The Asymptotic Number of Spanning Trees in Circulant Graphs

Mordecai Golin
HKUST

Xuerong Yong
Univ of Puerto Rico

Yuanping Zhang
Lanzhou University of Technology
Definition:
The circulant graph

\[C_{n}^{s_1,s_2,\ldots,s_k} \]

is the graph with \(n \) vertices such that every vertex is connected to its left and right \(s_i^{th} \) neighbors, for each \(i = 1, 2, \ldots , k \).
Definition:
The circulant graph \(C^{s_1, s_2, \ldots, s_k}_n \) is the graph with \(n \) vertices such that every vertex is connected to its left and right \(s_i \)th neighbors, for each \(i = 1, 2, \ldots, k \).

\[
V = \{0, 1, \ldots, n - 1\}
\]

\[
E = \{(i, j) : |i - j| \mod n \in \{s_1, s_2, \ldots, s_k\}\}
\]
Our Problem:
Find the number of spanning trees in a given circulant graph.
Our Problem:
Find the number of spanning trees in a given circulant graph.

Finding the number of spanning trees in a general given graph is polynomial in the graph size (Kirchoff’s Matrix Tree theorem).

We are interested in finding the number of S.T.s in a parametrized class of circulant graphs.

Given s_i, \ldots, s_k, and m as functions of n derive a formula for the number of S.Ts in $C_{m}^{s_1, s_2, \ldots, s_k} = (V, E)$ as a function of n.
Our Problem:
Find the number of spanning trees in a given circulant graph.

Finding the number of spanning trees in a general *given* graph is polynomial in the graph size (Kirchoff’s Matrix Tree theorem).

We are interested in finding the number of S.T.s in a *parametrized* class of circulant graphs.

Given s_i, \ldots, s_k, and m as functions of n derive a formula for # of S.T.s in $C_{m}^{s_1, s_2, \ldots, s_k} = (V, E)$ as a function of n.

Example: $C_{4n+1}^{1, n+1}$
Background

- \(T(C_{n}^{1,2}) = nF_{n}^{2} \)
 Proven by Keitman and Golden (1975)
Background

- \(T(C_{n}^{1,2}) = nF_{n}^{2} \)
 Proven by Keitman and Golden (1975)

- \(T(C_{n}^{s_1, s_2, \ldots, s_k}) \) for different fixed \(s_i \).
 Baron, Prodinger, Tichy, Boesch & Wang (1985),
 Boesch & Prodinger (1986), Sjogren (1991),
Background

- \(T(C_{n}^{1,2}) = nF_{n}^{2} \)
 Proven by Keitman and Golden (1975)

- \(T(C_{n}^{s_{1},s_{2},\ldots,s_{k}}) \) for different fixed \(s_{i} \).
 Baron, Prodinger, Tichy, Boesch & Wang (1985),
 Boesch & Prodinger (1986), Sjogren (1991),

- \(T(C_{n}^{s_{1},s_{2},\ldots,s_{k}}) = na_{n}^{2} \) where \(a_{n} \) satisfies linear r.r. of order \(2^{s_{k}-2} - 1 \) (and has unique root of maxima modulus)
 when \(s_{i} \) are fixed.
Background

- \(T(C_{n}^{1,2}) = nF_{n}^{2} \)
 Proven by Keitman and Golden (1975)

- \(T(C_{n}^{s_1,s_2,\ldots,s_k}) \) for different fixed \(s_i \).
 Baron, Prodinger, Tichy, Boesch & Wang (1985),
 Boesch & Prodinger (1986), Sjogren (1991),

- \(T(C_{n}^{s_1,s_2,\ldots,s_k}) = na_{n}^{2} \) where \(a_{n} \) satisfies linear r.r.
 of order \(2^{s_k-2} - 1 \) (and has unique root of maxima modulus)
 when \(s_i \) are fixed.

- \(T\left(C_{m(n)}^{s_1(n),s_2(n),\ldots,s_k(n)}\right) \) satisfies a linear r.r.
 when \(s_i(n) \) and \(m(n) \) are linear in \(n \), e.g., \(C_{4n+1}^{1,n+1} \)
In general, given fixed s_1, s_2, \ldots, s_k or linear $s_1(n), s_2(n), \ldots, s_k(n), m(n)$ there is no “easy” way to find formula for $T(C_{s_1,s_2,\ldots,s_k})$ or $T(C_{s_1(n),s_2(n),\ldots,s_k(n)})$.
In general, given fixed s_1, s_2, \ldots, s_k or linear $s_1(n), s_2(n), \ldots, s_k(n), m(n)$ there is no “easy” way to find formula for $T(C_{n}^{s_1,s_2,\ldots,s_k})$ or $T(C_{m(n)}^{s_1(n),s_2(n),\ldots,s_k(n)})$

This talk: A formula for asymptotic value

$$\lim_{n \to \infty} \left(T(C_{n}) \right)^{\frac{1}{n}}$$

as a function of the s_i
In general, given fixed s_1, s_2, \ldots, s_k or linear $s_1(n), s_2(n), \ldots, s_k(n), m(n)$ there is no “easy” way to find formula for $T(C_{s_1, s_2, \ldots, s_k}^n)$ or $T \left(C_{s_1(n), s_2(n), \ldots, s_k(n)}^{m(n)} \right)$.

This talk: A formula for asymptotic value

$$\lim_{n \to \infty} \left(T(C_n) \right)^{\frac{1}{n}}$$

as a function of the s_i.

Caveat: limits are taken over n such that $\gcd(n, s_1, s_2, \ldots, s_k) = 1$ since, if $\gcd \neq 1$, there are no spanning trees!
In general, given fixed s_1, s_2, \ldots, s_k or linear $s_1(n), s_2(n), \ldots, s_k(n), m(n)$ there is no “easy” way to find formula for $T(C_{n}^{s_1,s_2,\ldots,s_k})$ or $T \left(C_{m(n)}^{s_1(n),s_2(n),\ldots,s_k(n)} \right)$.

This talk: A formula for asymptotic value

$$\lim_{n \to \infty} \left(T(C_n) \right)^{\frac{1}{n}}$$

as a function of the s_i.

Caveat: limits are taken over n such that $\gcd(n, s_1, s_2, \ldots, s_k) = 1$ since, if $\gcd \neq 1$, there are no spanning trees!

Note: When s_i are fixed, $T(C_n) = na_n^2$ where $a_n \sim c\alpha^n$ for some constants c and α. So we derive value of $\lim \left(na_n^2 \right)^{1/n} = \alpha^2$.
Major Results

• Theorem 1: \[
\lim_{n \to \infty} T\left(C_{n}^{s_1, s_2, \ldots, s_k} \right)^{\frac{1}{n}}
\]

exists and can be calculated as a function of the \(s_i \)
Major Results

• Theorem 1: \(\lim_{n \to \infty} \frac{T(C_{n}^{s_1, s_2, \ldots, s_k})}{n} \)

exists and can be calculated as a function of the \(s_i \)

• Theorem 2

\(\lim_{s_1, s_2, \ldots, s_k \to \infty} \lim_{n \to \infty} \frac{T(C_{n}^{s_1, s_2, \ldots, s_k})}{n} \)

exists and can be calculated. Limit is same as for \(k \)-dimensional grid graphs and tori
Major Results

- **Theorem 1:**
 \[
 \lim_{n \to \infty} T(C_n^{s_1, s_2, \ldots, s_k}) \frac{1}{n}
 \]
 exists and can be calculated as a function of the \(s_i \)

- **Theorem 2**
 \[
 \lim_{s_1, s_2, \ldots, s_k \to \infty} \lim_{n \to \infty} T(C_n^{s_1, s_2, \ldots, s_k}) \frac{1}{n}
 \]
 exists and can be calculated. Limit is same as for \(k \)-dimensional grid graphs and tori

- **Theorem 3**
 \[
 \lim_{n \to \infty} T\left(C_{p n + q}^{s_1, \ldots, s_k, a_1 n + b_1, \ldots, a_l n + b_l}\right) \frac{1}{n}
 \]
 exists and can be calculated as a function of the \(s_i \), \(p \) and \(a_i \)
Theorem 1:
For any fixed integers $1 \leq s_1 < s_2 < \cdots < s_k$,

$$\lim_{n \to \infty} T\left(C^n_{s_1, s_2, \ldots, s_k}\right) \frac{1}{n} = 4^k \exp \left(\int_0^1 \ln \left(\sum_{i=1}^{k} \sin^2 \pi s_i x \right) \, dx \right).$$
Theorem 1:
For any fixed integers $1 \leq s_1 < s_2 < \cdots < s_k$,

$$\lim_{n \to \infty} T(C_n^{s_1, s_2, \cdots, s_k}) \frac{1}{n}$$

$$= 4^k \exp \left(\int_0^1 \ln \left(\sum_{i=1}^{k} \sin^2 \pi s_i x \right) \, dx \right).$$

Note: This could also be derived in a different way using a recent result of Lyons (2005)
Theorem 2:

\[
\lim_{s_1, s_2, \ldots, s_k \to \infty} \lim_{n \to \infty} T(C_{n}^{s_1, s_2, \ldots, s_k}) \frac{1}{n} = 4^k \exp \left(\int_0^1 \cdots \int_0^1 \ln \left(\sum_{i=1}^{k} \sin^2 \pi x_i \right) dx_1 \cdots dx_k \right)
\]
Theorem 2:

$$\lim_{s_1, s_2, \ldots, s_k \to \infty} \lim_{n \to \infty} T(C_{n}^{s_1, s_2, \ldots, s_k})^\frac{1}{n}$$

$$= 4^k \exp \left(\int_0^1 \cdots \int_0^1 \ln \left(\sum_{i=1}^{k} \sin^2 \pi x_i \right) \, dx_1 \cdots dx_k \right)$$

Note: In the special case of $k = 2$ we calculate the limit

$$4 \exp(\int_0^1 \int_0^1 \ln(\sin^2 \pi x + \sin^2 \pi y) \, dx \, dy) = 3.20991230 \ldots$$
Theorem 2:

\[
\lim_{s_1, s_2, \ldots, s_k \to \infty} \lim_{n \to \infty} T(C_{n}^{s_1, s_2, \ldots, s_k})^{\frac{1}{n}}
\]

\[
= 4^k \exp \left(\int_0^1 \cdots \int_0^1 \ln \left(\sum_{i=1}^{k} \sin^2 \pi x_i \right) \, dx_1 \cdots \, dx_k \right)
\]

Note: In the special case of \(k = 2 \) we calculate the limit

\[
4 \exp(\int_0^1 \int_0^1 \ln(\sin^2 \pi x + \sin^2 \pi y) \, dx \, dy) = 3.20991230 \ldots
\]

\[
= \lim_{m,n \to \infty} (T(Grid(m,n)))^{\frac{1}{mn}} = \lim_{m,n \to \infty} (T(Torus(m,n)))^{\frac{1}{mn}}
\]

Theorem 3:

everything integral) Given $1 \leq s_1 < \cdots < s_k$, $1 \leq a_1 \leq \cdots \leq a_l < p$, b_1, b_2, \ldots, b_l and $0 \leq |q| < p$. Then

$$
\lim_{n \to \infty} T\left(C_{pn+q}^{s_1, \ldots, s_k, a_1 n+b_1, \ldots, a_l n+b_l}\right)^{\frac{1}{n}}
$$

$$
= 4^k \exp \left[\sum_{t=1}^{p} \int_{0}^{1} \ln \left(\sum_{i=1}^{k} \sin^2 \pi s_i x + \frac{1}{2} \left[l - \sum_{i=1}^{l} \cos \frac{2t \pi a_i}{p} \right] \right) \, dx \right]
$$
\[
\lim_{n \to \infty} T \left(C_{pn+q}^{s_1, \ldots, s_k, a_1 n+b_1, \ldots, a_l n+b_l} \right) \frac{1}{n} = 4^k \exp \left[\sum_{t=1}^{p} \int_0^1 \ln \left(\sum_{i=1}^{k} \sin^2 \pi s_i x + \frac{1}{2} \left[l - \sum_{i=1}^{l} \cos \frac{2t \pi a_i}{p} \right] \right) \, dx \right]
\]
\[
\lim_{n \to \infty} T \left(C_{pn+q}^{s_1, \ldots, s_k, a_1 n+b_1, \ldots, a_l n+b_l} \right) \frac{1}{n} = 4^k \exp \left[\sum_{t=1}^{p} \int_{0}^{1} \ln \left(\sum_{i=1}^{k} \sin^2 \pi s_i x + \frac{1}{2} \left[l - \sum_{i=1}^{l} \cos \frac{2t \pi a_i}{p} \right] \right) dx \right]
\]

Note this does **NOT** depend upon \(q \) and \(b_i \) so we can calculate

\[
\lim_{n \to \infty} T \left(C_{n}^{s_1, s_2, \ldots, s_k, \lfloor n/d_1 \rfloor+e_1, \lfloor n/d_2 \rfloor+e_2, \ldots, \lfloor n/d_l \rfloor+e_l} \right) \frac{1}{n}
\]

and show it only depends upon the \(s_i \) and \(d_i \) and not the \(e_i \).
\[
\lim_{n \to \infty} T \left(C_n^{s_1, s_2, \ldots, s_k, \lfloor \frac{n}{d_1} \rfloor + e_1, \lfloor \frac{n}{d_2} \rfloor + e_2, \ldots, \lfloor \frac{n}{d_l} \rfloor + e_l \right) \frac{1}{n}
\]
exists and only depends upon the \(s_i \) and \(d_i \).
\[
\lim_{n \to \infty} T \left(C_n^{s_1, s_2, \ldots, s_k, \lfloor \frac{n}{d_1} \rfloor + e_1, \lfloor \frac{n}{d_2} \rfloor + e_2, \ldots, \lfloor \frac{n}{d_l} \rfloor + e_l \right) \frac{1}{n}
\]
exists and only depends upon the \(s_i \) and \(d_i \)

Example: In limit

\[
T \left(C_n^{1, \lfloor \frac{n}{3} \rfloor} \right) = 4 \exp \left[\sum_{t=1}^{3} \int_0^1 \ln \left(\sin^2 \pi x + \frac{1}{2} \left[1 - \cos \frac{2t\pi}{3} \right] \right) dx \right]
\]
$$\lim_{n \to \infty} T \left(C_n^{s_1, s_2, \ldots, s_k, \lfloor \frac{n}{d_1} \rfloor + e_1, \lfloor \frac{n}{d_2} \rfloor + e_2, \ldots, \lfloor \frac{n}{d_l} \rfloor + e_l \right) \frac{1}{n}$$

exists and only depends upon the s_i and d_i

Example: In limit

$$T \left(C_n^{1, \lfloor \frac{n}{3} \rfloor} \right) = 4 \exp \left[\sum_{t=1}^{3} \int_{0}^{1} \ln \left(\sin^2 \pi x + \frac{1}{2} \left[1 - \cos \frac{2t\pi}{3} \right] \right) \, dx \right]$$

A-priori unexpected since $n \mod 3$ implies different graph structures
\[\lim_{n \to \infty} T \left(C_n^{s_1, s_2, \ldots, s_k, \lfloor \frac{n}{d_1} \rfloor + e_1, \lfloor \frac{n}{d_2} \rfloor + e_2, \ldots, \lfloor \frac{n}{d_l} \rfloor + e_l \right) \frac{1}{n} \]

exists and only depends upon the \(s_i \) and \(d_i \)

Example: In limit

\[T \left(C_n^{1, \lfloor \frac{n}{3} \rfloor} \right) = 4 \exp \left[\sum_{t=1}^{3} \int_{0}^{1} \ln \left(\sin^2 \pi x + \frac{1}{2} \left[1 - \cos \frac{2t\pi}{3} \right] \right) dx \right] \]

A-priori unexpected since \(n \mod 3 \) implies different graph structures

\(n \mod 3 = 0 \):
\[
\lim_{n \to \infty} T \left(C_n^{s_1, s_2, \ldots, s_k, \lfloor \frac{n}{d_1} \rfloor + e_1, \lfloor \frac{n}{d_2} \rfloor + e_2, \ldots, \lfloor \frac{n}{d_l} \rfloor + e_l \right) \frac{1}{n}
\]
exists and only depends upon the \(s_i \) and \(d_i \)

Example: In limit

\[
T \left(C_n^{1, \lfloor \frac{n}{3} \rfloor} \right) = 4 \exp \left[\sum_{t=1}^{3} \int_{0}^{1} \ln \left(\sin^2 \pi x + \frac{1}{2} \left[1 - \cos \frac{2t\pi}{3} \right] \right) dx \right]
\]

A-priori unexpected since \(n \mod 3 \) implies different graph structures

\(n \mod 3 = 0 : \quad \text{1 cycle of length } n \quad + \quad \text{n/3 cycles of length 3} \)
\[
\lim_{n \to \infty} T \left(C_n^{s_1,s_2,\ldots,s_k,\lfloor \frac{n}{d_1} \rfloor + e_1,\lfloor \frac{n}{d_2} \rfloor + e_2,\ldots,\lfloor \frac{n}{d_l} \rfloor + e_l \right) \frac{1}{n}
\]

exists and only depends upon the \(s_i \) and \(d_i \)

Example: In limit

\[
T \left(C_n^{1,\lfloor \frac{n}{3} \rfloor} \right) = 4 \exp \left[\sum_{t=1}^{3} \int_0^1 \ln \left(\sin^2 \pi x + \frac{1}{2} \left[1 - \cos \frac{2t\pi}{3} \right] \right) \, dx \right]
\]

A-priori unexpected since \(n \text{ mod } 3 \) implies different graph structures

\(n \text{ mod } 3 = 0 : \quad 1 \text{ cycle of length } n \quad + \quad n/3 \text{ cycles of length } 3 \)

\(n \text{ mod } 3 = 1 : \)
$$\lim_{n \to \infty} T \left(C_n^{s_1, s_2, \ldots, s_k, \lfloor \frac{n}{d_1} \rfloor + e_1, \lfloor \frac{n}{d_2} \rfloor + e_2, \ldots, \lfloor \frac{n}{d_l} \rfloor + e_l \right) \frac{1}{n}$$

exists and only depends upon the s_i and d_i

Example: In limit

$$T \left(C_n^{1, \lfloor \frac{n}{3} \rfloor} \right) = 4 \exp \left[\sum_{t=1}^{3} \int_{0}^{1} \ln \left(\sin^2 \pi x + \frac{1}{2} \left[1 - \cos \frac{2t\pi}{3} \right] \right) \, dx \right]$$

A-priori unexpected since $n \mod 3$ implies different graph structures

$n \mod 3 = 0 : \quad 1 \text{ cycle of length } n \quad + \quad n/3 \text{ cycles of length } 3$

$n \mod 3 = 1 : \quad 2 \text{ cycles of length } n$
\[
\lim_{n \to \infty} T \left(C_n^{s_1, s_2, \ldots, s_k, \lfloor \frac{n}{d_1} \rfloor + e_1, \lfloor \frac{n}{d_2} \rfloor + e_2, \ldots, \lfloor \frac{n}{d_l} \rfloor + e_l \right) \frac{1}{n}
\]
exists and only depends upon the \(s_i \) and \(d_i \)

Example: In limit

\[
T \left(C_n^{1, \lfloor \frac{n}{3} \rfloor} \right) = 4 \exp \left[\sum_{t=1}^{3} \int_{0}^{1} \ln \left(\sin^2 \pi x + \frac{1}{2} \left[1 - \cos \frac{2t\pi}{3} \right] \right) \, dx \right]
\]

A-priori unexpected since \(n \mod 3 \) implies different graph structures

\(n \mod 3 = 0 : \quad 1 \text{ cycle of length } n \quad + \quad n/3 \text{ cycles of length } 3 \)

\(n \mod 3 = 1 : \quad 2 \text{ cycles of length } n \)

\(n \mod 3 = 2 : \)
\[
\lim_{n \to \infty} T \left(C_n^{s_1, s_2, \ldots, s_k, \lfloor \frac{n}{d_1} \rfloor + e_1, \lfloor \frac{n}{d_2} \rfloor + e_2, \ldots, \lfloor \frac{n}{d_l} \rfloor + e_l \right) \frac{1}{n}
\]

exists and only depends upon the \(s_i \) and \(d_i \)

Example: In limit

\[
T \left(C_n^{1, \lfloor \frac{n}{3} \rfloor} \right) = 4 \exp \left[\sum_{t=1}^{3} \int_{0}^{1} \ln \left(\sin^2 \pi x + \frac{1}{2} \left[1 - \cos \frac{2t\pi}{3} \right] \right) \, dx \right]
\]

A-priori unexpected since \(n \mod 3 \) implies different graph structures

- \(n \mod 3 = 0 \): 1 cycle of length \(n \) + \(n/3 \) cycles of length 3
- \(n \mod 3 = 1 \): 2 cycles of length \(n \)
- \(n \mod 3 = 2 \): 1 cycle of length \(n \) + a 2nd cycle of length \(n \) or 2 cycles of length \(n/2 \)
Theorem 1:

For any fixed integers \(1 \leq s_1 < s_2 < \cdots < s_k\),

\[
\lim_{n \to \infty} T(C_n^{s_1, s_2, \cdots, s_k}) \frac{1}{n} = 4^k \exp \left(\int_0^1 \ln \left(\sum_{i=1}^{k} \sin^2 \pi s_i x \right) \, dx \right).
\]
Theorem 1:
For any fixed integers \(1 \leq s_1 < s_2 < \cdots < s_k\),

\[
\lim_{n \to \infty} T(C_{n}^{s_1,s_2,\ldots,s_k})^{\frac{1}{n}} = 4^k \exp \left(\int_0^1 \ln \left(\sum_{i=1}^{k} \sin^2 \pi s_ix \right) \, dx \right).
\]

We will now prove this theorem.
A matrix is a *circulant matrix* if each row is a copy of the previous row (circularly) shifted by one column to the right.
Background

• A matrix is a *circulant matrix* if each row is a copy of the previous row (circularly) shifted by one column to the right

• The adjacency matrices of circulant graphs are circulant matrices

\[
\begin{pmatrix}
0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
\end{pmatrix}
\]
Background

The eigenvalues of a $n \times n$ 0/1 circulant matrix with 1’s in position i_1, i_2, \ldots, i_k on the first row are

$$\lambda_j = \varepsilon^{i_1 j} + \varepsilon^{i_2 j} + \cdots + \varepsilon^{i_k j},$$

where $\varepsilon = e^{\frac{2\pi \sqrt{-1}}{n}}$ and $j = 0, 1, \cdots, n - 1$.
The eigenvalues of a $n \times n$ 0/1 circulant matrix with 1’s in position i_1, i_2, \ldots, i_k on the first row are

$$\lambda_j = \varepsilon^{i_1 j} + \varepsilon^{i_2 j} + \cdots + \varepsilon^{i_k j},$$

where $\varepsilon = e^{\frac{2\pi \sqrt{-1}}{n}}$ and $j = 0, 1, \cdots, n - 1$.

\Rightarrow The eigenvalues of adj matrix of $C_{n}^{s_1, \ldots, s_k}$ will be

$$\lambda_j = \sum_{i=1}^{k} \varepsilon^{s_i j} + \sum_{i=1}^{k} \varepsilon^{-s_i j}$$

$$= 2 \sum_{i=1}^{k} \cos \left(\frac{2\pi s_{i,j}}{n} \right)$$
If G is a d-regular graph then

$$T(G) = \frac{1}{n} \prod_{j=1}^{n-1} (d - \lambda_j)$$

where $\lambda_0 = d$, λ_1, λ_2, \cdots, λ_{n-1} are the eigenvalues of the corresponding adjacency matrix of the graph.
Background

- If G is a d-regular graph then
 \[T(G) = \frac{1}{n} \prod_{j=1}^{n-1} (d - \lambda_j) \]
 where $\lambda_0 = d$, $\lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ are the eigenvalues of the corresponding adjacency matrix of the graph.

- This and previous page imply (well known fact)
 \[T(C_n^{s_1, s_2, \ldots, s_k}) = \frac{1}{n} \prod_{j=1}^{n-1} \left(2k - 2 \sum_{i=1}^{k} \cos \frac{2\pi s_i j}{n} \right) \]
Background

- If G is a d-regular graph then

$$T(G) = \frac{1}{n} \prod_{j=1}^{n-1} (d - \lambda_j)$$

where $\lambda_0 = d$, λ_1, λ_2, \cdots, λ_{n-1} are the eigenvalues of the corresponding adjacency matrix of the graph

- This and previous page imply (well known fact)

$$T(C_{n}^{s_1,s_2,\cdots,s_k}) = \frac{1}{n} \prod_{j=1}^{n-1} \left(2k - 2 \sum_{i=1}^{k} \cos \frac{2\pi s_{ij}}{n} \right)$$

Proof is about massaging RHS into nice form
\[
\lim_{n \to \infty} T(\frac{C_n^{s_1, s_2, \ldots, s_k}}{n})^{1/n}
\]
\[
\lim_{{n \to \infty}} T(C_n^{s_1, s_2, \ldots, s_k})^{1/n} = \lim_{{n \to \infty}} \left[\frac{1}{n} \prod_{j=1}^{n-1} \left(2k - 2 \sum_{i=1}^{k} \cos \frac{2\pi s_{ij}}{n} \right) \right]^{1/n}
\]
\[
\lim_{n \to \infty} T\left(C_n^{s_1, s_2, \ldots, s_k}\right)^{1/n}
\]

\[
= \lim_{n \to \infty} \left[\frac{1}{n} \prod_{j=1}^{n-1} \left(2k - 2 \sum_{i=1}^{k} \cos \frac{2\pi s_{ij}}{n} \right) \right]^{1/n}
\]

\[
= \lim_{n \to \infty} \exp \left[\ln \left(\prod_{j=1}^{n-1} \left(2k - 2 \sum_{i=1}^{k} \cos \frac{2\pi s_{ij}}{n} \right) \right) \times \frac{1}{n} \right]
\]
\[
\lim_{n \to \infty} T(C_n^{s_1, s_2, \ldots, s_k})^{1/n}
\]
\[
= \lim_{n \to \infty} \left[\frac{1}{n} \prod_{j=1}^{n-1} \left(2k - 2 \sum_{i=1}^{k} \cos \frac{2\pi s_i j}{n} \right) \right]^\frac{1}{n}
\]
\[
= \lim_{n \to \infty} \exp \left[\ln \left(\prod_{j=1}^{n-1} \left(2k - 2 \sum_{i=1}^{k} \cos \frac{2\pi s_i j}{n} \right) \right) \times \frac{1}{n} \right]
\]
\[
= 4^k \lim_{n \to \infty} \exp \left[\ln \left(\prod_{j=1}^{n-1} \left[\sum_{i=1}^{k} \sin^2 \frac{\pi s_i j}{n} \right] \right) \times \frac{1}{n} \right]
\]
\[= 4^k \lim_{n \to \infty} \exp \left[\ln \left(\prod_{j=1}^{n-1} \left[\sum_{i=1}^{k} \sin^2 \left(\frac{\pi s_{ij}}{n} \right) \right] \right) \times \frac{1}{n} \right] \]
\[4^k \lim_{n \to \infty} \exp \left[\ln \left(\prod_{j=1}^{n-1} \left[\sum_{i=1}^{k} \sin^2 \frac{\pi s_{ij}}{n} \right] \right) \times \frac{1}{n} \right] \]

\[= 4^k \lim_{n \to \infty} \exp \left[\sum_{j=1}^{n-1} \ln \left(\sum_{i=1}^{k} \sin^2 \frac{\pi s_{ij}}{n} \right) \times \frac{1}{n} \right] \]
\[
4^k \lim_{n \to \infty} \exp \left[\ln \left(\prod_{j=1}^{n-1} \left[\sum_{i=1}^{k} \sin^2 \frac{\pi s_i j}{n} \right] \right) \times \frac{1}{n} \right]
\]

\[
= 4^k \lim_{n \to \infty} \exp \left[\sum_{j=1}^{n-1} \ln \left(\sum_{i=1}^{k} \sin^2 \frac{\pi s_i j}{n} \right) \times \frac{1}{n} \right]
\]

\[
= 4^k \lim_{n \to \infty} \exp \left[\sum_{j=1}^{n-1} \ln \left(\sum_{i=1}^{k} \sin^2 \pi s_i \frac{j}{n} \right) \times \frac{1}{n} \right]
\]
\[
= 4^k \lim_{n \to \infty} \exp \left[\sum_{j=1}^{n-1} \ln \left(\sum_{i=1}^{k} \sin^2 \pi s_i \frac{j}{n} \right) \times \frac{1}{n} \right]
\]
\[
= 4^k \lim_{n \to \infty} \exp \left[\sum_{j=1}^{n-1} \ln \left(\sum_{i=1}^{k} \sin^2 \pi s_i \frac{j}{n} \right) \times \frac{1}{n} \right]
\]

if \(f(x) \) is a continuous non-negative real function defined on \((0, 1]\),

s.t. \(\int_0^1 \ln(f(x)) \, dx \) exists, then

\[
\lim_{n \to \infty} \left(\sum_{j=1}^{n-1} \ln \left(f \left(\frac{j}{n} \right) \right) \times \frac{1}{n} \right) = \int_0^1 \ln(f(x)) \, dx.
\]
\[
= 4^k \lim_{n \to \infty} \exp \left[\sum_{j=1}^{n-1} \ln \left(\sum_{i=1}^{k} \sin^2 \pi s_i \frac{j}{n} \right) \times \frac{1}{n} \right]
\]

if \(f(x) \) is a continuous non-negative real function defined on \((0, 1]\) s.t. \(\int_0^1 \ln(f(x)) \, dx \) exists, then

\[
\lim_{n \to \infty} \left(\sum_{j=1}^{n-1} \ln \left(f \left(\frac{j}{n} \right) \right) \times \frac{1}{n} \right) = \int_0^1 \ln(f(x)) \, dx.
\]

\[
\Rightarrow \ (*) = 4^k \exp \left[\int_0^1 \ln \left(\sum_{i=1}^{k} \sin^2 \pi s_i x \right) \, dx \right]
\]
\[
= 4^k \lim_{n \to \infty} \exp \left[\sum_{j=1}^{n-1} \ln \left(\sum_{i=1}^{k} \sin^2 \pi s_i \frac{j}{n} \right) \times \frac{1}{n} \right]
\]

(*)

If \(f(x) \) is a continuous non-negative real function defined on \((0, 1]\) s.t. \(\int_0^1 \ln(f(x)) \, dx \) exists, then

\[
\lim_{n \to \infty} \left(\sum_{j=1}^{n-1} \ln \left(f \left(\frac{j}{n} \right) \right) \times \frac{1}{n} \right) = \int_0^1 \ln(f(x)) \, dx.
\]

\[
\Rightarrow \quad (*) = 4^k \exp \left[\int_0^1 \ln \left(\sum_{i=1}^{k} \sin^2 \pi s_i x \right) \, dx \right]
\]

QED
Our approach for the constant s_i case was to

1. Start with the limit of the $\frac{1}{n}$th root of a product of n items,

2. Change this into the limit of $\frac{1}{n}$ times the sum of some function evaluated at the values $\frac{j}{n}$, $j = 1, 2 \ldots n$ and

3. Show that this converges to an integral
Our approach for the constant s_i case was to

- Start with the limit of the $\frac{1}{n}$th root of a product of n items,
- Change this into the limit of $\frac{1}{n}$ times the sum of some function evaluated at the values $\frac{j}{n}, j = 1, 2 \ldots n$ and
- Show that this converges to an integral

The same approach will work for the linear jump case, but requires many more manipulations.
Open Question
Open Question

We saw how to calculate value of

\[\lim_{n \to \infty} \left(T(C_n) \right)^{\frac{1}{n}} \]

In constant jump case we already knew that \(T(C_n) = na_n^2 \)
where \(a_n \) is described by linear recurrence relation with unique max-modulus root, so this gives us first order asymptotics
Open Question

We saw how to calculate value of

$$\lim_{n \to \infty} \left(T(C_n) \right)^{\frac{1}{n}}$$

In constant jump case we already knew that $T(C_n) = n a_n^2$ where a_n is described by linear recurrence relation with unique max-modulus root, so this gives us first order asymptotics.

In linear-jump case all we know is that $T(C_n)$ satisfies some linear r.r but know nothing about form of solution. How can we derive first order asymptotics?