MATE 5049 assignment 2

Sketch of solutions

Marks: 7 (12), 8 (12), 9 (6), 10 (4), 11 (14). Total: 48.
8. $f(y, z)=y+\sqrt{1+z^{2}}$ is strongly convex, as sum of a convex and a strongly convex function. The differential equation

$$
\frac{d}{d x} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=1
$$

yields upon direct integration $y^{\prime} / \sqrt{1+y^{\prime 2}}=x+b$, hence $y=-\sqrt{1-(x+b)^{2}}+c$.
(a) On \mathcal{D} : the boundary conditions give $1-b^{2}=(1+c)^{2}$, and also $b=(2-\sqrt{3})$. c. Therefore:

$$
\left(1+(2-\sqrt{3})^{2}\right) c^{2}+2 c=0
$$

$c=0$ corresponds to $b=0$, and the other value $c=\frac{-2}{1+(2-\sqrt{3})^{2}}$ does not satisfy the original condition $c=-1+\sqrt{1-b^{2}}$. So the solution is $y=-\sqrt{1-x^{2}}$.
(b) On \mathcal{D}_{1} : we refer again to the form $y=-\sqrt{1-(x+b)^{2}}+c$, and the boundary conditions are $y(0)=-1$ and $f_{z}(1 / 2)=0$. The natural boundary condition implies $y^{\prime}(1 / 2)=0$, and since $y^{\prime}=\frac{x+b}{\sqrt{1-(x+b)^{2}}}$, this means $b=-1 / 2$. Compute the corresponding value of c , and obtain $y=-\sqrt{1-\left(x-\frac{1}{2}\right)^{2}}-1+\frac{\sqrt{3}}{2}$.
11.
(a) $\tilde{f}=-y+\lambda \sqrt{1+y^{\prime 2}}$. The differential equation to solve is

$$
\frac{d}{d x} \frac{\lambda y^{\prime}}{\sqrt{1+y^{\prime 2}}}=-1
$$

and upon integration, $\frac{\lambda y^{\prime}}{\sqrt{1+y^{\prime 2}}}=-(x+B)$. Further integration gives $y^{\prime}=$ $-\frac{x+B}{\sqrt{\lambda^{2}-(x+B)^{2}}}$, using the fact that $\lambda>0$. Hence:

$$
y=\sqrt{\lambda^{2}-(x+B)^{2}}+C .
$$

Applying the endpoint conditions gives $B=0, \quad C=-\sqrt{\lambda^{2}-b^{2}}$, and

$$
y=\sqrt{\lambda^{2}-x^{2}}-\sqrt{\lambda^{2}-b^{2}} .
$$

As seen by rewriting this in the form $\left(y+\sqrt{\lambda^{2}-b^{2}}\right)^{2}+x^{2}=\lambda^{2}$, this is the nonparametric equation of an arc of circle of radius λ, centre $\left(0,-\sqrt{\lambda^{2}-b^{2}}\right)$ and passing through the points $(-b, 0)$ and $(b, 0)$. From the form of $y(x)$, we see that $\lambda \geq b$. Remains to see how the value of λ is related to the length l. From

$$
l=\int_{-b}^{b} \sqrt{1+y^{\prime 2}} d x=\int_{-b}^{b} \frac{\lambda}{\sqrt{\lambda^{2}-x^{2}}} d x
$$

we see that $l>2 b$, and that l is a strictly decreasing function of λ. By taking limits, there holds

$$
\lim _{\lambda \rightarrow \infty} l(\lambda)=2 b, \quad \lim _{\lambda \rightarrow b} l(\lambda)=\int_{-b}^{b} \frac{b}{\sqrt{b^{2}-x^{2}}} d x=\pi b .
$$

Monotonicity of $l(\lambda)$ implies that if $2 b<l<\pi b$, there exists an unique radius λ solving the problem. The elegance of this argument is that you don't have to compute λ explicitly in terms of l.
(c) The angle β is given by $\beta=2 \arctan \left(b / \sqrt{b^{2}-\lambda^{2}}\right)$. Make $t=\tan (\beta / 2)$, so that $\lambda^{2}=$ $b^{2}\left(1+1 / t^{2}\right)$. Then the area is given by

$$
\lambda^{2} \frac{\beta}{2}-\frac{1}{2} 2 b \sqrt{\lambda^{2}-b^{2}}=\frac{b^{2} \beta}{2 \sin ^{2}(\beta / 2)}-b^{2} \cot (\beta / 2) .
$$

Its derivative with respect to β is $\frac{b^{2}}{2 \sin ^{2}(\beta / 2)}(2-\beta \cot (\beta / 2))$, which is nonnegative on $(0, \pi / 2)$.

