that in many concrete categories such as for instance topological spaces and

groups, under the appropriate assumptions, Propositions 2.17 and 2.18 imply that for every

B ∈ S(X ), ∆̂N (B) is an epireflective subcategory (cf. [AHS, Theorem 16.8]).

We have seen in [C2, Proposition 2.6] that for every A ∈ S(X )op, the closure operator TN (A)

is always idempotent. We are going to show that under certain assumptions it is also weakly

hereditary. We recall the following corollary from [C3].

COROLLARY 2.19 ([C3, Corollary 2.19])

Let A be a full, reflective subcategory of X and for X ∈ X , let X
rX−→ rX denote the

reflection morphism. Then, for every N ⊆ M and for every M-subobject M
m
−→ X , we have
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that

mTN (A) ≃ ∩{r−1
X (n) : N

n
−→ rX ∈ Nand m ≤ r−1

X (n)}.

LEMMA 2.20

Let us consider the diagram

X
f- Y

W

p
6

g
- Z

6
q

g−1(N)

g−1(n)
6

α
- N

6
n

satisfying the following conditions: the upper square is commutative, p and q are monomorphisms,

the lower square is a pullback and n is a monomorphism. Then, we have that p ◦ g−1(n) ≃

f−1(q ◦ n) ∩ p.

Proof:

Let us consider the pullback square

X
f- Y

Z

6
q

f−1(N)

f−1(q ◦ n)

6

β
- N

6
n

By the universal property of pullbacks, there exists a monomorphism g−1(N)
t

−→ f−1(N)

such that f−1(q ◦n)◦ t = p◦g−1(n) and β ◦ t = α. We need to show that p◦g−1(n) is isomorphic

to the intersection of f−1(q ◦n) and p. To this purpose, let us consider the morphisms P
s

−→ X ,

P
p1
−→ W and P

p2
−→ f−1(N) such that s = p ◦ p1 = f−1(q ◦n) ◦ p2. Now, q ◦ g ◦ p1 = f ◦ p ◦ p1 =

f ◦ f−1(q ◦n) ◦ p2 = q ◦n ◦ β ◦ p2. Since q is a monomorphism, we obtain that g ◦ p1 = n ◦ β ◦ p2.

Again by the universal property of pullbacks, we obtain a unique morphism P
d

−→ g−1(N) such

that g−1(n) ◦ d = p1 and α ◦ d = β ◦ p2. Consequently we have that p ◦ g−1(n) ◦ d = p ◦ p1 = s.

Therefore we obtain that p ◦ g−1(n) ≃ f−1(q ◦ n) ∩ p.
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PROPOSITION 2.21

Let A be a full reflective subcategory of X with reflection functor r. Assume that the

following two conditions are met:

(a) For every M-subobject M
m
−→ X , r(m) ∈ M;

(b) N is closed under the formation of direct images along morphisms in M.

Then, TN (A) is weakly hereditary.

Proof:

Let us consider the M-subobject M
m
−→ X . We are going to show that the morphism

M
mTN (A)

−−−−→ MTN (A) is TN (A)-dense. Clearly (mTN (A))
TN (A) ≤ idMTN (A) . To prove that the

other inequality holds we will make use of the expression of TN (A) given in Corollary 2.19. Let

us consider the following commutative diagram

X
rX - rX

�����
m

*

M
mTN (A) - MTN (A)

6
mTN (A)

rMTN (A)- r(MTN (A))

6
r(mTN (A))

Z
ZZ

Z
Z~

(rMTN (A))−1(N)

6

- N

6
n

with m ∈ M and n ∈ N such that mTN (A) ≤ (rMTN (A))−1(n). Let (e1, m1) be the (E,M)-

factorization of r(mTN (A)) ◦ n. Conditions (a) and (b) imply that m1 ∈ N and condition (a)

alone yields that e1 is an isomorphism. To simplify the notation, let t = r(mTN (A)) ◦ n. By

applying Lemma 2.20, we obtain that mTN (A) ◦ (rMTN (A))−1(n) ≃ mTN (A) ∩ r−1
X (t) ≃ mTN (A) ∩

r−1
X (m1). Since r−1

X (m1) occurs in the construction of mTN (A) (cf Proposition 2.4), we have that

mTN (A) ∩ r−1
X (m1) ≃ mTN (A). Therefore, we have that mTN (A) ◦ (rMTN (A))−1(n) ≃ mTN (A)

for every N -subobject N
n

−→ r(MTN (A)) satisfying mTN (A) ≤ (rMTN (A))−1(n). Thus we can

conclude that (mTN (A))
TN (A) ≃ mTN (A); i.e., TN (A) is weakly hereditary.

We have seen in [C2, Proposition 2.7] that for every B ∈ S(X ), the closure operator JN (B)

is always weakly hereditary. We can show that under certain assumptions it is also idempotent.

We recall the following result from [C3].

PROPOSITION 2.22 ([C3, Proposition 2.20])

Let B be a full, coreflective subcategory of X and for Y ∈ X , let cY
cY−→ Y denote the

coreflection morphism. If N is closed under the formation of direct images then, for every M-
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subobject M
m
−→ Y , we have that

mJN (B) ≃ sup ({m} ∪ {(idcY )cY : ∃n ∈ NcY with ncY
≤ m}) .

PROPOSITION 2.23

Let B be a full, coreflective subcategory of X with coreflection functor c and let N be closed

under the formation of direct images. Then the closure operator JN (B) is idempotent.

Proof:

Let M
m
−→ Y be an M-subobject. We observe that from Proposition 2.22 we have that either

mJN (B) ≃ m or mJN (B) ≃ m ∨ (idcY )cY . In the first case it is obvious that (mJN (B))JN (B) ≃

mJN (B). In the second case we obtain that (mJN (B))JN (B) ≃ (m ∨ (idcY )cY )JN (B). Again we

either have that (m ∨ (idcY )cY )JN (B) ≃ m ∨ (idcY )cY or that (m ∨ (idcY )cY )JN (B) ≃ (idcY )cY ∨

(m ∨ (idcY )cY ) ≃ (m ∨ (idcY )cY ). So, we conclude that also in the second case we have that

(mJN (B))JN (B) ≃ mJN (B). Therefore JN (B) is idempotent.

Since a number of examples that illustrate our theory of connectedness and disconnectedness

already appeared in [C3], here we will simply present a significant one that shows the importance

of the definition of N -fixed morphism that appears in this paper.

EXAMPLE 2.24

(a). Let X be the category Grp of groups and homomorphisms and let N consist of all

inclusions of normal subgroups. Clearly N is closed under the formation of pullbacks but not

under the formation of direct images. Notice that in this case, X
f

−→ Y is N -fixed if and only if

f is constant in the classical sense.

Let Sim denote the subcategory of simple groups, i.e., all those groups that have no nontrivial

normal subgroups. Now we show that ∆̂N (Sim) = Simfree, i.e., the subcategory of all groups

that have no simple subgroup different from zero. Clearly, since Sim is closed under the formation

of quotients, if X
f

−→ Y is a homomorphism with X ∈ Sim and Y ∈ Simfree, then the fact that

f(X) ∈ Sim and f(X) ≤ Y imply that f(X) = 0, i.e., f is constant. Therefore we have that

Simfree ⊆ ∆̂N (Sim). Conversely, suppose that Y ∈ ∆̂N (Sim) and that Y 6∈ Simfree. Then,

there exists a simple subgroup K of Y different from zero. Consequently, the inclusion K
i

−→ Y

is a non-constant morphism. This is a contradiction with our assumption. Thus, we conclude

that Simfree = ∆̂N (Sim).

Using Proposition 2.4 it is easy to see that for every subgroup M ≤ Y , MJN (Sim) is the

subgroup generated by M and all simple subgroups of Y . Clearly from Theorem 2.13 we have

that DN (JN (Sim)) = Simfree.
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Next we show that ∇̂N (Simfree) consists of all groups X such that if K is a normal subgroup

of X , then X/K has a simple subgroup different from zero. Let us denote this subcategory by

Simquo. Let X ∈ Simquo and Y ∈ Simfree. Suppose that there exists a non-constant

morphism X
f

−→ Y . Then, kerf 6= X and so X/kerf has a simple subgroup different from

zero. Since X/kerf ≃ f(X) ≤ Y , we obtain a contradiction. Therefore we have that Simquo ⊆

∇̂N (Simfree). Conversely, suppose that X ∈ ∇̂N (Simfree) and that X 6∈ Simquo. Then,

there exists a normal subgroups K of X such that X/K has no simple subgroup different from

zero, that is X/K ∈ Simfree. Clearly, the quotient morphism X
q

−→ X/K is not constant. This

yields a contradiction. Therefore we can conclude that Simquo = ∇̂N (Simfree).

(b). Part (a) can be generalized as follows. Let A ∈ S(Grp). If A is closed under subgroups

and quotients, then it is easy to see that for every subgroup M of a group X , MTN (A) is the

intersection of all normal subgroups H of X such that X/H ∈ A. That is, TN (A) agrees with

the A-normal closure operator (cf. [FJ], [FW]). As in part (a), using the characterization given

in Theorem 2.13 we have that B = (IN ◦TN )(A) consists of all those groups X that do not have

any proper normal subgroup N such that X/N ∈ A. Moreover, for every subgroup M of Y ,

MJN (B) is the subgroup generated by M and by those subgroups S of Y which do not have any

proper normal subgroup N such that S/N ∈ A.

In the above example we can see the usefulness of being able to describe the connectedness-

disconnectedness Galois connection by means of our notion of N -fixed morphism. As a matter

of fact it is quite difficult to characterize the Galois closed classes in part (a), using Definition

2.3 directly. The problem lies in the fact that it is not easy to characterize TN (Simfree). Notice

that our previous notion of N -constant morphism cannot be used in this case since N is not

closed under the formation of direct images.
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