
Sections14.3,14.4

Section14.3.Therearenot manydifficultieswith thissection.Oncethedefinitionis understood,it
is amatterof practicingthemechanicalcomputingskills.

Referto thedefinition4 on p.914,andyou seethatpartialderivativesaresimply derivativesalong
pathsaswe haveseenin §14.2,wherethepathsarelines,paralleleitherto thex-axisor they-axis.
Sof x(a, b) is thederivativeof f alongthepathparametrisedby

x = t, y = b

which,if wesetg(t) = f (t, b), is thesameasg′(a) . Thisis whatEquation1p.913states.Similarly,

f y(a, b) = h′(b),

whereh(t) = f (a, t) . Graphicalillustrationsareonp.915.

Notethatthenotationis completewithout beingredundant:f x(a, b) meansthederivativeof f with
respectto x atx = a, holdingy fixed to thevalueb .

Anothernotationfor partialderivativewith respectto x at (a, b) is
∂f
∂x

(a, b) . This is not thesame

as
df
dx

(a, b) . The latter notationis only usedwhen f is a function of a singlevariable.We will

elaborateon this later,whenwestudythechainrule,andcompositionof functions.Seealsonote6
of §14.4below.

Section14.4.Thissectionis at theheartof Calculus.Whereasthegoalof Algebrais to find exact
solutionstoequationsor systemsof equations,thegoalof Calculusis toappoximate,andfind lower
or upperbounds.Whenthefunctionto approximatedependson two variables,theapproximating
objectis thetangentplane.

1. In CalculusI, youhaveseentheroleof thetangentline to thegraphof f atx = a: thislineexists
only if f hasa derivativeat x = a, andthenits slopeis f ′(a) . Theline is thegraphof a certain
functionL(x), which is calledthe“linear approximationof f at a”. Changef or a, andyouget
adifferentlinearapproximation.Theusefulnessof L is thesimplicity of its equation:

L(x) = f (a) + f ′(a)(x − a)

which is easyto compute,onceyouknowthefixedvaluesf (a) andf ′(a) . (Newton,Hookeand
Leibnizdid not havepocketcalculators).Thecloserx is to a, thebettertheapproximationof
f (x) by L(x) .

Approximatinga functionof two variablesusesthesameidea.Thedifferenceis thatnowthegraph
of z = f (x, y) is asurface,sothatthetangentobjectis aplaneinsteadof a line.For therestof these
comments,let uslist thefollowing points:

2. Replacing(a, b) by (x0, y0), Equation(2) p.128reads:
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z = L(x, y) = L(x0, y0) + c(x − x0) + d(y − y0)

wherec = f x(x0, y0) andd = f y(x0, y0) arefixedvalues. A commonmistakeis to replace,say,
f x(x0, y0) in theformulaby f x(x,y),whichnowmakesc afunctionof x,y, sothat(2) isnolonger
theequationof aplane.

3. Whentheequationof thetangentplaneis asked,you mustprovideanequation.Onesideof
theequationwon’t do.A commonmistakewould be,following example1p.928,to write the
“equation”as

4x + 2y − 3

which is not thesameas

z (or L(x, y) ) = 4x + 2y − 2 .

“4x + 2y − 3” by itself is notanequation,butanexpression.

4. Beforederivingequation1on p.928,thetext refersto thegeneralequationof a planepassing
through(x0, y0, z0) andperpendicularto 〈A, B, C〉:

A(x − x0) + B(y − y0) + C(z − z0) = 0 (0)

Thisform is moregeneralthan

z − z0 = a(x − x0) + b(y − y0) (1)

sinceit allowsC tobezero(verticalplane).While(1)workswhenthesurfacearisesasthegraph
of a functionz = z(x, y), thesymmetricform (0)worksevenif thesurfaceis not thegraphof a
function(think of thesphere).Wewill comebackto thispoint in §14.6.

5. Differentials.How to readequation9 p.932:

dy = f ′(x) dx

Thissaysthatif dx issomearbitraryincrementawayfrom a (sodx = x − a), thenonthetangent
line to thegraphof f at (a, f (a)) , dy = f ′(a) dx, wheredy = y − f (a) . Thisis indeedthecase,
sincetheequationof thetangentline is

y − f (a) = f ′(a)(x − a) .

In the languageof signal processing,for the electricalengineeringmajorsamongyou (or
statics,for themechanicalengineers),dy is theresponseto thestimulusdx, if f werereplaced
by its linearisationL .Theactualresponse∆y = f (a + dx) − f (a) will in generalbedifferent
from dy, unlessf = L . But for smalldx, ∆y is verycloseto dy. Seefig 6.

In thesamewaythen,if f (x, y) is a functionof two variables,andL(x, y) its linearapproxima-



- 3 -

tion (alsocalledlinearisation,or tangentmap)at (a, b), thendz = L(a + dx, b + dy) − L(a, b) is
expressedin termsof theindependentincrementsdx, dyby eq10p.932.Seefig 7 on thesame
page.dzwill beagoodapproximationto ∆z if dx, dyaresmall.

6. Useof d and∂ andconsistentnotation.Consideragaintheequations9 and10p.932:

dz = f ′(a) dx (9)

dz = f x(a, b) dx + f y(a, b) dy (10)

wherein (9),wecall z thedependentvariablefor betteranalogywith (10)(soin (9),z = f (x)).

(a) In theone-variablecase,alongthetangentline, theratiodz/dx is constant,equalto f ′(a) .
Along thegraphof f , ∆z/∆x = ∆z/dxhasnoreasonto beconstant,but if f ′(a) exists,then
thelimit of ∆z/dxasdx → 0 is f ′(a) . Thisjustifiesthenotation

f ′(a) =
df
dx

(a) .

(b) In the two-variablecase,equation(10) holdsexactlyon the tangentplane,which is the
graphof L . In whatsensedoestheratiodz/dxor dz/dyhavea limit asdx (respdy) → 0?
Unfortunately,theansweris beyondourscope,butnotethatif wetry to divideeq(10)by
dx:

dz
dx

= f x(a, b) dx
dx

+ f y(a, b)
dy
dx

thesecondtermon theright is ambiguousasbothdx, dy → 0 . Thebestwe cando is to
keepdy = 0 asdx → 0 (or vice-versa),but thenthisrestrictionis reflectedin denotingthe

limit notby dz
dx

(a, b), but:∂z
∂x

(a, b) .

7. Scalarvs differential relations.Is f is a function (alsocalledscalarexpression),df is called
a differentialexpression.If you think of “d” asan operation,this operationobeysthe rules
of differentiation:

d(u + v) = du + dv.

d(uv) = v du + u dv.

d(u/v) = (v du − u dv)/ 2v .

Differentialsrepresentincrements,sothatscalarsanddifferentialsaredistinctobjects.Don’t
mix thetwo:
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V = π 2r h/3

is ascalarrelation,

dV = 2πrh
3

dr + π 2r
3

dh

is adifferentialrelation.

PV = 8.31T

is ascalarrelation,

VdP + PdV = 8.31dT

is adifferentialrelation.

VdP + PdV = 8.31T

is acrudemistake:“differential= scalar”.

However,bothscalarsanddifferentialstake,uponsubstitution,realvalues.SoPV is aproduct,
say,of kilopascalsandcubicmeters,andd(PV) is anincrement,alsoexpressedin kilopascals
timescubicmeters.


