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Introduction

CPU optimized for fast single-thread execution

I Cores designed to execute 1 thread or 2 threads concurrently

I Large caches attempt to hide DRAM access times

I Cores optimized for low-latency cache accesses

+
GPU optimized for high multi-thread throughput

I Cores designed to execute many parallel threads concurrently

I Cores optimized for data-parallel, throughput computation

I Chips use extensive multithreading to tolerate DRAM access
times



CUDA: Support

CUDA is a parallel computing platform and application
programming interface (API) model created by NVIDIA
The CUDA platform is designed to work with programming
languages such as C, C++ and Fortran.
CUDA: Compute Unified Device Architecture

I Fortran, Java, Python, C++ and others.

I MATLAB, Mathematica, R, LabView.



CUDA: Terminology

I Host: The CPU and its memory (host memory)

I Device: The GPU and its memory (device memory)

Fig. : CUDA execution flow



CUDA execution model

I Serial code executes in a Host (CPU) thread

I Parallel code executes in many concurrent Device (GPU)
threads across multiple parallel processing elements.

Fig. : CUDA execution model



CUDA Threads

I Difference between the threads of the CPU and GPU
I GPU threads are very light
I Thousands of threads are necessary for good performance, the

CPU uses only a few.



CUDA Threads

I GPUs can handle thousands of concurrent threads.

I The pieces of code running on the gpu are called kernels

I A kernel is executed by a set of threads.

I All threads execute the same code (SPMD)

I Each thread has an index that is used to calculate memory
addresses that this will access.

Example

Fig. : thread identifier



CUDA threads organizations

I Threads are grouped into blocks

I Blocks are grouped into a grid

I A kernel is executed as a grid of blocks of threads



Streaming multiprocesors





Kernel execution

1. A thread executes on a single SP.

2. A block executes on a single SM.
I Threads and blocks do not migrate to different SMs.
I All threads within block execute in concurrently, in parallel.

3. A SM may execute multiple blocks.
I Must be able to satisfy aggregate register and memory

demands.

4. A grid executes on a single device (GPU).



Independent execution of blocks provides scalability

Blocks can be distributed across any number of SMs





Thread	and	Block	ID	and	Dimensions	

 Built-in	variables	
⎯  threadIdx,	blockIdx	
⎯  blockDim,	gridDim	
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Examples	of	Indexes	and	Indexing	

__global__	void	kernel(	int	*a	)	
{	
				int	idx	=	blockIdx.x*blockDim.x	+	threadIdx.x;	
				a[idx]	=	7;	
}	

__global__	void	kernel(	int	*a	)	
{	
				int	idx	=	blockIdx.x*blockDim.x	+	threadIdx.x;	
				a[idx]	=	blockIdx.x;	
}	

__global__	void	kernel(	int	*a	)	
{	
				int	idx	=	blockIdx.x*blockDim.x	+	threadIdx.x;	
				a[idx]	=	threadIdx.x;	
}	

Output:	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	

Output:	0	0	0	0	1	1	1	1	2	2	2	2	3	3	3	3	

Output:	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	
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__global__	void	kernel(int	*a,	int	dimx,	int	dimy)	
{	
		int	ix		=	blockIdx.x*blockDim.x	+	threadIdx.x;	
		int	iy		=	blockIdx.y*blockDim.y	+	threadIdx.y;	
		int	idx	=	iy	*	dimx	+	ix;	

		a[idx]		=	a[idx]+1;	
}	

Example	of	2D	indexing	
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CUDA	Memory	Hierarchy	

  Thread	
⎯  Registers	
⎯  Local	memory	

  Thread	Block	
⎯  Shared	memory	

  All	Thread	Blocks	
⎯  Global	Memory	

Global	Memory	
(DRAM)	
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Example:	SAXPY	Kernel 	[1/4]	
//	[compute]	for	(i=0;	i	<	n;	i++)	y[i]	=	a	*	x[i]	+	y[i];	
//			Each	thread	processes	one	element	
__global__	void	saxpy(int	n,	float	a,	float*	x,	float*	y)	
{	
	int	i	=	threadIdx.x	+	blockDim.x	*	blockIdx.x;	
	if	(i	<	n)	y[i]	=	a*x[i]	+	y[i];	
}	

int	main()	
{	
		...	
	//	invoke	parallel	SAXPY	kernel	with	256	threads	/	block	
	int	nblocks	=	(n	+	255)/256;	
		saxpy<<<nblocks,	256>>>(n,	2.0,	d_x,	d_y);	
		...	
}	



Device	Code	

Example:		SAXPY	Kernel 	[1/4]	
//	[computes]	for	(i=0;	i	<	n;	i++)	y[i]	=	a	*	x[i]	+	y[i];	
//			Each	thread	processes	one	element	
__global__	void	saxpy(int	n,	float	a,	float*	x,	float*	y)	
{	
	int	i	=	threadIdx.x	+	blockDim.x	*	blockIdx.x;	
	if	(i	<	n)	y[i]	=	a*x[i]	+	y[i];	
}	

int	main()	
{	
		...	
	//	invoke	parallel	SAXPY	kernel	with	256	threads	/	block	
	int	nblocks	=	(n	+	255)/256;	
		saxpy<<<nblocks,	256>>>(n,	2.0,	d_x,	d_y);	
		...	
}	



Host	Code	

Example:	SAXPY	Kernel 	[1/4]	
//	[computes]	for	(i=0;	i	<	n;	i++)	y[i]	=	a	*	x[i]	+	y[i];	
//			Each	thread	processes	one	element	
__global__	void	saxpy(int	n,	float	a,	float*	x,	float*	y)	
{	
	int	i	=	threadIdx.x	+	blockDim.x	*	blockIdx.x;	
	if	(i	<	n)	y[i]	=	a*x[i]	+	y[i];	
}	

int	main()	
{	
		...	
	//	invoke	parallel	SAXPY	kernel	with	256	threads	/	block	
	int	nblocks	=	(n	+	255)/256;	
		saxpy<<<nblocks,	256>>>(n,	2.0,	d_x,	d_y);	
		...	
}	



Example:	SAXPY	Kernel	 	[2/4]	
int	main()	
{	
	//	allocate	and	initialize	host	(CPU)	memory	
	float*	x	=	...;				
	float*	y	=	...;	

	//	allocate	device	(GPU)	memory	
	float	*d_x,	*d_y;	
	cudaMalloc((void**)	&d_x,	n	*	sizeof(float));	
	cudaMalloc((void**)	&d_y,	n	*	sizeof(float));	

	//	copy	x	and	y	from	host	memory	to	device	memory	
	cudaMemcpy(d_x,	x,	n*sizeof(float),	cudaMemcpyHostToDevice);	
	cudaMemcpy(d_y,	y,	n*sizeof(float),	cudaMemcpyHostToDevice);	

	//	invoke	parallel	SAXPY	kernel	with	256	threads	/	block	
	int	nblocks	=	(n	+	255)/256;	
	saxpy<<<nblocks,	256>>>(n,	2.0,	d_x,	d_y);	



//	copy	x	and	y	from	host	memory	to	device	memory	

Example:	SAXPY	Kernel	 	[2/4]	
int	main()	
{	
	//	allocate	and	initialize	host	(CPU)	memory	
	float*	x	=	...;				
	float*	y	=	...;	

	//	allocate	device	(GPU)	memory	
	float	*d_x,	*d_y;	
	cudaMalloc((void**)	&d_x,	n	*	sizeof(float));	
	cudaMalloc((void**)	&d_y,	n	*	sizeof(float));	

	
	cudaMemcpy(d_x,	x,	n*sizeof(float),	cudaMemcpyHostToDevice);	
	cudaMemcpy(d_y,	y,	n*sizeof(float),	cudaMemcpyHostToDevice);	

	//	invoke	parallel	SAXPY	kernel	with	256	threads	/	block	
	int	nblocks	=	(n	+	255)/256;	
	saxpy<<<nblocks,	256>>>(n,	2.0,	d_x,	d_y);	



Example:	SAXPY	Kernel	 	[3/4]	

	//	invoke	parallel	SAXPY	kernel	with	256	threads	/	block	
	int	nblocks	=	(n	+	255)/256;	
	saxpy<<<nblocks,	256>>>(n,	2.0,	d_x,	d_y);	

	//	copy	y	from	device	(GPU)	memory	to	host	(CPU)	memory	
	cudaMemcpy(y,	d_y,	n*sizeof(float),	cudaMemcpyDeviceToHost);	

	//	do	something	with	the	result…	

	//	free	device	(GPU)	memory	
	cudaFree(d_x);	
	cudaFree(d_y;	

		return	0;	
}	



Example:	SAXPY	Kernel	 	[3/4]	

	//	invoke	parallel	SAXPY	kernel	with	256	threads	/	block	
	int	nblocks	=	(n	+	255)/256;	
	saxpy<<<nblocks,	256>>>(n,	2.0,	d_x,	d_y);	

	//	copy	y	from	device	(GPU)	memory	to	host	(CPU)	memory	
	cudaMemcpy(y,	d_y,	n*sizeof(float),	cudaMemcpyDeviceToHost);	

	//	do	something	with	the	result…	

	//	free	device	(GPU)	memory	
	cudaFree(d_x);	
	cudaFree(d_y;	

		return	0;	
}	



Example:	SAXPY	Kernel 	[4/4]	
void	saxpy_serial(int	n,	float	a,	float*	x,	float*	y)	
{	
		for	(int	i	=	0;	i	<	n;	++i)	
				y[i]	=	a*x[i]	+	y[i];	
}	
//	invoke	host	SAXPY	function	
saxpy_serial(n,	2.0,	x,	y);	

__global__	void	saxpy(int	n,	float	a,	float*	x,	float*	y)	
{	
		int	i	=	blockIdx.x*blockDim.x	+	threadIdx.x;	
		if	(i	<	n)		y[i]	=	a*x[i]	+	y[i];		
}	
//	invoke	parallel	SAXPY	kernel	with	256	threads/block	
int	nblocks	=	(n	+	255)	/	256;	
saxpy<<<nblocks,	256>>>(n,	2.0,	x,	y);	 CUDA	C	Code	

Standard	C	Code	
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