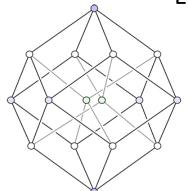
University of Puerto Rico Mayaguez Campus Faculty of Arts and Sciences

Department of Mathematical Sciences

call box 9000, Mayagüez, P.R. 00681


THE DEPARTMENT OF MATHEMATICAL SCIENCES PROUDLY PRESENTS

COLLOQUIUM

August-December 2025

Recursive Exponential Sums for k-Rotation Symmetric Boolean Functions

Eiver Rodríguez Pérez

UPR-Mayaguez

Sept 16 - 2025 10:45 am Monzón 201

Abstract

Let \mathfrak{B}_n be the set of all *n*-variables Boolean functions. A function $f \in \mathfrak{B}_n$ is said to be rotation symmetric (or Rot for short) if it is fixed under the action of the cyclic group C_n of n elements. This family of functions is known to contain highly non-linear elements, which is important in some applications in cryptography. Cusick proved that, under certain conditions, exponential sums of rotation symmetric Boolean functions are linear recursive (see [1]). Recently, in [2], Castro et al. obtained explicit recurrences for exponential sums of some Rots over \mathbb{F}_q .

A function $f \in \mathfrak{B}_n$ is said to be k-rotation symmetric if it is fixed under the action of the subgroup $\langle k \rangle$ of $C_n \simeq \mathbb{Z}_n$. These functions are generalizations of rotation symmetric Boolean functions (see [3]) and, as in the case of Rots, they contain highly non-linear elements. In this talk we show that, under certain conditions, exponential sums of k-rotation symmetric Boolean functions also satisfy linear recursions (we provide their characteristic polynomials). We also show that, under certain conditions, this result can be extended to \mathbb{F}_q .

