Name: \qquad

1) Find the domain of each of the following functions and give your answer using set notation, the represent the domain in three-dimensional space. Recall that an ordered pair (x, y) in the domain of a function is represented in space as $(x, y, 0)$.
a. $f(x, y)=\sqrt{x-y}$
b. $f(x, y)=\sqrt{1-y^{2}}$
c. $f(x, y)=x^{2}+y^{2}$ if $\left\{\begin{array}{l}-1 \leq x \leq 1 \\ -1 \leq y \leq 1\end{array}\right.$
d. $f(x, y)=\ln (x y)$
e. $f(x, y)=x$ si $x^{2}+y^{2} \leq 1$
f. $f(x, y)=\ln (|x y|+1)$ for $y \geq 0$
2) Find the range of the functions in the previous exercise. Give your answer using set notation.
3) Function f is defined by the following table. Represent its domain, first using set notation and then with a drawing in three-dimensional space. Recall that the domain of a function of two variables consists of ordered pairs (x, y). Also, find the range of f.

$x \mid y$	2	4	6
1	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{3}$
2	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{3}$
3	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$

4) For each one of the following expressions, state if it defines z as a function of x and y. Justify your answer briefly.
a. $z^{2}=x^{2}+y^{2}$
b. $z=\sqrt{x^{2} y^{2}}$
c. $z=4$
d. $|z-x|=4$
e. $z= \begin{cases}x^{2} y & \text { si } y \geq 0 \\ x y^{2} & \text { si } x \geq 0\end{cases}$
f. $z= \begin{cases}x y^{2} & \text { si } y \geq x+2 \\ x^{2} y & \text { si } y \leq x-2\end{cases}$
5) For each of the following graphs, state if z is a function of x and y. Justify your answer briefly.

