The number of spanning trees in circulant graphs

Yuanping Zhang¹, Xuerong Yong², Mordecai J. Golin*

Department of Computer Science, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong

Received 13 December 1998; revised 28 September 1999; accepted 4 October 1999

Abstract

In this paper we develop a method for determining the exact number of spanning trees in (directed or undirected) circulant graphs. Using this method we can, for any class of circulant graph, exhibit a recurrence relation for the number of its spanning trees. We describe the method and give examples of its use. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The number of spanning trees in a graph (network) is an important, well-studied quantity [6]. A classic result known as the Matrix Tree Theorem [8] expresses the number of spanning trees \(T(G) \) of a graph \(G \) as a function of the determinant of a matrix that can be easily constructed from \(G \)'s incidence matrix. In practice, though, this method of counting spanning trees by calculating determinants is infeasible for large graphs.

For some special classes of graphs, it is possible to give explicit, simple formulae for the number of trees. If \(G \) is the complete graph \(K_n \), then Cayley's tree formula [7] states that \(T(K_n) = n^{n-2} \). Other special cases can be found in [4,12,13]. In this paper we consider the problem restricted to the class of circulant graphs.

Let \(1 \leq s_1 < s_2 < \cdots < s_k \). The undirected circulant graph, \(\tilde{C}^{s_1,s_2,\ldots,s_k}_n \), has \(n \) vertices labelled \(0, 1, 2, \ldots, n - 1 \), with each vertex \(i \) \((0 \leq i \leq n - 1)\) adjacent to \(2k \) vertices \(i \pm s_1, i \pm s_2, \ldots, i \pm s_k \mod n \). The directed circulant graph, \(C^{s_1,s_2,\ldots,s_k}_n \), is a digraph on \(n \) vertices \(0, 1, 2, \ldots, n - 1 \); for each vertex \(i \) \((0 \leq i \leq n - 1)\), there are \(k \) arcs from \(i \) to
vertices \(i + s_1, i + s_2, \ldots, i + s_k \mod n\). Multiple edges and self-loops are permitted. In Fig. 1 we give examples of two circulant graphs, \(C^{1,2}_5\) and \(C^{2,3}_6\).

\(T(C_s^{s_1, s_2, \ldots, s_k} n)\) is the number of spanning trees in the undirected circulant graph \(C_s^{s_1, s_2, \ldots, s_k}\) and \(T(\tilde{C}_s^{s_1, s_2, \ldots, s_k} n)\) the number of spanning trees in the directed circulant graph \(\tilde{C}_s^{s_1, s_2, \ldots, s_k}\). A spanning tree in a digraph is a rooted tree with directed paths from the root to all nodes. When counting the number of spanning trees in a digraph we count all trees rooted at all possible roots. We note that, in both the undirected and directed cases, if \(\gcd(s_1, s_2, \ldots, s_k, n) \neq 1\) then the graph is not connected, so there are no spanning trees.

The formula \(T(C_n^{1,2}) = nF_n^2, F_n\) being the Fibonacci numbers, was originally conjectured by Bedrosian [2] and subsequently proven by Kleitman and Golden [9]. The same formula was also conjectured by Boesch and Wang [5] (without the knowledge of Kleitman and Golden [9]). Different proofs can be found in [1,4,13]. Formulae for \(T(C_n^{1,3})\) and \(T(C_n^{1,4})\) are provided in [12].

This paper shows that the above are not special cases. In Section 2 we start from the determinant formula and show that, for fixed \(s_1, s_2, \ldots, s_k\), the number of spanning trees in the circulant graph with \(n\) vertices always satisfies a recurrence relation and describe how to derive the relation. In Section 3 we apply the method to find the formulae for \(T(C_n^{1,5}), T(C_n^{2,3}), T(C_n^{2,4}).\) Other formulae are listed in the tables appended. We should point out that formulae for \(T(C_n^{2,4})\) and \(T(C_n^{3,4})\) have already been derived in [11]; we list them here for the sake of completeness. We conclude in Section 4 by deriving the asymptotic behavior of these quantities.

2. Basic lemmas

We start from the fact that, in the circulant graph case, the matrix determinant formula for the number of spanning trees is known to reduce to a simpler product formula:
Lemma 1 (Biggs [3, Proposition 3.5, Corollary 6.5] and Zhang and Yong [14]).

\[T(C_{n}^{s_{1}, s_{2}, \ldots, s_{k}}) = \frac{1}{n} \prod_{j=1}^{n-1} (2k - e^{-s_{1}j} - e^{-s_{2}j} - \cdots - e^{-s_{k}j}) \]

\[T(\bar{C}_{n}^{s_{1}, s_{2}, \ldots, s_{k}}) = \prod_{j=1}^{n-1} (k - e^{s_{1}j} - e^{s_{2}j} - \cdots - e^{s_{k}j}) \]

where \(e^{-j} \) is the conjugate of \(e^{j} \), \(e = e^{2\pi i/n} \).

The main result of this section will be to show that, for fixed \(s_{1}, s_{2}, \ldots, s_{k} \), the above formula actually satisfies a recurrence relation in \(n \). We start by manipulating the formula into a first more convenient form:

Lemma 2. Let

\[g_{s_{1}, s_{2}, \ldots, s_{k}}(x) = 2k - x^{-s_{1}} - x^{-s_{2}} - \cdots - x^{-s_{k}} - x^{s_{1}} - x^{s_{2}} - \cdots - x^{s_{k}}. \]

Set

\[f_{s_{1}, s_{2}, \ldots, s_{k}}(x) = -\frac{x^{s_{k}} g_{s_{1}, s_{2}, \ldots, s_{k}}(x)}{(x - 1)^{2}}. \]

Then

\[f_{s_{1}, s_{2}, \ldots, s_{k}}(x) = \sum_{i=1}^{k} x^{s_{i} - s_{0}} \left(\sum_{j=0}^{s_{i} - 1} x^{j} \right)^{2}. \]

Now let \(M_{s_{1}, s_{2}, \ldots, s_{k}} \) be the companion matrix of \(f_{s_{1}, s_{2}, \ldots, s_{k}}(x) \). This means that if we denote \(f_{s_{1}, s_{2}, \ldots, s_{k}}(x) \) as \(a_{0} + a_{1}x + \cdots + a_{2s_{k} - 3}x^{2s_{k} - 3} + x^{2s_{k} - 2} \), then

\[M_{s_{1}, s_{2}, \ldots, s_{k}} = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_{0} \\ 1 & 0 & \cdots & 0 & -a_{1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & -a_{2s_{k} - 4} \\ 0 & 0 & \cdots & 1 & -a_{2s_{k} - 3} \end{pmatrix}. \]

If \(A_{n} = nT(C_{n}^{s_{1}, s_{2}, \ldots, s_{k}}) \) then

\[A_{n} = (-1)^{(s_{1}-1)(n-1)} \frac{n^{2}}{f_{s_{1}, s_{2}, \ldots, s_{k}}(1)} \prod_{j=0}^{n-1} f_{s_{1}, s_{2}, \ldots, s_{k}}(e^{j}) \]

\[= (-1)^{(s_{1}-1)(n-1)} \frac{n^{2}}{f_{s_{1}, s_{2}, \ldots, s_{k}}(1)} |I - M_{s_{1}, s_{2}, \ldots, s_{k}}^{n}| \]

where \(| \cdot | \) represents the determinant of the matrix.
Proof. Eq. (3) can be found by direct calculation.

For the rest of the proof note that from Lemma 1

\[A_n = \prod_{j=1}^{n-1} (2k - e^{-s_1j} - e^{-s_2j} - \ldots - e^{-s_nj} - e^{s_1j} - e^{s_2j} - \ldots - e^{s_nj}) \]

\[= \prod_{j=1}^{n-1} g_{s_1, s_2, \ldots, s_k}(e^j) \]

\[= (-1)^{(n-1)} \prod_{j=1}^{n-1} e^{-s_j} \prod_{j=1}^{n-1} (e^j - 1) \prod_{j=1}^{n-1} f_{s_1, s_2, \ldots, s_k}(e^j). \]

By calculation

\[|I - M_{s_1, s_2, \ldots, s_k}| = f_{s_1, s_2, \ldots, s_k}(1), \]

\[|e^j I - M_{s_1, s_2, \ldots, s_k}| = f_{s_1, s_2, \ldots, s_k}(e^j), \]

\[\prod_{j=1}^{n-1} (e^j - 1) = (-1)^{n-1} n, \]

\[\prod_{j=1}^{n-1} e^{-s_j} = (-1)^{s_k(n-1)}, \]

Thus

\[A_n = (-1)^{(s_k-1)(n-1)} \frac{n^2}{f_{s_1, s_2, \ldots, s_k}(1)} \prod_{j=0}^{n-1} f_{s_1, s_2, \ldots, s_k}(e^j) \]

\[= (-1)^{(s_k-1)(n-1)} \frac{n^2}{f_{s_1, s_2, \ldots, s_k}(1)} |I - M_{s_1, s_2, \ldots, s_k}|. \]

Lemma 3. Let

\[\tilde{f}_{s_1, s_2, \ldots, s_k}(x) = \sum_{j=1}^{k} \sum_{i=0}^{s_j-1} x^i. \]

Set \(\tilde{M}_{s_1, s_2, \ldots, s_k} \) to be the companion matrix of \(\tilde{f}_{s_1, s_2, \ldots, s_k}(x) \). Then

\[T(\tilde{C}_{n, s_1, s_2, \ldots, s_k}) = \frac{n}{\tilde{f}_{s_1, s_2, \ldots, s_k}(1)} |I - \tilde{M}_{s_1, s_2, \ldots, s_k}|. \]

Proof. Note that

\[\prod_{j=1}^{n-1} (k - e^{s_1j} - e^{s_2j} - \ldots - e^{s_nj}) = \prod_{j=1}^{n-1} (1 - e^j) \prod_{j=1}^{n-1} \tilde{f}_{s_1, s_2, \ldots, s_k}(e^j). \]

The remaining part of the proof is similar to that of Lemma 2.
We now show that A_n must have a special form. This form will permit us to write a recurrence relation for them.

Lemma 4. For any $1 \leq s_1 < s_2 < \cdots < s_k$, we have the following formula:

$$T(C^2_{n,s_1,\ldots,s_k}) = \frac{1}{n}A_n = na_n^2,$$

where $a_n = 1/\sqrt{f_{s_1,s_2,\ldots,s_k}(1)} \sum_{i=1}^{2k-1} r_i^n$ for some (not necessarily unique) complex numbers r_i, $1 \leq i \leq 2k-1$.

Proof. We need to show that $f_{s_1,s_2,\ldots,s_k}(x)$ can be expressed in a particular form. We do this by finding restrictions on its roots.

By calculation we find that $g_{s_1,s_2,\ldots,s_k}(1) = g_{s_1,s_2,\ldots,s_k}(1) = 0$ but $g_{s_1,s_2,\ldots,s_k}''(1) \neq 0$ so 1 is a root of multiplicity 2 of $g_{s_1,s_2,\ldots,s_k}(x)$. By the way $f_{s_1,s_2,\ldots,s_k}(x)$ is defined in (2) it implies that 1 is not a root of $f_{s_1,s_2,\ldots,s_k}(x)$.

Now note that $g_{s_1,s_2,\ldots,s_k}(x) = \prod_{j=1}^{k} (2 - x - s_j - x^s_j)$ and $\forall j$, $u_j(x) = 2 - x - s_j - x^s_j > 0$, when $x = -1$ with $u_j(-1) = 0$ if and only if S_j is even. Thus $g(-1) = 0$ iff s_1,s_2,\ldots,s_k are all even numbers. It is also easy to see that $\forall j$, $u_j''(-1) < 0$ so if $g(-1) = 0$ then $g''(-1) \neq 0$. Plugging back into (2) we find that if -1 is a root of $f_{s_1,s_2,\ldots,s_k}(x)$ it must also be a root of order 2.

Finally, we note that

$$f_{s_1,s_2,\ldots,s_k} \left(\frac{1}{x} \right) = \frac{1}{x^{2k-2}} f_{s_1,s_2,\ldots,s_k}(x)$$

so x is a root if and only if $1/x$ is a root. More generally, set

$$\tilde{f}_{s_1,s_2,\ldots,s_k}(x) = \frac{f_{s_1,s_2,\ldots,s_k}(x)}{(x - 1/x)(x - 1/2)}.$$

Then

$$\tilde{f}_{s_1,s_2,\ldots,s_k} \left(\frac{1}{x} \right) = \frac{1}{x^{2k-4}} \tilde{f}_{s_1,s_2,\ldots,s_k}(x).$$

Continuing in this fashion it is possible to show that x and $1/x$ always have the same multiplicity as roots of $f_{s_1,s_2,\ldots,s_k}(x)$.

Combining all the above observations let us write

$$f_{s_1,s_2,\ldots,s_k}(x) = c \prod_{i=1}^{s_k} (x - x_i)(x - x_i^{-1})$$

for some constant c. But, from (1) and (2) we find that $f(0) = 1$ so $c = 1$ and

$$f_{s_1,s_2,\ldots,s_k}(x) = \prod_{i=1}^{s_{k-1}} (x - x_i)(x - x_i^{-1}).$$

(4)
By definition
\[f_{s_1, s_2, \ldots, s_k}(1) = |I - M_{s_1, s_2, \ldots, s_k}| = \prod_{i=1}^{s_k-1} (1 - z_i)(1 - z_i^{-1}). \]

From Lemma 2,
\[A_n = (-1)^{s_k-1}(n-1) \prod_{j=1}^{n-1} f_{s_1, s_2, \ldots, s_k}(e^j). \]

Thus
\[a_n^2 = (-1)^{s_k-1}(n-1) \prod_{j=1}^{n-1} \prod_{i=1}^{s_k-1} (e^j - z_i)(e^j - z_i^{-1}) \]
\[= (-1)^{s_k-1}(n-1) \prod_{i=1}^{s_k-1} (1 - z_i^n)(1 - z_i^{-n}) \]
\[= \left(\frac{\prod_{i=1}^{s_k-1} (1 - z_i^n)}{\sqrt{f_{s_1, s_2, \ldots, s_k}(1)}} \right)^2. \]

Consequently, \(a_n = 1/\sqrt{f_{s_1, s_2, \ldots, s_k}(1)} \sum_{i=1}^{2^{s_k}-1} r_i^n \) for some complex numbers \(r_i, 1 \leq i \leq 2^{s_k}-1 \) (where it is possible that \(r_i = r_j \) for some \(i \neq j \)). □

Note. It is well known that if \(a_n = c \sum_{i=1}^{2^{s_k}-1} r_i^n \) for some constant \(c \) then \(a_n \) is the coefficient of \(x^n \) in the generating function
\[G(x) = \sum_{i=1}^{2^{s_k}-1} \frac{c}{1 - r_i x} = c \sum_{i=1}^{2^{s_k}-1} \prod_{j \neq i} (1 - r_i x) \prod_{i=1}^{2^{s_k}-1} (1 - r_i x). \]

Thus, \(G(x) = P(x)/Q(x) \), where \(P(x) \) and \(Q(x) \) are polynomials and (i.e., \(G(x) \) is a rational function) since degree of \(Q(x) \leq 2^{s_k}-1 \) there exist \(b_i, 1 \leq i \leq 2^{s_k}-1 \) such that \(a_n \) satisfy a recurrence relation of the form
\[\forall n \geq 2^{s_k}-1, \quad a_n = \sum_{i=1}^{2^{s_k}-1} b_i a_{n-i}. \]

We can find these \(b_i \) by noting that Lemma 2 gives us a direct way of calculating any \(a_i \). We can therefore use Lemma 2 to evaluate all \(a_i \) for \(i \leq 2^{s_k} \) and then solve for the \(b_i \). We will see many examples of this in the next section.

We also note that we can say even more about the structure of \(G(x) \). Suppose that \(G(x) = P(x)/Q(x) \) where the \(P(x) \) and \(Q(x) \) are now relatively prime. We claim that every root of \(Q(x) \) must be simple. This follows from the fact that if \(r \) was not a simple root then the coefficient of \(x^n \) in \(G(x) \) would include an additive term of the form \(h(n)r^n \) where \(h(n) \) is a non-constant polynomial, contradicting the lemma.
Lemma 5. For any \(1 \leq s_1 < s_2 < \cdots < s_k\), we have the following formula:

\[
T(C_{s_1, s_2, \ldots, s_k}) = na,
\]

where \(a_n\) satisfies a linear recurrence relation of order \(2^k - 1\) with initial conditions given by Lemma 3.

Proof. Let \(f_{s_1, s_2, \ldots, s_k}(x) = \prod_{j=1}^{s_k - 1} (x - x_j)\), where \(x_1, x_2, \ldots, x_{s_k - 1}\) are roots of \(f_{s_1, s_2, \ldots, s_k}(x)\). The proof of the remaining part of the theorem is similar to the proof of Lemma 4. \(\end{proof}\)

We now prove a lemma saying that, in many cases, \(f_{s_1, s_2, \ldots, s_k}(x) = 0\) does not have a unit root; this in turn will imply that the minimum modulus root of \(Q(x)\) is not only simple (which is true for all roots) but is also the only root of minimum modulus. This fact will later permit us to derive the asymptotic growth of the number of spanning trees as \(n\) increases.

Lemma 6. If \(\gcd(s_1, s_2, \ldots, s_k) = 1\), and \(f_{s_1, s_2, \ldots, s_k}(x) = 0\), then \(|x| \neq 1\).

Proof. From Eq. (3) we know that \(x = 1\) is not a root of \(f_{s_1, s_2, \ldots, s_k}(x)\).

Recall that

\[
f_{s_1, s_2, \ldots, s_k}(x) = -\frac{x^{s_k}g_{s_1, s_2, \ldots, s_k}(x)}{(x - 1)^2}.
\]

This means that if \(x \neq 1\) is a root of \(f_{s_1, s_2, \ldots, s_k}(x)\) then \(x\) is also a root of \(g_{s_1, s_2, \ldots, s_k}(x)\).

Now suppose that some \(x \neq 1\) with \(|x| = 1\) is a root of \(g_{s_1, s_2, \ldots, s_k}(x)\). Then

\[
\alpha = e^{i\phi} = \cos \phi + i \sin \phi
\]

for some \(\phi\). Thus

\[
g_{s_1, s_2, \ldots, s_k}(x) = \sum_{j=1}^{k} (2 - x^{-s_j} - x^{s_j})
\]

\[
= \sum_{j=1}^{k} (2 - 2 \cos s_j \phi)
\]

\[
= 0.
\]

This implies that

\[
\forall 1 \leq j \leq k, \quad \cos s_j \phi = 1.
\]

This in turn implies that

\[
\forall 1 \leq j \leq k, \quad e^{is_j \phi} = (\cos \phi + i \sin \phi)^{s_j} = 1
\]

which means that \(x\) is a unit root of 1. Let \(m\) be the minimum positive integer such that \(x\) is a unit root of degree \(m\). From (5) \(m|s_j, j = 1, 2, \ldots, k\); from the fact that
Now let $G(x) = \sum_n a_n x^n$ be the generating function of a_n. It was previously shown that $G(x)$ is a rational function. The preceding lemma will imply that the minimum modulus pole of $G(x)$ is unique in modulus.

Corollary 1. Let $P(x), Q(x)$ be relatively prime polynomials such that $G(x) = P(x)/Q(x)$. Then if $\gcd(s_1, s_2, \ldots, s_k) = 1$, there is only one root of $Q(x)$ that has minimum modulus.

Proof. Referring back to the proof of Lemma 4 we find (Eq. (4)) that

$$f_{s_1, s_2, \ldots, s_k}(x) = \prod_{i=1}^{s_k-1} (x - z_i)(x - z_i^{-1})$$

for some z_i. Without loss of generality, we may assume that $\forall i \in \mathbb{N}, |z_i| \geq 1$; otherwise we may swap z_i and $1/z_i$.

In the same proof we found that

$$a_n^2 = \left(\frac{\prod_{i=1}^{s_k-1} (1 - z_i^2)}{\sqrt{f_{s_1, s_2, \ldots, s_k}(1)} \sqrt{\prod_{i=1}^{s_k-1} (-z_i^n)}} \right)^2.$$

We used this to derive that $a_n = 1/\sqrt{f_{s_1, s_2, \ldots, s_k}(1)} \sum_{i=1}^{2^{s_k-1}} r_i^n$ for some complex numbers r_i, $1 \leq i \leq 2^{s_k-1}$. By definition, these r_i are the roots of $Q(x)$. Expanding the product we see that each r_j is of the form

$$r_j = \frac{\prod_{i=1}^{s_k-1} z_i^{e_j(i)}}{\sqrt{\prod_{i=1}^{s_k-1} (-z_i^n)},}$$

where $e_j(i) \in \{0, 1\}$ and, taken over all roots r_i, all 2^{s_k-1} choices of $e_j(i)$ may occur. Note that because all of the z_i satisfy $|z_i| \geq 1$ the minimum modulus over the r_i is

$$\frac{1}{\sqrt{\prod_{i=1}^{s_k-1} (-z_i^n)}}.$$

This modulus is only achieved by roots r_i that satisfy

- if $e_j(i) = 1$ then $|z_i| = 1$.

From Lemma 6 we know that $\forall j, |z_j| \neq 1$. Thus, a minimum modulus root of $Q(x)$ is only realized for the one root r_i such that $\forall j, e_j(i) = 0$. This proves the corollary.

The previous lemmas assumed that $\gcd(s_1, s_2, \ldots, s_k) = 1$. We will now see that this is a reasonable assumption since, otherwise, the problem can easily be transformed to the one in which the $\gcd(\)$ really is 1.
Lemma 7. If \(\gcd(n,d) = 1 \), then

\[
T(C_n^{s_1,s_2,\ldots,s_k}) = T(C_n^{d_1,d_2,\ldots,d_k}),
\]

\[
T(\tilde{C}_n^{s_1,s_2,\ldots,s_k}) = T(\tilde{C}_n^{d_1,d_2,\ldots,d_k}).
\]

Proof. From Lemmas 1 and 2 we have

\[
T(C_n^{s_1,s_2,\ldots,s_k}) = \frac{1}{n} \prod_{j=1}^{n-1} g_{s_1,s_2,\ldots,s_k}(\epsilon^j),
\]

\[
T(C_n^{d_1,d_2,\ldots,d_k}) = \frac{1}{n} \prod_{j=1}^{n-1} g_{d_1,d_2,\ldots,d_k}(\epsilon^j) = \frac{1}{n} \prod_{j=1}^{n-1} g_{s_1,s_2,\ldots,s_k}(\epsilon^j).
\]

If \(\gcd(n,d) = 1 \), then \(dj \equiv d'j \pmod{n} \) if and only if \(j \equiv j' \pmod{n} \) so

\[
\{1,2,\ldots,n-1\} = \{d \pmod{n}, 2d \pmod{n}, \ldots, (n-1)d \pmod{n}\}.
\]

Thus

\[
T(C_n^{s_1,s_2,\ldots,s_k}) = T(C_n^{d_1,d_2,\ldots,d_k}).
\]

Similarly,

\[
T(\tilde{C}_n^{s_1,s_2,\ldots,s_k}) = T(\tilde{C}_n^{d_1,d_2,\ldots,d_k}).
\]

Note. Lemma 7 can actually be proven directly by noting that, if \(\gcd(n,d) = 1 \), there is an isomorphism between graphs \(C_n^{s_1,s_2,\ldots,s_k} \) and \(C_n^{d_1,d_2,\ldots,d_k} \). We define the function \(f : i \mapsto di \pmod{n} \) from \(\{0,1,2,\ldots,n-1\} \) to itself. As in the proof of Lemma 7, we see that \(f \) is a bijection. Furthermore, if \(\gcd(n,d) = 1 \), then \(i_1 - i_2 = s_j \pmod{n} \) if and only if \(di_1 - di_2 = ds_j \pmod{n} \), where \(i_1, i_2 \in \{0,1,2,\ldots,n-1\} \) and \(s_j \in \{s_1,s_2,\ldots,s_k\} \). Thus \((i,j) \in C_n^{s_1,s_2,\ldots,s_k} \) if and only if \((di,dj) \in C_n^{d_1,d_2,\ldots,d_k} \) and \(f \) is an isomorphism between \(C_n^{s_1,s_2,\ldots,s_k} \) and \(C_n^{d_1,d_2,\ldots,d_k} \). The same method can be applied to the directed case.

Given \(1 \leq s_1 < s_2 < \cdots < s_k \), the graphs \(C_n^{s_1,s_2,\ldots,s_k} \) and \(\tilde{C}_n^{s_1,s_2,\ldots,s_k} \) are connected if and only if \(\gcd(s_1,s_2,\ldots,s_k,n) = 1 \). If the graph is unconnected then it does not contain any spanning trees. This proves

Corollary 2. If \(\gcd(s_1,s_2,\ldots,s_k) = d \neq 1 \) then

\[
T(C_n^{s_1,s_2,\ldots,s_k}) = \begin{cases}
0, & \text{gcd}(n,d) \neq 1, \\
T(C_n^{d_1,d_2,\ldots,d_k}), & \text{gcd}(n,d) = 1
\end{cases}
\]

and

\[
T(\tilde{C}_n^{s_1,s_2,\ldots,s_k}) = \begin{cases}
0, & \text{gcd}(n,d) \neq 1, \\
T(\tilde{C}_n^{d_1,d_2,\ldots,d_k}), & \text{gcd}(n,d) = 1
\end{cases}
\]
3. Results

In this section we show how to apply Lemma 4. In the first two proofs we work from basic principles, specializing Lemma 4.

Theorem 8 (Case 1). \(s_1 = 1, s_2 = 5. \)

\[
T(C_{1,5}^{1,5}) = \frac{1}{n} A_n = n a_n^2,
\]

where \(a_n \) satisfies the recurrence relation:

\[
a_n = \sqrt{2} a_{n-1} + a_{n-4} + 4\sqrt{2} a_{n-5} - 6a_{n-6} - \sqrt{2} a_{n-7} - \sqrt{2} a_{n-9}
- 6a_{n-10} + 4\sqrt{2} a_{n-11} + a_{n-12} + \sqrt{2} a_{n-15} - a_{n-16}
\]

with the initial conditions \(a_1 = 1, a_2 = \sqrt{2}, a_3 = 2, a_4 = 2\sqrt{2}, a_5 = 1, a_6 = 4\sqrt{2}, a_7 = 13, a_8 = 16\sqrt{2}, a_9 = 34, a_{10} = 29\sqrt{2}, a_{11} = 89, a_{12} = 128\sqrt{2}, a_{13} = 325, a_{14} = 377\sqrt{2}, a_{15} = 842, a_{16} = 1088\sqrt{2}. \)

Proof. We specialize Lemma 4. Let \(f_{1,5}(x) = \prod_{i=1}^{4} (x - x_i)(x - x_i^{-1}) \). As in the proof of Lemma 2 we find that \(f_{1,5}(1) = \prod_{i=1}^{4} (1 - x_i)(1 - x_i^{-1}) = |I - M_{1,5}| = 26. \)

By Lemma 2,

\[
A_n = n^2 \prod_{j=1}^{n-1} f_{1,5}(\nu^j).
\]

Thus

\[
a_n^2 = \prod_{j=1}^{n-1} \prod_{i=1}^{4} (\nu^j - x_i)(\nu^j - x_i^{-1})
\]

\[
= \prod_{i=1}^{4} \frac{(1 - x_i^n)(1 - x_i^{-n})}{(1 - x_i)(1 - x_i^{-1})}
\]

\[
= \left(\frac{(1 - x_1^n)(1 - x_2^n)(1 - x_3^n)(1 - x_4^n)}{\sqrt{26} \sqrt{\prod_{i=1}^{4} (x_1 x_2 x_3 x_4)^{n}} \right)^2.
\]

Consequently, \(a_n = \frac{1}{\sqrt{26}} \sum_{i=1}^{16} r_i^n \) for some complex numbers \(r_i, 1 \leq i \leq 16. \)

Thus there exist \(b_i, 1 \leq i \leq 16, \) such that \(a_n = \sum_{i=1}^{16} b_i a_{n-i}. \) This gives the following linear equations:

\[
\sum_{j=1}^{16} b_j a_{16+i-j} = a_{16+i}, \quad 1 \leq i \leq 16.
\]

The values of \(a_i \) for \(i \leq 32 \) can be calculated using Lemma 2 (the values for \(i \leq 16 \) are shown in the theorem statement). Using these 32 values we can solve for the \(b_i \) to derive that \(b_1 = \sqrt{2}, b_2 = 0, b_3 = 0, b_4 = 1, b_5 = 4\sqrt{2}, b_6 = -6, b_7 = -\sqrt{2}, b_8 = 0, b_9 = -\sqrt{2}, b_{10} = -6, b_{11} = 4\sqrt{2}, b_{12} = 1, b_{13} = 0, b_{14} = 0, b_{15} = \sqrt{2}, b_{16} = -1. \) \(\square \)
Theorem 9 (Case 2). $s_1 = 2$, $s_2 = 3$.

$$T(C_{n}^{2, 3}) = \frac{1}{n} A_n = na_n^2,$$

where a_n satisfies the recurrence relation:

$$a_n = a_{n-1} + a_{n-2} + a_{n-3} - a_{n-4}$$

with the initial conditions $a_1 = 1$, $a_2 = 1$, $a_3 = 1$, $a_4 = 3$.

Proof. Repeat the procedure above. Let

$$f_{2, 3}(x) = (x - x_1)(x - x_{1}^{-1})(x - x_2)(x - x_{2}^{-1}).$$

Then $f_{2, 3}(1) = (1 - x_1)(1 - x_{1}^{-1})(1 - x_2)(1 - x_{2}^{-1}) = |I - M_{2, 3}| = 13$.

By Lemma 2,

$$A_n = n^2 \prod_{j=1}^{n-1} f_{2, 3}(\ell^j),$$

so

$$a_n^2 = \prod_{j=1}^{n-1} (\ell^j - x_1)(\ell^j - x_{1}^{-1})(\ell^j - x_2)(\ell^j - x_{2}^{-1})$$

$$= \left(\frac{(1 - x_1^2)(1 - x_2^2)}{\sqrt{13}\sqrt{(x_1 x_2)^2}} \right)^2,$$

$$a_n = \frac{1}{\sqrt{13}} (r_1^n + r_2^n + r_3^n + r_4^n)$$

for some numbers r_1, r_2, r_3, r_4, and there exist b_1, b_2, b_3, b_4, such that $a_n = b_1 a_{n-1} + b_2 a_{n-2} + b_3 a_{n-3} + b_4 a_{n-4}$. Finally, by solving the linear equations, we have $b_1 = b_2 = b_3 = 1$, $b_4 = -1$. ☐

Theorem 10 (Case 3). $s_1 = 2$, $s_2 = 4$.

$$T(C_{n}^{2, 4}) = \begin{cases}
0, & n \text{ even}, \\
T(C_{n}^{1, 2}), & n \text{ odd}.
\end{cases}$$

Proof. Follows directly from Corollary 2. ☐

As described in Lemma 4 we can use the methods above for any value of s_1, s_2, \ldots, s_k to find b_i, such that

$$\forall n > 2^{n-1}, \quad a_n = \sum_{i=1}^{2^n-1} b_i a_{n-i},$$

where $T(C_{n}^{s_1, s_2, \ldots, s_k}) = na_n^2$. We have done this for all such s_i tuples with $s_i \leq 5$. The results are presented in Fig. 2. The first table presents the b_i coordinates. The second presents the initial values of a_n for $n \leq 2^n-1$.
where \(\gamma \) is a root of the equation (1) and the initial conditions are the same as those in Table 1 below. We then calculated the roots. From Corollary 2 we know that for even \(n \) the asymptotic growth rate of \(T(C^n_{2,3}) \) is the same as the 1 row thus simply presents the same growth rate as the 1,2 row but its growth rate only applies for odd \(n \).

4. Asymptotic properties

Given the recurrence relations for \(a_n \) it is a simple matter to find the asymptotic growth rate of \(T(C_n^{s_1,s_2,\ldots,s_k}) = n a_n^2 \) as \(n \) increases. In this section we present asymptotic formulae for \(a_n \) for all undirected circulant graphs \(T(C_n^{s_1,s_2,\ldots,s_k}) \) for which \(s_k \leq 5 \).

We first derive the recurrence relations and initial conditions for all of these \(a_n \); These are listed in the tables in Fig. 2. It is well known that if \(a_n \) satisfies a linear recurrence relation then the generating function \(G(x) = \sum a_n x^n \) of the \(a_n \) can be expressed as a rational function \(G(x) = F(x)/Q(x) \) where \(F(x) \) and \(Q(x) \) are polynomials. If \(Q(x) \) has a root \(\alpha \) with unique minimum modulus, such that \(\alpha \) is a simple root, then \(a_n \sim -F(\alpha)/\alpha Q'(\alpha) (1/\alpha)^n \) [10]. From the note following Lemma 4 we know that every root of \(Q(x) \) is simple. From Corollary 1, we know that if \(\gcd(s_1,s_2,\ldots,s_k) = 1 \) then the root with the minimum modulus has unique minimum modulus. We used Maple to find the minimum modulus root \(\alpha \) of each of the equations that satisfy \(\gcd(s_1,s_2,\ldots,s_k) = 1 \). We then calculated \(c = -F(\alpha)/\alpha Q'(\alpha) \) and \(\phi = 1/\alpha \). The results are displayed in Table 1 below.

For the case in which \(\gcd(s_1,s_2,\ldots,s_k) \neq 1 \), the case \(s_1 = 2, s_2 = 4 \), we did not calculate the roots. From Corollary 2 we know that for even \(n \) the (the graph is disconnected so) \(T(C_{2}^{2,4}) = 0 \) and for odd \(n \), \(T(C_{n}^{2,4}) = T(C_{n}^{1,2}) \). The 2,4 row thus simply presents the same growth rate as the 1,2 row but its growth rate only applies for odd \(n \).

<table>
<thead>
<tr>
<th>{s_k}</th>
<th>{c}</th>
<th>{\phi}</th>
<th>{s_k}</th>
<th>{c}</th>
<th>{\phi}</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,2}</td>
<td>0.4472136</td>
<td>1.618034</td>
<td>{2,3,4}</td>
<td>0.1856953</td>
<td>2.181935</td>
</tr>
<tr>
<td>{1,3}</td>
<td>0.3162278</td>
<td>1.700016</td>
<td>{1,2,5}</td>
<td>0.1825742</td>
<td>2.183137</td>
</tr>
<tr>
<td>{1,4}</td>
<td>0.2425356</td>
<td>1.736815</td>
<td>{1,3,5}</td>
<td>0.1690309</td>
<td>2.200510</td>
</tr>
<tr>
<td>{1,5}</td>
<td>0.1961161</td>
<td>1.755602</td>
<td>{1,4,5}</td>
<td>0.1543035</td>
<td>2.194750</td>
</tr>
<tr>
<td>{2,3}</td>
<td>0.2773501</td>
<td>1.722084</td>
<td>{2,3,5}</td>
<td>0.1622214</td>
<td>2.189798</td>
</tr>
<tr>
<td>{2,4}</td>
<td>0.4472136</td>
<td>1.618034</td>
<td>{2,4,5}</td>
<td>0.1490712</td>
<td>2.211485</td>
</tr>
<tr>
<td>{2,5}</td>
<td>0.1856934</td>
<td>1.759576</td>
<td>{3,4,5}</td>
<td>0.1412412</td>
<td>2.224979</td>
</tr>
<tr>
<td>{3,4}</td>
<td>0.2099999</td>
<td>1.754878</td>
<td>{1,2,3,4}</td>
<td>0.1825742</td>
<td>2.509601</td>
</tr>
<tr>
<td>{3,5}</td>
<td>0.1714986</td>
<td>1.764394</td>
<td>{1,2,3,5}</td>
<td>0.1601282</td>
<td>2.537090</td>
</tr>
<tr>
<td>{4,5}</td>
<td>0.1561738</td>
<td>1.769046</td>
<td>{1,2,4,5}</td>
<td>0.1474420</td>
<td>2.555259</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>0.2672612</td>
<td>2.102256</td>
<td>{1,3,4,5}</td>
<td>0.1400280</td>
<td>2.563612</td>
</tr>
<tr>
<td>{1,2,4}</td>
<td>0.2182179</td>
<td>2.147396</td>
<td>{2,3,4,5}</td>
<td>0.1360828</td>
<td>2.572032</td>
</tr>
<tr>
<td>{1,3,4}</td>
<td>0.1961161</td>
<td>2.165786</td>
<td>{1,2,3,4,5}</td>
<td>0.1348400</td>
<td>2.866404</td>
</tr>
</tbody>
</table>
The top table contains the b_i values: $\forall n > 2^{k-1}$, $a_n = \sum_{i=0}^{2^{k-1} - 1} b_i a_{n-i}$. The bottom table contains the initial conditions a_n for $n \leq 2^{k-1}$. The b_i values for the $(s_1, s_2) = (2, 4)$ case are not reported since, as described in the text, $T(C_{2n}^2) = 0$ for even n and $T(C_{2n}^2) = T(C_{n}^1)$ for odd n.

| (a_n) | a_1 | a_2 | a_3 | a_4 | a_5 | a_6 | a_7 | a_8 | a_9 | a_{10} | a_{11} | a_{12} | a_{13} | a_{14} | a_{15} | a_{16} |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.2 | 2 | 1 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 |
| 1.3 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 |
| 1.4 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 |
| 1.5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1.6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1.7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1.8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1.9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1.10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1.11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1.12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1.13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1.14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1.15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Figure 2. The top table contains the b_i values: $\forall n > 2^{k-1}$, $a_n = \sum_{i=0}^{2^{k-1} - 1} b_i a_{n-i}$. The bottom table contains the initial conditions a_n for $n \leq 2^{k-1}$. The b_i values for the $(s_1, s_2) = (2, 4)$ case are not reported since, as described in the text, $T(C_{2n}^2) = 0$ for even n and $T(C_{2n}^2) = T(C_{n}^1)$ for odd n.

349
5. Conclusion

In this paper we described a general method for determining a recurrence relation for $T(C_{s_1}^{s_2},...,s_k)$, the number of spanning trees in the undirected circulant graph described by indices s_1, s_2, \ldots, s_k and $T(C_{s_1}^{s_2},...,s_k)$, the same quantity for directed circulant graphs. Our method does not, though, provide a general recurrence relation or formula for general case $T(C_{s_1}^{s_2},...,s_k)$ or $T(C_{s_1}^{s_2},...,s_k)$ when the s_i are permitted to vary. Finding such a general relationship, if one exists, would be an interesting problem.

We conclude by pointing out that it is known [14] that $T(C_{s_1}^{s_2},...,s_k)$ \sim $n^k/\hat{f}(s_1,s_2,...,s_k)$. One might hope that a similar asymptotic property, independent of s_1, s_2, \ldots, s_k, would hold for undirected graphs. Unfortunately, the asymptotic results presented in the table seem to show that such a strong result does not apply. This also implies that, for the undirected case, the result presented in [14] is not true. An interesting open question would be to discover if there are some weaker asymptotic properties that are not dependent upon s_1, s_2, \ldots, s_k but only upon k, or possibly on s_k (or s_1).

Acknowledgements

This paper was completed while we were visiting the DIMACS center at, Rutgers, The State University of New Jersey. The third author was also visiting AT&T Labs-Research at the time and would like to thank them for their support as well.

References