MATE 5049 assignment 2

Sketch of solutions

Marks: 7 (12), 8 (12), 9 (6), 10 (4), 11 (14). Total: 48.

8. $f(y,z) = y + \sqrt{1 + z^2}$ is strongly convex, as sum of a convex and a strongly convex function. The differential equation

$$\frac{d}{dx}\frac{y'}{\sqrt{1+{y'}^2}} = 1$$

yields upon direct integration $y'/\sqrt{1+{y'}^2} = x+b$, hence $y = -\sqrt{1-(x+b)^2}+c$.

(a) On \mathcal{D} : the boundary conditions give $1 - b^2 = (1 + c)^2$, and also $b = (2 - \sqrt{3}) \cdot c$. Therefore:

$$(1 + (2 - \sqrt{3})^2)c^2 + 2c = 0.$$

c = 0 corresponds to b = 0, and the other value $c = \frac{-2}{1 + (2 - \sqrt{3})^2}$ does not satisfy the original condition $c = -1 + \sqrt{1 - b^2}$. So the solution is $y = -\sqrt{1 - x^2}$.

(b) On \mathcal{D}_1 : we refer again to the form $y = -\sqrt{1-(x+b)^2} + c$, and the boundary conditions are y(0) = -1 and $f_z(1/2) = 0$. The natural boundary condition implies y'(1/2) = 0, and since $y' = \frac{x+b}{\sqrt{1-(x+b)^2}}$, this means b = -1/2. Compute the corresponding value of c, and obtain $y = -\sqrt{1-\left(x-\frac{1}{2}\right)^2}-1+\frac{\sqrt{3}}{2}$.

(a) $\tilde{f} = -y + \lambda \sqrt{1 + {y'}^2}$. The differential equation to solve is

$$\frac{d}{dx}\frac{\lambda y'}{\sqrt{1+{y'}^2}} = -1$$

and upon integration, $\frac{\lambda y'}{\sqrt{1+{y'}^2}} = -(x+B)$. Further integration gives $y' = -\frac{x+B}{\sqrt{\lambda^2 - (x+B)^2}}$, using the fact that $\lambda > 0$. Hence: $y = \sqrt{\lambda^2 - (x+B)^2} + C$.

Applying the endpoint conditions gives B = 0, $C = -\sqrt{\lambda^2 - b^2}$, and

$$y = \sqrt{\lambda^2 - x^2} - \sqrt{\lambda^2 - b^2}.$$

As seen by rewriting this in the form $(y + \sqrt{\lambda^2 - b^2})^2 + x^2 = \lambda^2$, this is the nonparametric equation of an arc of circle of radius λ , centre $(0, -\sqrt{\lambda^2 - b^2})$ and passing through the points (-b, 0) and (b, 0). From the form of y(x), we see that $\lambda \ge b$. Remains to see how the value of λ is related to the length *l*. From

$$l = \int_{-b}^{b} \sqrt{1 + {y'}^2} \, dx = \int_{-b}^{b} \frac{\lambda}{\sqrt{\lambda^2 - x^2}} \, dx,$$

we see that l > 2b, and that l is a strictly decreasing function of λ . By taking limits, there holds

$$\lim_{\lambda \to \infty} l(\lambda) = 2b, \qquad \lim_{\lambda \to b} l(\lambda) = \int_{-b}^{b} \frac{b}{\sqrt{b^2 - x^2}} dx = \pi b.$$

Monotonicity of $l(\lambda)$ implies that if $2b < l < \pi b$, there exists an unique radius λ solving the problem. The elegance of this argument is that you don't have to compute λ explicitly in terms of l.

(c) The angle β is given by $\beta = 2\arctan(b/\sqrt{b^2 - \lambda^2})$. Make $t = \tan(\beta/2)$, so that $\lambda^2 = b^2(1 + 1/t^2)$. Then the area is given by

$$\lambda^{2} \frac{\beta}{2} - \frac{1}{2} 2b \sqrt{\lambda^{2} - b^{2}} = \frac{b^{2} \beta}{2\sin^{2}(\beta/2)} - b^{2} \cot(\beta/2) + \frac{b^{2} \beta}{2\sin^{2}(\beta/2)} - b^{2} \cot(\beta/2)} - b^{2} \cot(\beta/2) + b^{2} \cot(\beta/2)}$$

Its derivative with respect to β is $\frac{b^2}{2\sin^2(\beta/2)}(2-\beta\cot(\beta/2))$, which is nonnegative on $(0, \pi/2)$.