- 25. Compute the integral of N(x) on the unit ball in dimensions n = 2 and n > 2.
- 26. Show that if $|x| \le R_0$, then, given ε , for *R* large enough,

$$|\mathbf{y}| \ge R \Rightarrow 1 - \varepsilon \le \frac{|\mathbf{y} - \mathbf{x}|}{|\mathbf{y}|} \le 1 + \varepsilon.$$

- 27. Show that the sequence u_j defined in the proof of (2.16) tends to u as distributions as $j \to \infty$.
- 28. Let ϕ be a test function. Show that, for *h* in a certain neighbourhood of 0 and M > 0 a certain constant,

$$|\phi(x+he_j) - \phi(x) - h\partial_j\phi(x)| \le Mh^2$$

(uniformly in *x*).

- 29. Let *u* be a distribution of compact support, and $\psi \in \mathcal{D}$. Show that $u * \psi \in \mathcal{D}$. These are the steps:
 - (a) $u * \psi(x) = \langle u, (\tilde{\psi})_{-x} \rangle$ is a continuous function of x (see problem 17). The way to prove this is to show that $x \to (\tilde{\psi})_{-x}$ is a continuous function $R \to \mathcal{D}$.
 - (b) The support of $u * \psi(x)$ is compact.
 - (c) $u * \psi(x)$ is infinitely differentiable. For this, it is enough to show that, for all multiindices β ,

$$\partial^{\beta}(u * \psi) = u * \partial^{\beta}(\psi)$$
 (1).

In turn, it is enough to show that, for $1 \le j \le n$,

$$\partial_j(u * \psi) = u * \partial_j \psi$$
 (2)

(why?) To show (2), do not use the result in Folland (which we did not completely prove), but do it directly, using the definition of derivative as limit of a difference quotient: for each x,

$$\lim_{h \to 0} \frac{1}{h} \left(u * \psi(x + he_j) - u * \psi(x) \right) = u * \partial_j \psi(x)$$

This, in turn, will be true if for each *x*,

$$\lim_{h \to 0} \frac{1}{h} \left(\tilde{\psi}_{-(x+he_j)} - \tilde{\psi}_{-x} \right) = \left(\partial_j \psi \tilde{\right)}_{-x}$$

(limit in ${\mathcal D}$).

(a) and (b), if worked out, should be part of the re-work for problems 17 and 18. So your work for this problem will consist of part (c).

Marks: 4 + 6 + 6 + 6 + 10 = 32