ACTIVITY \#2 - CYLINDERS IN THREE DIMENSIONS

Name: \qquad

1. Draw each one of the following sets in three-dimensional Cartesian space.
a. $\{(3, y, 0): y$ is real $\}$
b. $\{(3, y, z): y, z$ reals $\}$
How does this compare with
c. the graph in 3D space of $x=3$?
How does this compare with
d. $\{(0, y, z): y+z=4\}$
e. $\{(x, y, z): y+z=4\}$
f. the graph in 3D space of $y+z=4$?

The following problems deal with the graph in three-dimensional space of equations where only two variables appear.
2. The graph of equation $z=x^{2}$ in three-dimensional space is a surface that consists of all points (x, y, z) in space that satisfy the equation. So, for example, point $(2,3,4)$ is on the graph of $z=x^{2}$ since its z coordinate is the square of its x coordinate, that is, $4=2^{2}$ (it does not matter what the value of y is).
a. Find the (x, y, z) coordinates of 5 points that are on the graph of $z=x^{2}$ in threedimensional space.
b. Find the z coordinate of the following points if they are on the graph of $z=x^{2}$.
$(-2,0, \quad(-1,0, \quad) \quad(0,0, \quad) \quad(1,0, \quad) \quad(2,0, \quad)$
c. Draw the 5 points of part b in three-dimensional space. Observe that all of the points should be on the plane $y=0$.
d. How will the collection of all points of the form $(x, 0, z)$ that satisfy the equation $z=x^{2}$ look? Draw it.
e. Find 5 points that are on the intersection of plane $y=2$ with the graph of $z=x^{2}$ in threedimensional space and represent them in a drawing.
f. Draw the intersection of the plane $y=2$ with the graph of $z=x^{2}$ in three-dimensional space. There is no need to draw the plane nor the surface, only the points that satisfy both conditions.
g. Draw the intersection of the plane $y=-2$ with the graph of $z=x^{2}$ in three-dimensional space.
h. How will the collection of all points (x, y, z) that satisfy the equation $z=x^{2}$ look? Draw it in three-dimensional space.
3. In this problem the graph of $y=|x|$ will be drawn in three-dimensional space. The graph of $y=|x|$ consists of all points in the set $\{(x, y, z): y=|x|\}$. To do so:
a. Draw the intersection of the plane $z=0$ with the graph of $y=|x|$ in three-dimensional space.
b. Draw the intersection of the plane $z=1$ with the graph of $y=|x|$ in three-dimensional space.
c. Draw the intersection of the plane $z=2$ with the graph of $y=|x|$ in three-dimensional space.
d. What happens as z is given more and more positive and negative values?
e. Draw the graph of $y=|x|$ in three-dimensional space.
4. In this problem the graph of $y^{2}+z^{2}=1$ will be drawn in three-dimensional space. The graph of $y^{2}+z^{2}=1$ consists of all the points in the set $\left\{(x, y, z): y^{2}+z^{2}=1\right\}$.
a. Draw the intersection of the plane $x=0$ with the graph of $y^{2}+z^{2}=1$ in threedimensional space. Recall the equation of a circle of radius r with center at the origin.
b. Draw the intersection of the plane $x=1$ with the graph of $y^{2}+z^{2}=1$ in threedimensional space.
c. Draw the intersection of the plane $x=-1$ with the graph of $y^{2}+z^{2}=1$ in threedimensional space.
d. What happens as x is given more and more positive and negative values?
e. Draw the graph of $y^{2}+z^{2}=1$ in three-dimensional space.
5. In this problem the graph of $x=9-z^{2}$ will be drawn in three-dimensional space. The graph of $x=9-z^{2}$ consists of all points in the set $\left\{(x, y, z): x=9-z^{2}\right\}$.
a. Draw in three-dimensional space all points where the plane $y=0$ intersects the graph of $x=9-z^{2}$.
b. Draw in three-dimensional space all points where the plane $y=1$ intersects the graph of $x=9-z^{2}$.
c. Draw in three-dimensional space all points where the plane $y=-1$ intersects the graph of $x=9-z^{2}$.
d. What happens as y is given more and more positive and negative values?
e. Draw the graph of $x=9-z^{2}$ in three-dimensional space.
6. Reflect on what was done in problems 3 to 5 . How, in general, is the graph of an equation where only two variables appear drawn in three-dimensional space?
7. Let $S=\left\{(x, y, z): y=-z^{2}\right\}$.
a. Find the intersection of the plane $y=-1$ with S and draw it in three-dimensional space without first drawing the graph of the entire surface. Observation: your drawing must be contained within the plane $y=-1$.
b. Draw the intersection of the plane $z=1$ with S in 3D without first drawing the graph of S.
c. Draw the intersection of plane $x=1$ with S in 3D without first drawing the graph of S.
d. Draw the graph of $y=-z^{2}$ in three-dimensional space and verify that your graph is consistent with the answers to parts $\mathrm{a}, \mathrm{b}, \mathrm{c}$.
8. In each of the following cases consider the set of all points in three-dimensional space that satisfy the given equation. Draw it in three-dimensional space.
a. $x=2 z$
b. $y=\sin (z)$
c. $x^{2}-y^{2}=1$ (recall conic sections)

