Name: \qquad

1) Draw each of the following points in three-dimensional space:
a. $(3,4,2)$
b. $(-4,3,2)$
c. $(2,1,-3)$
d. $(-3,0,3)$
2) In this problem to move "forward" or "backwards" is to move in the direction of positive x (the x coordinate increases, the y and z remain the same) or negative x (the x coordinate decreases, the y and z remain the same), respectively; "to the right" or "to the left" is moving in the positive or negative y direction, respectively; "up" or "down" is moving in the positive or negative z direction, respectively:
a. Find the coordinates of the point where one ends if one starts at point $A(1,2,3)$ and moves 5 units forward, 4 units to the left, and 2 units up.
b. Find the coordinate of the point where one ends if one starts at point $A(3,-4,2)$ and moves 4 units backwards, 4 units to the right, and 4 units down.
3) Draw all points in three-dimensional space that satisfy:
a. $x=-2$
b. $y=4$
c. $z=0$
d. $x=3$
4) Find an equation for each one of the coordinate planes:
a. $x y$ plane
b. $x z$ plane
c. $y z$ plane
5) Draw in three-dimensional space and describe symbolically the set of points that results from:
a. intersecting the plane $x=1$ with the plane $y=2$ (the intersection consists ONLY of the points that are on both planes at the same time; draw ONLY those points, that is, do not draw the planes)
b. intersecting the plane $y=-1$ with the plane $z=4$
6) In each of the following problems you are given a set S in three-dimensional space and a fundamental plane. The "intersection" of the plane and the set S consists of the points that are on the plane and that are also in the set S. For each of the problems in parts a, b, and c , follow all the instructions from i to iii.
i. Draw the intersection on a Cartesian plane, identifying the axes. Note: to draw the intersection one does not need to draw or even know how the graph of set S looks.
ii. Draw the intersection in three-dimensional space. Make sure that all the points in the graph are on the corresponding fundamental plane.
iii. Find the coordinates of three of the points on the intersection.
a. $\quad S=\left\{(x, y, z): z=x^{2}+x y^{2}\right\} ;$ plane $x=1$
b. $\quad S=\left\{(x, y, z): z=x^{2}+(2+y)^{3} x+y^{2}\right\}$; plane $y=-2$
c. $\quad S=\left\{(x, y, z): z=x^{2}+y^{2}\right\} ;$ plane $z=4$
7) Draw each of the following sets in Cartesian three-dimensional space. To do so one doesn't need to draw or know how the graph of $z=x y^{2}$ looks. Each one of the sets is the intersection of a plane with the surface that is the graph of $z=x y^{2}$.
a. $\left\{(x, y, z): z=x y^{2}, x=0\right\}$ Hint: It consists of more than one point.
b. $\left\{(x, y, z): z=x y^{2}, x=1\right\}$
c. $\left\{(x, y, z): z=x y^{2}, x=2\right\}$
d. $\left\{(x, y, z): z=x y^{2}, z=1\right\}$
8) In each one of the following cases draw in three-dimensional space the intersection of the graph of $z=x \sin (y)$ with the given plane. To do the problem one does not need to draw or know how the graph of $z=x \sin (y)$ looks.
a. $\quad x=0$ (has more than one point)
b. $\quad y=0$ (has more than one point)
c. $z=0$
d. $\quad x=1$
e. $x=2$
f. $\quad y=\pi / 2$
9) In each of the following problems draw in three-dimensional space and describe the intersection of set S with the given axis. There is no need to know the graph of S to do this.
a. $S=\left\{(x, y, z): z=x^{2}+x y^{2}\right\}$ with the y axis. (It is contained in the y axis.)
b. $S=\left\{(x, y, z): z=x^{2}+(2+y)^{3} x+y^{2}\right\}$ with the x axis.
c. $S=\{(x, y, z): z=x \sin (y)\}$ with the z axis.
10) Let $S=\left\{(x, y, z): x^{2}+x+y^{2}=2\right\}$. Do the following problems without drawing the graph of surface S.
a. Draw in three-dimensional space and describe the intersection of S with the x axis. Note that the intersection must be entirely contained within the x axis. On a separate drawing represent the intersection of S with the $x z$ plane. Explain as carefully as you can why in both situations (x axis, $x z$ plane) you obtain exactly the same equation but the answers are different.
b. Draw in three-dimensional space and describe the intersection of S with the y axis. On a separate drawing represent the intersection of S with the $y z$ plane.
c. Draw in three-dimensional space and describe the intersection of S with the z axis. On a separate drawing represent the intersection of S with the $x y$ plane.
