MATE 4052 set 9

Not to be handed in.

Exercises 8.1, 8.2, 8.3.

Let *E* be a Banach space, and denote by *F* the Banach space L(E, E).

- (a) Show that for each *n*, the map $x \mapsto x^n$ from *F* to itself is of class C^{∞} . Conclude that the mapping $x \mapsto \exp(x) = \sum_{n \ge 0} (x^n/n!)$ is of class C^{∞} .
- (b) Show that $x \mapsto \exp(x)$ is a C^{∞} -diffeomorphism from a neighbourhood of 0 to a neighbourhood of 1_E , the inverse mapping being defined near 1_E by

$$y \mapsto -\sum_{n\geq 1} \frac{(1_E - y)^n}{n}.$$

Let E_0 be the vector space of continuous functions from [0, 1] to R, normed by $||f||_0 = \sup_{0 \le x \le 1} |f(x)|$, and E_1 be the vector space of real-valued functions of class C^1 on [0, 1] such that f(0) = 0, normed by $||f||_1 = \sup_{0 \le x \le 1} |f'(x)|$. Show that $\varphi : E_1 \mapsto E_0$ defined by $\varphi(f) = f' + f^2$ is a C^{∞} -diffeomorphism from a neighbourhood V of the origin in E_1 to a neighbourhood W of the origin in E_0 (consider $\varphi'(0)$). Compute the first and second derivatives of the inverse function $\psi : W \mapsto V$.