
An introduction to CUDA

Einstein Morales

University of Puerto Rico at Mayagüez

August 23, 2016

Contents

1. Introduction

2. CUDA execution model

3. CUDA threads

4. CUDA parallel programming
Example

5. Questions

Introduction

CPU optimized for fast single-thread execution

I Cores designed to execute 1 thread or 2 threads concurrently

I Large caches attempt to hide DRAM access times

I Cores optimized for low-latency cache accesses

+
GPU optimized for high multi-thread throughput

I Cores designed to execute many parallel threads concurrently

I Cores optimized for data-parallel, throughput computation

I Chips use extensive multithreading to tolerate DRAM access
times

CUDA: Support

CUDA is a parallel computing platform and application
programming interface (API) model created by NVIDIA
The CUDA platform is designed to work with programming
languages such as C, C++ and Fortran.
CUDA: Compute Unified Device Architecture

I Fortran, Java, Python, C++ and others.

I MATLAB, Mathematica, R, LabView.

CUDA: Terminology

I Host: The CPU and its memory (host memory)

I Device: The GPU and its memory (device memory)

Fig. : CUDA execution flow

CUDA execution model

I Serial code executes in a Host (CPU) thread

I Parallel code executes in many concurrent Device (GPU)
threads across multiple parallel processing elements.

Fig. : CUDA execution model

CUDA Threads

I Difference between the threads of the CPU and GPU
I GPU threads are very light
I Thousands of threads are necessary for good performance, the

CPU uses only a few.

CUDA Threads

I GPUs can handle thousands of concurrent threads.

I The pieces of code running on the gpu are called kernels

I A kernel is executed by a set of threads.

I All threads execute the same code (SPMD)

I Each thread has an index that is used to calculate memory
addresses that this will access.

Example

Fig. : thread identifier

CUDA threads organizations

I Threads are grouped into blocks

I Blocks are grouped into a grid

I A kernel is executed as a grid of blocks of threads

Streaming multiprocesors

Kernel execution

1. A thread executes on a single SP.

2. A block executes on a single SM.
I Threads and blocks do not migrate to different SMs.
I All threads within block execute in concurrently, in parallel.

3. A SM may execute multiple blocks.
I Must be able to satisfy aggregate register and memory

demands.

4. A grid executes on a single device (GPU).

Independent execution of blocks provides scalability

Blocks can be distributed across any number of SMs

Thread	and	Block	ID	and	Dimensions	

 Built-in	variables	
⎯  threadIdx,	blockIdx	
⎯  blockDim,	gridDim	

Device	
Grid	1	

Block	
(0,	0)	

Block	
(1,	0)	

Block	
(2,	0)	

Block	
(0,	1)	

Block	
(1,	1)	

Block	
(2,	1)	

Block	(1,	1)	

Thread
(0, 1)	

Thread
(1, 1)	

Thread
(2, 1)	

Thread
(3, 1)	

Thread
(4, 1)	

Thread
(0, 2)	

Thread
(1, 2)	

Thread
(2, 2)	

Thread
(3, 2)	

Thread
(4, 2)	

Thread
(0, 0)	

Thread
(1, 0)	

Thread
(2, 0)	

Thread
(3, 0)	

Thread
(4, 0)	

Examples	of	Indexes	and	Indexing	

__global__	void	kernel(int	*a)	
{	
				int	idx	=	blockIdx.x*blockDim.x	+	threadIdx.x;	
				a[idx]	=	7;	
}	

__global__	void	kernel(int	*a)	
{	
				int	idx	=	blockIdx.x*blockDim.x	+	threadIdx.x;	
				a[idx]	=	blockIdx.x;	
}	

__global__	void	kernel(int	*a)	
{	
				int	idx	=	blockIdx.x*blockDim.x	+	threadIdx.x;	
				a[idx]	=	threadIdx.x;	
}	

Output:	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	

Output:	0	0	0	0	1	1	1	1	2	2	2	2	3	3	3	3	

Output:	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	

29	

©	2010,	2011	NVIDIA	Corporation	

__global__	void	kernel(int	*a,	int	dimx,	int	dimy)	
{	
		int	ix		=	blockIdx.x*blockDim.x	+	threadIdx.x;	
		int	iy		=	blockIdx.y*blockDim.y	+	threadIdx.y;	
		int	idx	=	iy	*	dimx	+	ix;	

		a[idx]		=	a[idx]+1;	
}	

Example	of	2D	indexing	

©	2010,	2011	NVIDIA	Corporation	

CUDA	Memory	Hierarchy	

  Thread	
⎯  Registers	
⎯  Local	memory	

  Thread	Block	
⎯  Shared	memory	

  All	Thread	Blocks	
⎯  Global	Memory	

Global	Memory	
(DRAM)	

37	

Example:	SAXPY	Kernel 	[1/4]	
//	[compute]	for	(i=0;	i	<	n;	i++)	y[i]	=	a	*	x[i]	+	y[i];	
//			Each	thread	processes	one	element	
__global__	void	saxpy(int	n,	float	a,	float*	x,	float*	y)	
{	
	int	i	=	threadIdx.x	+	blockDim.x	*	blockIdx.x;	
	if	(i	<	n)	y[i]	=	a*x[i]	+	y[i];	
}	

int	main()	
{	
		...	
	//	invoke	parallel	SAXPY	kernel	with	256	threads	/	block	
	int	nblocks	=	(n	+	255)/256;	
		saxpy<<<nblocks,	256>>>(n,	2.0,	d_x,	d_y);	
		...	
}	

Device	Code	

Example:		SAXPY	Kernel 	[1/4]	
//	[computes]	for	(i=0;	i	<	n;	i++)	y[i]	=	a	*	x[i]	+	y[i];	
//			Each	thread	processes	one	element	
__global__	void	saxpy(int	n,	float	a,	float*	x,	float*	y)	
{	
	int	i	=	threadIdx.x	+	blockDim.x	*	blockIdx.x;	
	if	(i	<	n)	y[i]	=	a*x[i]	+	y[i];	
}	

int	main()	
{	
		...	
	//	invoke	parallel	SAXPY	kernel	with	256	threads	/	block	
	int	nblocks	=	(n	+	255)/256;	
		saxpy<<<nblocks,	256>>>(n,	2.0,	d_x,	d_y);	
		...	
}	

Host	Code	

Example:	SAXPY	Kernel 	[1/4]	
//	[computes]	for	(i=0;	i	<	n;	i++)	y[i]	=	a	*	x[i]	+	y[i];	
//			Each	thread	processes	one	element	
__global__	void	saxpy(int	n,	float	a,	float*	x,	float*	y)	
{	
	int	i	=	threadIdx.x	+	blockDim.x	*	blockIdx.x;	
	if	(i	<	n)	y[i]	=	a*x[i]	+	y[i];	
}	

int	main()	
{	
		...	
	//	invoke	parallel	SAXPY	kernel	with	256	threads	/	block	
	int	nblocks	=	(n	+	255)/256;	
		saxpy<<<nblocks,	256>>>(n,	2.0,	d_x,	d_y);	
		...	
}	

Example:	SAXPY	Kernel	 	[2/4]	
int	main()	
{	
	//	allocate	and	initialize	host	(CPU)	memory	
	float*	x	=	...;				
	float*	y	=	...;	

	//	allocate	device	(GPU)	memory	
	float	*d_x,	*d_y;	
	cudaMalloc((void**)	&d_x,	n	*	sizeof(float));	
	cudaMalloc((void**)	&d_y,	n	*	sizeof(float));	

	//	copy	x	and	y	from	host	memory	to	device	memory	
	cudaMemcpy(d_x,	x,	n*sizeof(float),	cudaMemcpyHostToDevice);	
	cudaMemcpy(d_y,	y,	n*sizeof(float),	cudaMemcpyHostToDevice);	

	//	invoke	parallel	SAXPY	kernel	with	256	threads	/	block	
	int	nblocks	=	(n	+	255)/256;	
	saxpy<<<nblocks,	256>>>(n,	2.0,	d_x,	d_y);	

//	copy	x	and	y	from	host	memory	to	device	memory	

Example:	SAXPY	Kernel	 	[2/4]	
int	main()	
{	
	//	allocate	and	initialize	host	(CPU)	memory	
	float*	x	=	...;				
	float*	y	=	...;	

	//	allocate	device	(GPU)	memory	
	float	*d_x,	*d_y;	
	cudaMalloc((void**)	&d_x,	n	*	sizeof(float));	
	cudaMalloc((void**)	&d_y,	n	*	sizeof(float));	

	
	cudaMemcpy(d_x,	x,	n*sizeof(float),	cudaMemcpyHostToDevice);	
	cudaMemcpy(d_y,	y,	n*sizeof(float),	cudaMemcpyHostToDevice);	

	//	invoke	parallel	SAXPY	kernel	with	256	threads	/	block	
	int	nblocks	=	(n	+	255)/256;	
	saxpy<<<nblocks,	256>>>(n,	2.0,	d_x,	d_y);	

Example:	SAXPY	Kernel	 	[3/4]	

	//	invoke	parallel	SAXPY	kernel	with	256	threads	/	block	
	int	nblocks	=	(n	+	255)/256;	
	saxpy<<<nblocks,	256>>>(n,	2.0,	d_x,	d_y);	

	//	copy	y	from	device	(GPU)	memory	to	host	(CPU)	memory	
	cudaMemcpy(y,	d_y,	n*sizeof(float),	cudaMemcpyDeviceToHost);	

	//	do	something	with	the	result…	

	//	free	device	(GPU)	memory	
	cudaFree(d_x);	
	cudaFree(d_y;	

		return	0;	
}	

Example:	SAXPY	Kernel	 	[3/4]	

	//	invoke	parallel	SAXPY	kernel	with	256	threads	/	block	
	int	nblocks	=	(n	+	255)/256;	
	saxpy<<<nblocks,	256>>>(n,	2.0,	d_x,	d_y);	

	//	copy	y	from	device	(GPU)	memory	to	host	(CPU)	memory	
	cudaMemcpy(y,	d_y,	n*sizeof(float),	cudaMemcpyDeviceToHost);	

	//	do	something	with	the	result…	

	//	free	device	(GPU)	memory	
	cudaFree(d_x);	
	cudaFree(d_y;	

		return	0;	
}	

Example:	SAXPY	Kernel 	[4/4]	
void	saxpy_serial(int	n,	float	a,	float*	x,	float*	y)	
{	
		for	(int	i	=	0;	i	<	n;	++i)	
				y[i]	=	a*x[i]	+	y[i];	
}	
//	invoke	host	SAXPY	function	
saxpy_serial(n,	2.0,	x,	y);	

__global__	void	saxpy(int	n,	float	a,	float*	x,	float*	y)	
{	
		int	i	=	blockIdx.x*blockDim.x	+	threadIdx.x;	
		if	(i	<	n)		y[i]	=	a*x[i]	+	y[i];		
}	
//	invoke	parallel	SAXPY	kernel	with	256	threads/block	
int	nblocks	=	(n	+	255)	/	256;	
saxpy<<<nblocks,	256>>>(n,	2.0,	x,	y);	 CUDA	C	Code	

Standard	C	Code	

questions so far

	Introduction
	CUDA execution model
	CUDA threads
	CUDA parallel programming
	Example

	Questions

