1. A topological space is *normal* if it is separated (Hausforff), and if for any pair of disjoint closed sets F_i , i = 1, 2, there exists a pair of disjoint open sets U_i such that $F_i \subset U_i$. The following example is of a Hausdorff space which is not normal. Let $S = \{(x_1, x_2) : x_2 \ge 0\}$ (closed upper half-plane). We define a topology on S by its basis as follows: let R^1 be the boundary of S, and $S_+ = S \setminus R^1$ be the open half-plane (here, "open" and "closed" refer to the topology induced by R^2 , which may be different from the one we will define). Let

$$\mathcal{B}_1 = \{ B_x(r) : x = (x_1, x_2) \in S_+, \ r < x_2 \}$$

and

$$\mathcal{B}_{2} = \{ (B_{x}(r) \cap S_{+}) \cup \{x\}, x \in \mathbb{R}^{1} \}$$

where the $B_x(r)$ are the open balls for the usual metric of the plane. Let $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$.

- a) Verify that \mathcal{B} is the basis for a topology \mathcal{T} on S.
- b) For this topology, verify that *S* is Hausdorff. (Therefore, points are closed).
- c) Show that $R^1 \setminus \{0\}$ is closed in *S* for this topology.
- d) Show that $R^1 \setminus \{0\}$ and the point 0 cannot be separated by open sets.
- 2. An open subset of *R* is the union of a sequence of pairwise disjoint open intervals.
- 3. Let X be a topological space and A a nonempty subset of X. A subset V is called a neighbourhood of A if there exists an open subset U of X such that $A \subset U \subset V$.
 - a) The set of neighbourhoods of A is a filtre \mathcal{F} .
 - b) Give a necessary and sufficient condition for the identity mapping of X into X to have a limit along \mathcal{F} , assuming X is separated.
 - c) Let $X = \mathbf{R}$, $A = \mathbf{N}$. Show that there does not exist a sequence $V_1, V_2, V_3...$ of elements of \mathcal{F} such that every element of \mathcal{F} contains one of the V_i .
- 4. Let X, Y be topological spaces, f a mapping of X into Y. The following conditions are equivalent: (a) f is continuous and closed, (b) $f(\overline{A}) = \overline{f(A)}$ for every subset A of X.

Marks: 12 + 9 + 12 + 6.