- 1. Determine which of the following statements are true for all sets A, B, C, and D. If a double implication fails, determine whether one or the other of the possible implications holds. If an equality fails, determine whether one or the other of the possible inclusions holds.
 - (a) $A \supset C$ and $B \supset C \Leftrightarrow (A \cup B) \supset C$
 - (b) $A \supset C$ or $B \supset C \Leftrightarrow (A \cup B) \supset C$
 - (c) $A \supset C$ and $B \supset C \Leftrightarrow (A \cap B) \supset C$
 - (d) $A \setminus (A \setminus B) = B$
 - (e) $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$
 - (f) $A \subset C$ and $B \subset D \Rightarrow (A \times B) \subset (C \times D)$
 - (g) Converse of (f)
 - (h) Converse of (f), assuming A and B are nonempty
 - (i) $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$
 - (j) $(A \times B) \setminus (C \times D) = (A \setminus C) \times (B \setminus D)$
- 2. Let \mathcal{A} be a nonempty collection of sets. Which of the following statements is true:
 - (a) $x \in \bigcup_{A \in \mathcal{A}} A \Rightarrow x \in A$ for every $A \in \mathcal{A}$
 - (b) $x \in \bigcap_{A \in \mathcal{A}} A \Rightarrow x \in A$ for every $A \in \mathcal{A}$
- 3. Given sets A, B, and C, express each of the following sets in terms of A, B and C, using the symbols \cup , \cap and \setminus :
 - (a) $D = \{ x \mid x \in A \text{ and } (x \in B \text{ or } x \in C) \}$
 - (b) $E = \{ x \mid (x \in A \text{ and } x \in B) \text{ or } x \in C \}$
 - (c) $F = \{ x \mid x \in A \text{ and } (x \in B \Rightarrow x \in C) \}$
- 4. Let *R* be the set of real numbers. For each of the following subsets of $R \times R$, determine whether it is equal to the cartesian product of two subsets of *R*:
 - (a) $\{(x, y) \mid 0 < y \le 1\}$
 - (b) $\{(x, y) | y > x \}$

- (c) $\{(x, y) | x \text{ is not an integer and } y \text{ is an integer} \}$
- 5. Let $f : A \to B$ and let $A_i \subset A$ and $B_i \subset B$ for i = 0 and i = 1. Show that f^{-1} preserves inclusion, union, and difference of sets (for instance:

$$f^{-1}(B_1 | B_0) = f^{-1}(B_1) | f^{-1}(B_0)$$

and similarly for other expressions). Also, show that f preserves inclusion and union only:

(a)
$$A_0 \subset A_1 \Rightarrow f(A_0) \subset f(A_1)$$

- (b) $f(A_0 \cup A_1) = f(A_0) \cup f(A_1)$
- (c) $f(A_0 \cap A_1) \subset f(A_0) \cap f(A_1)$
- (d) $f(A_0 | A_1) \supset f(A_0) | f(A_1)$
- 6. Let $f : A \to B$ and $b : B \to C$.
 - (a) If $D \subset C$, show that $(gof)^{-1}(D) = f^{-1}(g^{-1}(D))$
 - (b) If f and g are injective, show that *gof* is injective.
 - (c) If *gof* is injective, what can you say about injectivity of f and g?
 - (d) If f and g are surjective, show that *gof* is surjective.
 - (e) If *gof* is surjective, what can you say about surjectivity of f and g?
 - (f) Summarise your answers to (b)–(e) in the form of a theorem.