MATE 3063 assignment 3: section 14.3

On your own, do exercises 1-8. Hand in:

1. Exercise 9. The explanation must be complete. Hint: consider the trace of each surface with the two planes $x=3$ and $y=-1.5$. Then use known facts about the correspondence between the variation of a function of a single variable, and the variation of its derivative (variation means: sign? does it increase or decrease?). In particular, the derivative at an extremum is 0 , the derivative of a linear function is constant, the derivative of a concave function is decreasing.
2. Exercise 10. Your solution must include the plot.
3. Find the first partial derivatives of the function:
(a) $f(x, y)=x^{3}-5 x y^{2}$.
(b) $f(t, x)=\sqrt{3 x+4 t}$.
(c) $f(x, y)=\frac{x}{(x+y)^{2}}$.
(d) $u(r, \theta)=\cos (r \sin \theta)$.
4. Find the first partial derivatives:
(a) $g(x, y)=y^{-x}$. Find and shade the domain of this function.
(b) $g(x, y)=\int_{x}^{y} \sin \left(e^{t}\right) d t$.
(c) $u=\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}+\cdots+x_{n}{ }^{2}}$.
(d) $w=\sin \left(x_{1}+2 x_{2}+\cdots+n x_{n}\right)$.
5. Choose one of exercises 41-44.
6. Choose one of 47-50.

7(a-b). Exercises 51, 52.
8(a-b). Choose two of 53-58.
9(a-b). Choose two of 63-70.
10(a-b). Exercises 71, 72.
11. Exercises 73. Include the table.
12. Exercise 74. Include the plot and explain your choice.

- 2 -

13. Exercise 77.
14. Choose one of $82,83,90$.
