MATE 6677 assignment 8

33. Formulate and prove Duhamel's principle for solving the initial value problem for the nonhomogeneous heat equation

$$
\begin{array}{cl}
\partial_{t} u-\partial_{x x} u=f(t, x), & t>0,-\infty<x<\infty \\
u(0, x)=0, & -\infty<x<\infty
\end{array}
$$

and apply the principle to find the solution:

$$
u(t, x)=\int_{0}^{t} \int_{-\infty}^{\infty} \frac{1}{2 \sqrt{\pi(t-\tau)}} e^{-\frac{(x-\xi)^{2}}{4(t-\tau)}} f(\tau, \xi) d \xi d \tau
$$

34.

a) Show that for $n=3$, the general solution of the wave equation with spherical symmetry about the origin has the form

$$
u=\frac{F(r+c t)+G(r-c t)}{r}, \quad r=|x|
$$

with suitable F, G.
b) Show that the solution with initial data of the form

$$
u=0, \quad \partial_{t} u=g(r)
$$

(g even function of r) is given by

$$
\begin{equation*}
u=\frac{1}{2 c r} \int_{r-c t}^{r+c t} \rho g(\rho) d \rho \tag{1}
\end{equation*}
$$

c) For

$$
g(r)=\left\{\begin{array}{cc}
1, & 0<r<a \\
0, & r>a
\end{array}\right.
$$

Find u explicitly from (1) in the different regions bounded by the cones $r=a \pm c t$ in $t x$ space. Show that u is discontinuous at $(0, a / c)$, due to focussing of the discontinuity of $\partial_{t} u$ at $\left.t=0,|x|=a\right)$.

Marks: $9+12=21$

