MATE 4052 assignment 5

Not to be handed in.
Exercises 2.1, 2.2, 2.4.
For each of the norms on $R^{n}:\|x\|_{\infty}=\sup \left|x_{i}\right|,\|x\|_{1}=\sum\left|x_{i}\right|$, find the set of points where $\|x\|$ is differentiable. (See Coleman).

Find the differentials of the functions defined on R^{n} :
(a) $f(x)=a \cdot x$ where a is a fixed vector in R^{n}.
(b) $f(x)=\|x\|^{2}$.
(c) $f(x)=x \cdot g(x)$, where $g: R^{n} \mapsto R^{n}$ is a linear function.

Find the differential of $f: \operatorname{Isom}\left(R^{n}\right) \times M_{n}(R) \mapsto M_{n}(R),(X, Y) \mapsto X^{-1} Y$, where $\operatorname{Isom}\left(R^{n}\right)$ is the set of invertible $n \times n$ matrices.

