Name: \qquad

1. Let $f(x, y)=y^{2}$. The graph of f is the graph of $z=y^{2}$ in 3D space. To draw a graph using sections, first one chooses a variable to give values to. In this case, the easiest variable to use is the variable that is missing: one gives values to x.
a. To understand the intersection of plane $x=2$ with the graph of $z=y^{2}$ complete the following table and represent the points in 3D space. Observe that all points must be on the plane $x=2$.

(x, y)	$(2,-2)$	$(2,-1)$	$(2,0)$	$(2,1)$	$(2,2)$
$f(x, y)$					

b. Draw in 3D space the set of all points in the intersection of the plane $x=2$ with the graph of f.
c. Draw in 3D space the intersection of the graph of f with each one of the planes $x=-1$, $x=0, x=1$.
d. Draw the graph of f.
2. In this problem the graph of the function $f(x, y)=x^{2}+y$ will be drawn using sections. To do so, follow the instructions:
a. Start by observing that if values are given to the variable y then you'll obtain quadratic functions whose graph you should be able to draw with no difficulty. Proceed to do this: draw the intersection of the set $S=\left\{(x, y, z): z=x^{2}+y\right\}$ with each one of the planes $y=0, y=1, y=2$.
b. What kind of curves are obtained as you give y bigger and bigger posite values? And what if you give y negative values of bigger and bigger magnitude?
c. Now one may give a value to another variable so that the resulting curve may be used as a framework upon which to place the other curves that have previously been obtained. Draw the intersection of the set $S=\left\{(x, y, z): z=x^{2}+y\right\}$ with the plane $x=0$.
d. Consider the answers to parts $\mathrm{a}, \mathrm{b}, \mathrm{c}$ to conclude how the graph looks and draw it.
3. The following are two copies of the graph of $z=f(x, y)$. On the left hand copy darken and identify the points where the surface intersects the planes $x=0, x=\pi / 2, x=\pi$. On the right hand copy darken sand identify the points where the surface intersects the planes $y=0$, $y=1, y=2$.

4. Write the corresponding formula besides each one of the following graphs. Choose between: $z=x y^{2}, z=x+y^{2}, z=x y+y, z=x y+x^{2}$. Use sections to completely justify your

5. Write the corresponding formula besides each one of the following graphs. Choose between: $z=x^{2} \sin (y), z=x^{2}-\sin (y), z=x \sin \left(y^{2}\right), z=x+\sin \left(y^{2}\right)$. Use sections to completely justify your answer.

6. Consider the surface with equation $x^{2}-y^{2}+z^{2}=-1$.
a. To what variables may one give values in order to obtain circles?
b. Draw in 3D space the intersection of the planes $y=1$ y $y=-1$ with the surface.
c. What happens if one substitutes y for a value $-1<y<1$? What does this mean in terms of the graph of the surface?
d. What happens if one gives y values $y>1$? $y<-1$? What does this mean in terms of the graph of the surface?
e. Now give values to other variables in order to obtain a framework. Draw in 3D space the intersection of plane $x=0$ with the surface (observe that the equation of a conic section is obtained).
f. Draw in 3D space the intersection of the plane $z=0$ with the surface (observe that the equation of a conic section is obtained).
g. Identify the graph of $x^{2}-y^{2}+z^{2}=-1$ between the two graphs given below. Make sure that your answers to the previous parts of the question are consistent with the graph you choose.

7. Let $f(x, y)=y x^{2}$ with domain restricted to $\{(x, y):-1 \leq x \leq 1,-1 \leq y \leq 1\}$. The graph will now be drawn.
a. Draw the transversal section corresponding to $y=-1$ in the space provided.
b. Draw the transversal section corresponding to $y=1$ in the space provided.
c. Draw the transversal section corresponding to $x=-1$ in the space provided.
d. Draw the transversal section corresponding to $x=1$ in the space provided.
e. Use other transversal sections as needed to complete the graph of the function.

