Tips and common corrections

[1] Some comments about notation.
(a) The symbol " = " means equals, and nothing else. Points are lost on tests and quizzes for using it inappropriately.
(b) The symbol " \Rightarrow " means implies. It connects sentences or logical statements; it does not connect values or expressions. For instance:

$$
\sin ^{2} x+\cos ^{2} x=1 \Rightarrow 2 \cos ^{2} x+3 \sin ^{2} x=2+\sin ^{2} x
$$

The symbol " \rightarrow " means tends to, as in "has limit", or maps to, as in $f: R \times R \rightarrow R$. It cannot be substituted to " \Rightarrow ".
(c) The symbol " \in " means belongs to. It relates elements to sets. The symbol " \subset " means is included in. It allows to compare between sets. The two symbols are not interchangeable.
(d) Use of parentheses.

To multiply x by $-y$, we write $x(-y)$. " $x \cdot-y$ " or " $x \times-y$ " is incorrect, even if you reduce the size of the minus sign, raise it and stick it very close to y.
Also, $x-y$ and $x+(-y)$ are correct. " $x+-y$ " is not, even if you reduce the size of the minus sign, raise it and stick it very close to y.
(e) The notations $\frac{d z}{d x}, \frac{\partial z}{\partial x}$ mean different things. The first is a total derivative (z is a function of x only, possibly through intermediate variables), whereas the second is a partial derivative.
[2] " $\sqrt{x^{2}}=x "$ is wrong, since x may be negative. The correct formula is $\sqrt{x^{2}}=|x|$, which is more complete than " $\sqrt{x^{2}}= \pm x$ ". For the same reason, $y^{2 / 3}=x$ is equivalent to $y^{2}=x^{3}$, (where y may be negative), but not to $y=x^{3 / 2}$, where y is never negative.
[3] Distinguish between series and finite sums.

$$
\sum_{0}^{\infty} z^{n}=1+z+z^{2}
$$

is incorrect.

$$
\sum_{0}^{\infty} z^{n}=1+z+z^{2}+\ldots+z^{n}
$$

is also incorrect: even if you stop at n instead of 2 , the right-hand side has only finitely many terms.

$$
\sum_{0}^{\infty} z^{n}=1+z+z^{2}+\ldots
$$

and

$$
\sum_{0}^{\infty} z^{n}=1+z+\ldots+z^{n}+\ldots
$$

are both correct. The use of the three dots at the end is important.

