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Abstract

In this paper we develop a method for determining the exact number of spanning trees in
(directed or undirected) circulant graphs. Using this method we can, for any class of circulant
graph, exhibit a recurrence relation for the number of its spanning trees. We describe the method
and give examples of its use. (©) 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The number of spanning trees in a graph (network) is an important, well-studied
quantity [6]. A classic result known as the Matrix Tree Theorem [8] expresses the
number of spanning trees 7(G) of a graph G as a function of the determinant of a
matrix that can be easily constructed from G’s incidence matrix. In practice, though,
this method of counting spanning trees by calculating determinants is infeasible for
large graphs.

For some special classes of graphs, it is possible to give explicit, simple formulae
for the number of trees. If G is the complete graph K, then Cayley’s tree formula [7]
states that T(K,) = n"~2. Other special cases can be found in [4,12,13]. In this paper
we consider the problem restricted to the class of circulant graphs.

Let 1<s1 <83 < --- <s,. The undirected circulant graph, C5-*>%, has n vertices
labelled 0,1,2,...,n — 1, with each vertex i (0<i<n — 1) adjacent to 2k vertices
itsy, i+s,...,i +spymodn. The directed circulant graph, 6‘;“52""’“, is a digraph on
n vertices 0,1,2,...,n — 1; for each vertex i (0<i<n — 1), there are k arcs from i to
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1,2
Cs cg’

Fig. 1. Two examples of circulant graphs.

vertices i + sy, { + 82,...,i + 5, mod n. Multiple edges and self-loops are permitted. In
Fig. 1 we give examples of two circulant graphs, Csl’2 and Cg’S.
T(Cy-*>%) is the number of spanning trees in the undirected circulant graph

graph 6‘;”2’“" . A spanning tree in a digraph is a rooted tree with directed paths
from the root to all nodes. When counting the number of spanning trees in a digraph
we count all trees rooted at all possible roots. We note that, in both the undirected and
directed cases, if ged(sy,s2,...,8;,n) # 1 then the graph is not connected, so there are
no spanning trees.

The formula 7(C}?) = nF?, E, being the Fibonacci numbers, was originally con-
jectured by Bedrosian [2] and subsequently proven by Kleitman and Golden [9]. The
same formula was also conjectured by Boesch and Wang [5] (without the knowledge
of Kleitman and Golden [9]). Different proofs can be found in [1,4,13]. Formulae for
T(CL3) and T(CL*) are provided in [12].

This paper shows that the above are not special cases. In Section 2 we start from the
determinant formula and show that, for fixed s1,s5,...,s;, the number of spanning trees
in the circulant graph with n vertices always satisfies a recurrence relation and describe
how to derive the relation. In Section 3 we apply the method to find the formulae for
T(C}3), T(C%3), T(C>*). Other formulae are listed in the tables appended. We should
point out that formulae for 7(C>*) and T(C}»*) have already been derived in [11]; we
list them here for the sake of completeness. We conclude in Section 4 by deriving the
asymptotic behavior of these quantities.

2. Basic lemmas

We start from the fact that, in the circulant graph case, the matrix determinant
formula for the number of spanning trees is known to reduce to a simpler product
formula:
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Lemma 1 (Biggs [3, Proposition 3.5, Corollary 6.5] and Zhang and Yong [14]).

n—1

T(C;;'l, 52500 Sk)_ H 2k — eTSU TS L gTSH S g &),
n—1
TGy =Tt = eV =¥ = = e,
i=1
27i/n

where £/ is the conjugate of ¢/, ¢ =e
The main result of this section will be to show that, for fixed s1,s,,...,s;, the
above formula actually satisfies a recurrence relation in n. We start by manipulating

the formula into a first more convenient form:

Lemma 2. Let

Gs1, 5250 Sk(x) =2k — x5 — xR — XTI xS xS — X, (1)
Set
x*gg 1825 000rS) (x)
<fS1,S2,...,Sk(x) = _ﬁ (2)
Then
2
si—1

forsan. sk<x>—Zx‘A = fo : 3)

Now let My, s, .5, be the companion matrix of fs, s,. .. (x). This means that if we
denote fy, s, (X) as ag + a1x + -+ + agg _3x* 73 + x*72_ then

0 0 - 0 —ay

1 0 - 0 —a
My gy =

0 0 0  —ay, 4

0 0 - 1  —ay s

If Ay = nT(C52%) then
n—1

2
sg—1)(n— n i
An:(_l)(% 1) l)f 7(1)Hfs1,sz,,,_,sk(81)
S15825 005 Sk j=0

=(— 1)("A_1)(” 1) |]

Sl 525 k"

fsl 525 Sk(l)

where | - | represents the determinant of the matrix.
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Proof. Eq. (3) can be found by direct calculation.
For the rest of the proof note that from Lemma 1

A, _H(zk_g S g g g g g

n—1
- H gsl,Sz,...,sk(Sj)
J=1

n—1 n—1 n—1
=(—1)D H P H(gj — 1) H Forsrs (€1).
j=1 j=1 j=1

By calculation

|I - MS‘],Sz,.A.,S/,v ‘ = le,SQ,.“,S;{(l )3

|8j[ - le,sz,m.sk - f“l,SZ,u-,Sk(sj)’
n—1

[[¢E -D=1"n

=1

n—1
H e = (_1)sk(n—l).
=1

Thus

A, =(—1 (ss=D-___©° e (&
=(=1) f 0 ] Hfl o ()

=(- 1)(~5k_1)(" 1) |[ 0

Sl 8524y Sk "

2
fsl,ﬂz ,Sk(l)

Lemma 3. Let

s;i—1

fSI;VZ (X)) = Z Zx

j=1 i=0

Set 11715I s2...5, t0 be the companion matrix of fsl,sbu,sk(x). Then
n —

T(CS‘I,YZ, »Vk) — 7“ Msn 5250 S |
T 51 (D) o
Proof. Note that
n—1 o =
H (k S g g"k-i) = H (1— 81) H 751»?2,--->Sk(8j)'
o j=1 J=1

The remaining part of the proof is similar to that of Lemma 2. [J
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We now show that 4, must have a special form. This form will permit us to write
a recurrence relation for them.

Lemma 4. For any 1<s1 <sp < -+ < s, we have the following formula:

ne

1
T(cil,sz,...,sk) — _An — naZ
n

s —1
where a, = 1// f:YI,SZ,-uaS/;(l)Z?:kl r! for some (not necessarily umique) complex

numbers ri, 1<i<2% 1.

Proof. We need to show that f§ ,, ., (x) can be expressed in a particular form. We
do this by finding restrictions on its roots.
By calculation we find that

gsl,sz,---,sk(l) = g;],sz,...,sk(l) =0

1

but g, (1) # 0 so 1 is a root of multiplicity 2 of g, s, .5 (x). By the way
Ss1.59...5,(x) 1is defined in (2) it implies that 1 is not a root of f;, 5, 5 (x).

Now note that gy, s, .5 (x)= Zle (2—x7% —x") and Vj, us(x)=2—x"9 —x¥ >0,
when x=—1 with u;,(—1)=0 if and only if S; is even. Thus g(—1)=0 iff s1,80,...,8%
are all even numbers. It is also easy to see that Vj, ugl_(x) =sx 7 — g7l =0,
when x=—1s0 g, ,, (=1)=0. But, for even s;, u/(—1) <0 so if g(—1)=0 then
g"(=1) # 0. Plugging back into (2) we find that if —1 is a root of fj, s, .5 (x) it must
also be a root of order 2.

Finally, we note that

1 1
fS],Sz,...,Sk <_> = W.ﬁi‘l,sz,m,sk(x)

X

so a is a root if and only if 1/a is a root. More generally, set

Ss1,52, 05 (X)

L vy s
Then

- 1 I -

fSl,Sz,...,Sk (x> - mfn,sz,-w(x)'

Continuing in this fashion it is possible to show that o and 1/o always have the same
multiplicity as roots of f, s, ().
Combining all the above observations let us write

sp—1

Sosmes @) =c [ = o) = o)

i=1
for some constant ¢. But, from (1) and (2) we find that f(0)=1 so ¢c=1 and

sp—1

Fosnms @) =[] &= 0)x =57, (4)

i=1
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By definition

Skfl

Sosross (D=1 =My, = [T (1 =)0 = 7).
i=1

From Lemma 2,
n—1
Ay = (=D TT Sy s ().
j=1
Thus
n—1 sp—1

ap =10 @ =@ — a7

j=1 i=1

sp—1 _
— (1 \s=Dn=1) (1 =o' )1 —o ")
=D 1} (1 —o)(1—o ")

2
R CEED)
Forsooss OV (T (o)

s —1
Consequently, a,=1/1/fs,.5,....5(1) Z,Z:kl 7 for some complex numbers 7, 1<i<2%"!
(where it is possible that r; =r; for some i # j). U

1

Note. It is well known that if a, = cZIZ:‘;
coefficient of x” in the generating function

r! for some constant ¢ then g, is the

sp—1 s — 1
G(x)*zi: c 702,21 Hj;éi(l —rix)
= - H,zifl (1 —rix)
Thus, G(x) = P(x)/O(x), where P(x) and Q(x) are polynomials and (i.e., G(x) is a
rational function) since degree of Q(x)<2%~! there exist b;, 1<i<2%~! such that a,
satisfy a recurrence relation of the form

o5k —1

si—1
Vaz2%"", a,= Z bia,_;.
i=1

We can find these b; by noting that Lemma 2 gives us a direct way of calculating
any a;. We can therefore use Lemma 2 to evaluate all a; for i<2% and then solve
for the b;. We will see many examples of this in the next section.

We also note that we can say even more about the structure of G(x). Suppose that
G(x) = P(x)/Q(x) where the P(x) and Q(x) are now relatively prime. We claim that
every root of QO(x) must be simple. This follows from the fact that if » was not a
simple root then the coefficient of x” in G(x) would include an additive term of the
form A(n)r" where h(n) is a non-constant polynomial, contradicting the lemma.
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Lemma 5. For any 1<s) <sp < --- < s, we have the following formula:
T(C"j"”""’sk) = na,,

where a, satisfies a linear recurrence relation of order 2~ with initial conditions
given by Lemma 3.

Proof. Let fsm,m,sk(x) = H‘;.k:_ll(x — o;), where oy, op,...,04_1 are roots of
_’S s (x). The proof of the remaining part of the theorem is similar to the proof of
128200 Sk p gp p

Lemma 4. [

We now prove a lemma saying that, in many cases, fj, s, .5 (%) =0 does not have
a unit root; this in turn will imply that the minimum modulus root of Q(x) is not only
simple (which is true for all roots) but is also the only root of minimum modulus. This
fact will later permit us to derive the asymptotic growth of the number of spanning
trees as n increases.

Lemma 6. If gcd(sy,s2,...,5¢) =1, and f, 5, ..5(2) =0, then |a| # 1.

Proof. From Eq. (3) we know that « =1 is not a root of f, 5, s (X).
Recall that

f"l 582500y Sk (X) = —

xSk gsl 3825 ees S ('x)
(xr—1)

This means that if o # 1 is a root of fj, s, .5 (x) then « is also a root of gy, 5, .5 (X).
Now suppose that some o # 1 with |a| =1 is a root of gy, 5,5 (x). Then

a=¢€"=cosq@ +1ising

for some ¢. Thus

k
srsmms () =D (2= 0% —o¥)

j=1

k
Z (2—2coss;jp)
j=1

0.

This implies that
VI<j<k, coss;p=1.
This in turn implies that
Vi< <k, €9 =(cosq+ising)’ =1 (5)

which means that « is a unit root of 1. Let m be the minimum positive integer such
that o is a unit root of degree m. From (5) m|s;, j =1, 2,...,k; from the fact that
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o # 1, we have that m > 1. This contradicts the assumption gcd(sy,s2,...,5¢) =1 so
Js1.52....5, (x) cannot have a root with |¢| =1 and thus neither can f;, 5, 5 (x). O

Now let G(x) =), a,x" be the generating function of a,. It was previously shown
that G(x) is a rational function. The preceding lemma will imply that the minimum
modulus pole of G(x) is unique in modulus.

Corollary 1. Let P(x), Q(x) be relatively prime polynomials such that
G(x) =P(x)/Q(x). Then if gcd(sy,s2,...,5¢) =1, there is only one root of Q(x) that
has minimum modulus.

Proof. Referring back to the proof of Lemma 4 we find (Eq. (4)) that
sp—1

Fosnos @) =[] @ = a)x — o)

i=1
for some o;. Without loss of generality, we may assume that Vi, |o;| > 1; otherwise we
may swap o; and 1/o;.
In the same proof we found that
2

. I —ap
Vs (O T (—a) )

We used this to derive that a, = 1/\/ fs.5...5 (1) Zf:kl_ l ri for some complex
numbers r;, 1<i<<2% 1, By definition, these r; are the roots of O(x). Expanding the

product we see that each 7; is of the form
—1_ei()
I15, o

\/ 1_[YA 1( dl)

where e;(i) € {0,1} and, taken over all roots r;, all 2% ~! choices of e;(i) may occur.
Note that because all of the o; satisfy |o;|>1 the minimum modulus over the 7; is

}}-:

]
VITES (o)
This modulus is only achieved by roots r; that satisfy
if e;(i)=1 then |a;| = 1.

From Lemma 6 we know that V/j, o;| # 1. Thus, a minimum modulus root of O(x) is
only realized for the one root r; such that Vj, e;(i) = 0. This proves the corollary. [J

The previous lemmas assumed that ged(sy,ss,...,5;) = 1. We will now see that this
is a reasonable assumption since, otherwise, the problem can easily be transformed to
the one in which the ged( ) really is 1.
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Lemma 7. If ged(n,d) =1, then
T(CSI ,Sz,...,Sk) — T(CdS],dSz,“.,dsk ),

T(éS] 382, Sk ) — T(C’vd,&'],d.ﬁ'z,m,d.ﬂ'k )
n n *
Proof. From Lemmas 1 and 2 we have

n—1
S15525 w005, 1 i
T(Cnl’ 2o k) - ; H gsl,sz,...,sk(f}/)a

J=1

1 n—1 1 n—1

dsy,dsy,....d j j

(Gt = = T T Gas s (&) =~ T [ G510,
j=1 j=1

If gcd(n,d) =1, then dj = dj’ (modn) if and only if j = j' (modn) so
{1,2,...,n— 1} = {dmodn,2d modn,...,(n — 1)d mod n}.
Thus
T(C31535) = T(Cls1sdsnsendsn )
Similarly,

T(é;l 382505 Sk ) — T(C’Vr{,lisl,dsz,m,dsk ). D

Note. Lemma 7 can actually be proven directly by noting that, if ged(n,d) =1, there
is an isomorphism between graphs CS152-5 and C451-42--ds We define the function
f ii—dimodn from {0,1,2,...,n — 1} to itself. As in the proof of Lemma 7, we
see that f is a bijection. Furthermore, if gcd(n,d) =1, then i} — i, =s; (mod n) if and
only if diy —di, =ds; (mod n), where iy,i € {0,1,2,...,n—1} and 5; € {51,52,..., 5 }.
Thus (i,j) € CSv52 if and only if (di,dj) € C91-9»~d5% and f is an isomorphism
between CS1:52+5 and C91-452:--d5%  The same method can be applied to the directed
case.

Given 1<) < s < -+ <8, the graphs C;1*>% and (_fj"”""’sk are connected if and
only if ged(sy,s2,...,5¢,n) = 1. If the graph is unconnected then it does not contain
any spanning trees. This proves

Corollary 2. If ged(sy,s2,...,5:)=d # 1 then

0, ged(n,d) # 1,

T(Cfll,sz,...,sk) —
T(Cy/d-sald-sidy = god(n,d) = 1

and

0, ged(n,d) # 1,

_‘51,3‘2,...,.3‘;{ _
(G, )= F51/d,52/d, 51/ _
T(C: ), ged(n,d)=1.
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3. Results

In this section we show how to apply Lemma 4. In the first two proofs we work
from basic principles, specializing Lemma 4.

Theorem 8 (Case 1). 51 =1, s, =5.
T(Cy°) = %An = na,
where a, satisfies the recurrence relation:
a, = \/Ean,l +a,_4+ 4\/§an,5 — 6a,_¢ — \/Eanq — \/Ea,,,g
— 6ay—10 + 4V2a,_11 + ay_12 + V2,15 — ay_16
with the initial conditions ay =1, ay = /2, a3 =2, as =22, as =1, ag = 42,

ar=13, ag=16v/2, ag=34, a;0=29v2, a1 =89, a;n=128v/2, a;3=325, a;4=377/2,
ays = 842, aj = 1088v/2.

Proof. We specialize Lemma 4. Let fs5(x)= H?:l (x — o) (x —a; 1. As in the proof
of Lemma 2 we find that f5(1)= Hle(l — o)1 —aYy=|I — M, 5| = 26.
By Lemma 2,

n—1
Ay=n’ H S1s5(&)
Jj=1
Thus
n—1

a =[] [[¢E —a)e -t

j=1 i=1

4 _
B (1= —o ")
*IH (1—a)(1—a; )

R R () AT
V26/(or10003004 )" .

16 .
Consequently, a, = 712? > oy 1t for some complex numbers 7, 1<i<16.

Thus there exist b;, 1<i<16, such that g, = 21121 b;a,_;. This gives the following
linear equations:

16
E biawgyi—j = areri, 1<i<16.
Jj=1

The values of a; for i<32 can be calculated using Lemma 2 (the values for
i< 16 are shown in the theorem statement). Using these 32 values we can solve for the
b; to derive that by =v/2, by =0, b3 =0, bs=1, bs =4V2, bg=—6, by =—/2, bg=
0, bg=—V2, big=—6, by =4v2, bp=1, bi3=0, b1y =0, bis=V2, bjg=—1. O
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Theorem 9 (Case 2). sy =2, s, =3.

1
T(C*3) = -4, = na’
n

ns
where a, satisfies the recurrence relation:
ap =ay—1+ay—2+ay—3 — ay—4

with the initial conditions a1 =1, a, =1, a3 =1, a4 =3.

Proof. Repeat the procedure above. Let

) =(x —ap)(x — o D — a)(x — o3 ).
Then f53(1) = (1 — o)1 — o )1 — o)1 — oy )=l — Ma3| = 13.
By Lemma 2,

n—1

Ay =1 ] f23(&).
j=1
SO
n—1

2 =T] —a& — o) = )& — o)

J=1

_ (A=) —a3)

< V13y/ (o) ) ’

a, = ﬁ(r? +ry 415 +ry) for some numbers r,72,73,74, and there exist by, by, b3, ba,
such that a,=bja,_+bya,—»+bsa,_3+bsa,—_4. Finally, by solving the linear equations,
we have by =by,=b3=1, by =—-1. [

Theorem 10 (Case 3). s; =2, 5, =4.

T(CH) = {

0, n even,

T(C}?), nodd.
Proof. Follows directly from Corollary 2. [J

As described in Lemma 4 we can use the methods above for any value of s1,s5,...,5¢
to find b;, such that
zskfl

-1
Vn>2%"" a,= Z bia,_;,
i=1

where T(CS12+%) = na>. We have done this for all such s; tuples with s; <5. The
results are presented in Fig. 2. The first table presents the b; coordinates. The second
presents the initial values of a, for n<2%~!.
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All of the above results were for non-directed graphs. Using Lemma 5 we can
similarly find formulae for the number of spanning trees in any directed circulant graph.
For example, T (6‘3’3):11(1,1, where a,, satisfies the recurrence relation a,=a,_;+2a,_+
2a,_3—4a,_4 with the initial conditions a;=1, ay=1, as=1, az=>5; and T(C}->3)=na,,
where a, satisfies the recurrence relation a, =2a,_; + 2a,_» + 6a,_3 — 9a,_4 with the
initial conditions a; =1, a, =2, a3 =3, a4 = 16.

4. Asymptotic properties

Given the recurrence relations for a, it is a simple matter to find the asymptotic
growth rate of T(CS1*»%)=na? as n increases. In this section we present asymptotic
formulae for a, for all undirected circulant graphs T'(C;'-*>»%) for which s; <5.

We first derive the recurrence relations and initial conditions for all of these a,,; These
are listed in the tables in Fig. 2. It is well known that if a, satisfies a linear recurrence
relation then the generating function G(x) =), a,x" of the a, can be expressed as
a rational function G(x) = F(x)/Q(x) where F(x) and Q(x) are polynomials. If Q(x)
has a root o with unique minimum modulus, such that o is a simple root, then a, ~
—F(a)/aQ'(a)(1/a)" [10]. From the note following Lemma 4 we know that every root
of O(x) is simple. From Corollary 1, we know that if ged(sy,ss,...,5¢) =1 then the
root with the minimum modulus has unique minimum modulus. We used Maple to find
the minimum modulus root o of each of the equations that satisfy ged(sy,ss,...,8:)=
1. We then calculated ¢ = —F(a)/aQ’() and ¢ = 1/a. The results are displayed in
Table 1 below.

For the case in which ged(sy,ss,...,5¢) # 1, the case s;1 =2, s, =4, we did not cal-
culate the roots. From Corollary 2 we know that for even n (the graph is disconnected
s0) T(C%*)=0 and for odd n, T(C>*) = T(C}-?). The 2,4 row thus simply presents
the same growth rate as the 1,2 row but its growth rate only applies for odd n.

Table 1

{sk} c ¢ {sk} c ¢

{1,2} 0.4472136 1.618034 {2,3,4} 0.1856953 2.181935
{1,3} 0.3162278 1.700016 {1,2,5} 0.1825742 2.183137
{1,4} 0.2425356 1.736815 {1,3,5} 0.1690309 2.200510
{1,5} 0.1961161 1.755602 {1,4,5} 0.1543035 2.194750
{2,3} 0.2773501 1.722084 {2,3,5} 0.1622214 2.189798
{2,4} 0.4472136 1.618034 {2,4,5} 0.1490712 2.211485
{2,5} 0.1856934 1.759576 {3,4,5} 0.1414214 2.224979
{3,4} 0.2000000 1.754878 {1,2,3,4} 0.1825742 2.509601
{3,5} 0.1714986 1.764394 {1,2,3,5} 0.1601282 2.537090
{4,5} 0.1561738 1.769046 {1,2,4,5} 0.1474420 2.555259
{1,2,3} 0.2672612 2.102256 {1,3,4,5} 0.1400280 2.563612
{1,2,4) 0.2182179 2.147396 {2,3,4,5) 0.1360828 2572032

{1,3,4} 0.1961161 2.165786 {1,2,3,4,5} 0.1348400 2.866404




{s:} by by b3 ba bs bs b7 bg by bio  bin  biz b1z big  bis  bis

1,2 1 1

1,3 V2o V2 -1

2,3 1 1 1 -1

1,2,3 vzl V2 oo-1

1,4 1 0 1 3 -1 0 -1 -1

2,4

3,4 1 0 2 2 -2 0 -1 -1

1,2,4 1 1 1 5 -1 1 -1 -1

1,3,4 vZ 0 2v2 3 -2v2 0 !

2,3,4 1 1 2 4 -2 1 -1 -1

1,2,3,4 V2 1 2v2 5 =22 1 -2 -1

1,5 vz o 0 1 4v2 -6 —v2 0 V2 -6 4v2 1 0 0 vz -1

2,5 1 1 0 0 6 -6 -1 -1 -1 -6 6 0 0 1 1 -1

3,5 v2 0 V2 -2 5V2 -8 V2 -2 V2 -8 5/2 -2 V2 0 vz -1

4,5 1 0 1 3 4 -5 -3 -4 -3 -5 4 3 1 0 1 -1

1,2,5 vz o1 0 1 W2 -9 —2v2 -1 -2v/2 -9 /2 1 0 1 vz oo-1

1,3,5 v3i 0 V3 -1 6/3 -12 0 0 0 -12 6V3 -1 V3 0 V3 -1

1,4,5 vZ o0 V2 5 5v/2  -10 —-4v2 -7 —-4y/2 -10 5V2 5 V2 0 V2 o -1

2,3,5 vZ 1 V2 -2 8/2 -13 0 -3 0 -13 8V2 -2 V2 1 vzl

2,4,5 1 1 1 5 7 -7 -3 -9 -3 -7 7 5 1 1 1 -1

3,4,5 V2 0 2v/2 2 5v2  —12 V2 -5 V2 —-12 5v2 2 2v2 0 V2 -1

1,2,3,5 v3 1 V3 -1 9v/3 17 -3 -1 -v3 -17 9V3 -1 V3 1 V3 -1

1,2,4,5 V2 o1 V2 7 8V2  —12 —4v2 —12 -—4y2 -12 8/2 71 V2 1 VvV oo-1

1,3,4,5 V3 0 2v/3 4 6v/3 18 0 -6 0 -18 6V3 4 2v/3 0 V3 -1

2,3,4,5 V2 1 2v/2 4 8vV2 -—16 V2 —10 V2 —-16 8V2 4 2v2 1 V2 o -1

1,2,3,4,5 | V3 1 2v/3 6 9v3  —22 0 -11 0 -22 93 6 2v/3 1 V3 -1
{si} ay ag ag aq as ag ar ag ag aip ail aiz ai3 aiq ais aie
1,2 1 1
1,3 1 2v/2 5 5/2
2,3 1 1 1 3
1,2,3 1 Vo2 4/2
1,4 1 1 2 1 4 8 13 17
2,4 1 0 2 0 5 0 13 0
3,4 1 1 1 1 5 7 8 17
1,2,4 1 1 3 3 11 21 49 93
1,3,4 1 V2 2 2v/2 11 16V2 41 64v2
2,3,4 1 1 2 3 11 20 43 93
1,2,3,4 1 V2 3 4v/2 20 33vV2 113 200V2
1,5 1 V2 o2 2v/2 1 42 13 16v2 34 29V2 89 128v2 325 377V2 842 1088v2
2,5 1 1 2 3 1 8 8 21 34 41 109 144 313 512 842 1659
3,5 1 V2 1 2v2 1 5v/2 13 8v2 37 29V2 89 130v2 233 3772 841 1024v2
4,5 1 1 2 1 1 8 13 17 16 41 109 176 233 377 842 1649
1,2,5 1 V2 3 4/2 5 15V/2 43 72v/2 216 2952 989 1500v/2 4733 72672 22065 34416v2
1,3,5 1 V3 2 3v/3 5 12v/3 49 513 214 245V3 989 1296v3 4733 61253 23110 294273
1,4,5 1 vVZ 3 4/2 4 15V/2 49  64v2 153 256v/2 947 1470vV2 4187 6223v2 20172 32512v/2
2,3,5 1 V2 2 4v/2 4 16vV2 41 562 214 2562 947 14082 4187 6929v2 20168 323682
2,4,5 1 1 3 3 5 21 41 93 171 405 947 2079 4523 9799 22065 49011
3,4,5 1 V2 2 2v/2 5 16V2 43 562 178 2952 989 1472v2 4523 72672 23110 36288V2
1,2,3,5 1 V3 3 5/3 11 27v/3 113 1553 729  979v/3 4531  6615V/3 28717 426013 185163  272645v3
1,2,4,5 1 V2 4 4v/2 11 32v/2 113 200v/2 652 1199v/2 4531 81922 29275 523192 190124 3452002
1,3,4,5 1 V3 3 3v/3 11 27v/3 113 147V3 639  979V/3 4531 65613 28627 42601v/3 190608  282387V3
2,3,4,5 1 V2 3 4v/2 11 33v2 104 184V2 657 1199v2 4531 8052V2 29275 53248v/2 194073  353648v/2
1,2,3,4,5 | 1 V3 4 5/3 20 48v3 223 355v/3 1732 2880v/3 14641 24000v/3 118717 196463v/3 976880 1618445\/3

sp—1
Figure 2. The top table contains the b; values: Vn > 2%~ g, = Ef:l

b; values for the (s1,52) = (2,4) case are not reported since, as described in the text, T(C3’4) =0 for even n and T(C,%’4) = T(C,i’z) for odd n.

bia,—i. The bottom table contains the initial conditions a, for n<2%~!. The
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5. Conclusion

In this paper we described a general method for determining a recurrence relation for
T (Cyr-*»-%), the number of spanning trees in the undirected circulant graph described
by indices s1,57,...,5; and T (C’,ﬁ"”"“’sk ), the same quantity for directed circulant graphs.
Our method does not, though, provide a general recurrence relation or formula for
general case T(C;»>%) or T (C‘j"”"“’sk) when the s; are permitted to vary. Finding
such a general relationship, if one exists, would be an interesting problem.

We conclude by pointing out that it is known [14] that T (6‘;"32""’”)) ~
nk”/]"sl,‘m_,sk(l). One might hope that a similar asymptotic property, independent of
S1,82,--.,5;, would hold for undirected graphs. Unfortunately, the asymptotic results
presented in the table seem to show that such a strong result does not apply. This also
implies that, for the undirected case, the result presented in [14] is not true. An interest-
ing open question would be to discover if there are some weaker asymptotic properties
that are not dependent upon sy,s5,...,s; but only upon k, or possibly on s; (or sy).

Acknowledgements

This paper was completed while we were visiting the DIMACS center at,
Rutgers, The State University of New Jersey. The third author was also visiting AT&T
Labs-Research at the time and would like to thank them for their support as well.

References

[1] G. Baron, H. Prodinger, R.F. Tichy, F.T. Boesch, J.F. Wang, The number of spanning trees in the
square of a cycle, Fibonacci Quart. 23.3 (1985) 258-264.
[2] S. Bedrosian, The Fibonacci numbers via trigonometric expressions, J. Franklin Inst. 295 (1973) 175-177.
[3] N. Biggs, Algebraic Graph Theory, 2nd Edition, Cambridge University Press, London, 1993.
[4] F.T. Boesch, H. Prodinger, Spanning tree formulas and Chebyshev polynomials, Graph Combin. 2
(1986) 191-200.
[5] E.T. Boesch, J.F. Wang, A conjecture on the number of spanning trees in the square of a cycle, in:
Notes from New York Graph Theory Day V, New York Academy Sciences, New York, 1982, p. 16.
[6] D. Cvetkovi¢, M. Doob, H. Sachs, Spectra of Graphs: Theory and Applications, 3rd Edition, Johann
Ambrosius Barth, Heidelberg, 1995.
[7] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[8] G. Kirchhoff, Uber die Auflssung der Gleichungen, auf welche man bei der Untersuchung der linearen
Verteilung galvanischer Strome gefiihrt wird, Ann. Phys. Chem. 72 (1847) 497-508.
[9] D.J. Kleitman, B. Golden, Counting trees in a certain class of graphs, Amer. Math. Mon. 82 (1975)
40-44.
[10] R. Sedgewick, P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading,
MA, 1996.
[11] Talip, X.R. Yong, The number of spanning trees of three special cycles, preprint, 1994.
[12] X.R. Yong, Talip, Acenjian, The numbers of spanning trees of the cubic cycle C,3\, and the quadruple
cycle Cl‘f], Discrete Math. 169 (1997) 293-298.
[13] X.R. Yong, F.J. Zhang, A simple proof for the complexity of square cycle C‘%, J. Xinjiang Univ. 11
(1994) 12-16.
[14] FJ. Zhang, X.R. Yong, Asymptotic enumeration theorems for the numbers of spanning trees and
Eulerian trails in circulant digraphs & graphs, Sci. China, Ser. A 43 (2) (1999) 264-271.



