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Abstract

In this paper we develop a method for determining the exact number of spanning trees in
(directed or undirected) circulant graphs. Using this method we can, for any class of circulant
graph, exhibit a recurrence relation for the number of its spanning trees. We describe the method
and give examples of its use. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The number of spanning trees in a graph (network) is an important, well-studied
quantity [6]. A classic result known as the Matrix Tree Theorem [8] expresses the
number of spanning trees T (G) of a graph G as a function of the determinant of a
matrix that can be easily constructed from G’s incidence matrix. In practice, though,
this method of counting spanning trees by calculating determinants is infeasible for
large graphs.
For some special classes of graphs, it is possible to give explicit, simple formulae

for the number of trees. If G is the complete graph Kn, then Cayley’s tree formula [7]
states that T (Kn) = nn−2. Other special cases can be found in [4,12,13]. In this paper
we consider the problem restricted to the class of circulant graphs.
Let 16s1¡s2¡ · · ·¡sk . The undirected circulant graph, Cs1 ; s2 ; :::; skn ; has n vertices

labelled 0; 1; 2; : : : ; n − 1, with each vertex i (06i6n − 1) adjacent to 2k vertices
i± s1; i± s2; : : : ; i± sk mod n. The directed circulant graph, C̃s1 ; s2 ; :::; skn ; is a digraph on
n vertices 0; 1; 2; : : : ; n− 1; for each vertex i (06i6n− 1), there are k arcs from i to
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Fig. 1. Two examples of circulant graphs.

vertices i + s1; i + s2; : : : ; i + sk mod n. Multiple edges and self-loops are permitted. In
Fig. 1 we give examples of two circulant graphs, C1;25 and C2;36 .
T (Cs1 ; s2 ; :::; skn ) is the number of spanning trees in the undirected circulant graph

Cs1 ; s2 ; :::; skn and T (C̃s1 ; s2 ; :::; skn ) the number of spanning trees in the directed circulant
graph C̃s1 ; s2 ; :::; skn . A spanning tree in a digraph is a rooted tree with directed paths
from the root to all nodes. When counting the number of spanning trees in a digraph
we count all trees rooted at all possible roots. We note that, in both the undirected and
directed cases, if gcd(s1; s2; : : : ; sk ; n) 6= 1 then the graph is not connected, so there are
no spanning trees.
The formula T (C1;2n ) = nF

2
n ; Fn being the Fibonacci numbers, was originally con-

jectured by Bedrosian [2] and subsequently proven by Kleitman and Golden [9]. The
same formula was also conjectured by Boesch and Wang [5] (without the knowledge
of Kleitman and Golden [9]). Di�erent proofs can be found in [1,4,13]. Formulae for
T (C1;3n ) and T (C

1;4
n ) are provided in [12].

This paper shows that the above are not special cases. In Section 2 we start from the
determinant formula and show that, for �xed s1; s2; : : : ; sk ; the number of spanning trees
in the circulant graph with n vertices always satis�es a recurrence relation and describe
how to derive the relation. In Section 3 we apply the method to �nd the formulae for
T (C1;5n ); T (C

2;3
n ); T (C

2;4
n ). Other formulae are listed in the tables appended. We should

point out that formulae for T (C2;4n ) and T (C
3;4
n ) have already been derived in [11]; we

list them here for the sake of completeness. We conclude in Section 4 by deriving the
asymptotic behavior of these quantities.

2. Basic lemmas

We start from the fact that, in the circulant graph case, the matrix determinant
formula for the number of spanning trees is known to reduce to a simpler product
formula:
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Lemma 1 (Biggs [3, Proposition 3.5, Corollary 6.5] and Zhang and Yong [14]).

T (Cs1 ; s2 ; :::; skn ) =
1
n

n−1∏
j=1

(2k − �−s1j − �−s2j − · · · − �−sk j − �s1j − �s2j − · · · − �sk j);

T (C̃s1 ; s2 ; :::; skn ) =
n−1∏
j=1

(k − �s1j − �s2j − · · · − �sk j);

where �−j is the conjugate of �j; �= e2�i=n.

The main result of this section will be to show that, for �xed s1; s2; : : : ; sk , the
above formula actually satis�es a recurrence relation in n. We start by manipulating
the formula into a �rst more convenient form:

Lemma 2. Let

gs1 ; s2 ;:::; sk (x) = 2k − x−s1 − x−s2 − · · · − x−sk − xs1 − xs2 − · · · − xsk : (1)

Set

fs1 ; s2 ; :::; sk (x) =−x
sk gs1 ; s2 ; :::; sk (x)
(x − 1)2 : (2)

Then

fs1 ; s2 ; :::; sk (x) =
k∑
i=1

xsk−si


 si−1∑

j=0

xj



2

: (3)

Now let Ms1 ; s2 ; :::; sk be the companion matrix of fs1 ; s2 ; :::; sk (x). This means that if we
denote fs1 ; s2 ; :::; sk (x) as a0 + a1x + · · ·+ a2sk−3x2sk−3 + x2sk−2; then

Ms1 ; s2 ; :::; sk =




0 0 · · · 0 −a0
1 0 · · · 0 −a1
· · · · · · · · · · · · · · ·
0 0 · · · 0 −a2sk−4
0 0 · · · 1 −a2sk−3



:

If An = nT (Cs1 ; s2 ; :::; skn ) then

An = (−1)(sk−1)(n−1) n2

fs1 ; s2 ; :::; sk (1)

n−1∏
j=0

fs1 ; s2 ; :::; sk (�
j)

= (−1)(sk−1)(n−1) n2

fs1 ; s2 ; :::; sk (1)
|I −Mn

s1 ; s2 ; :::; sk |;

where | · | represents the determinant of the matrix.
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Proof. Eq. (3) can be found by direct calculation.
For the rest of the proof note that from Lemma 1

An =
n−1∏
j=1

(2k − �−s1j − �−s2j − · · · − �−sk j − �s1j − �s2j − · · · − �sk j)

=
n−1∏
j=1

gs1 ; s2 ; :::; sk (�
j)

= (−1)(n−1)
n−1∏
j=1

�−sk j
n−1∏
j=1

(�j − 1)2
n−1∏
j=1

fs1 ; s2 ; :::; sk (�
j):

By calculation

|I −Ms1 ; s2 ; :::; sk |= fs1 ; s2 ; :::; sk (1);

|�jI −Ms1 ; s2 ; :::; sk
|= fs1 ; s2 ; :::; sk (�j);

n−1∏
j=1

(�j − 1) = (−1)n−1n;

n−1∏
j=1

�−sk j = (−1)sk (n−1):

Thus

An = (−1)(sk−1)(n−1) n2

fs1 ; s2 ; :::; sk (1)

n−1∏
j=0

fs1 ; s2 ; :::; sk (�
j)

= (−1)(sk−1)(n−1) n2

fs1 ; s2 ; :::; sk (1)
|I −Mn

s1 ; s2 ; :::; sk |:

Lemma 3. Let

f̃ s1 ;s2 ;:::;sk (x) =
k∑
j=1

sj−1∑
i=0

xi:

Set M̃s1 ; s2 ; :::; sk to be the companion matrix of f̃ s1 ; s2 ;:::; sk (x). Then

T (C̃s1 ; s2 ; :::; skn ) =
n

f̃ s1 ;s2 ;:::;sk (1)
|I − M̃ n

s1 ; s2 ; :::; sk |:

Proof. Note that
n−1∏
j=1

(k − �s1j − �s2j − · · · − �sk j) =
n−1∏
j=1

(1− �j)
n−1∏
j=1

f̃ s1 ;s2 ;:::;sk (�
j):

The remaining part of the proof is similar to that of Lemma 2.
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We now show that An must have a special form. This form will permit us to write
a recurrence relation for them.

Lemma 4. For any 16s1¡s2¡ · · ·¡sk; we have the following formula:

T (Cs1 ; s2 ; :::; skn ) =
1
n
An = na2n;

where an = 1=
√
fs1 ; s2 ; :::; sk (1)

∑2sk−1

i=1 rni for some (not necessarily unique) complex
numbers ri; 16i62sk−1.

Proof. We need to show that fs1 ; s2 ; :::; sk (x) can be expressed in a particular form. We
do this by �nding restrictions on its roots.
By calculation we �nd that

gs1 ; s2 ; :::; sk (1) = g
′
s1 ; s2 ; :::; sk (1) = 0

but g′′s1 ; s2 ; :::; sk (1) 6= 0 so 1 is a root of multiplicity 2 of gs1 ; s2 ; :::; sk (x): By the way
fs1 ; s2 ; :::; sk (x) is de�ned in (2) it implies that 1 is not a root of fs1 ; s2 ; :::; sk (x).
Now note that gs1 ; s2 ; :::; sk (x)=

∑k
j=1 (2− x−sj − xsj) and ∀j; usj (x)=2− x−sj − xsj¿0,

when x=−1 with usj (−1)=0 if and only if Sj is even. Thus g(−1)=0 i� s1; s2; : : : ; sk
are all even numbers. It is also easy to see that ∀j; u′sj (x) = sjx−sj−1 − sjxsj−1 = 0,
when x=−1 so g′s1 ; s2 ; :::; sk (−1)= 0. But, for even sj; u′′sj (−1)¡ 0 so if g(−1)= 0 then
g′′(−1) 6= 0. Plugging back into (2) we �nd that if −1 is a root of fs1 ; s2 ; :::; sk (x) it must
also be a root of order 2.
Finally, we note that

fs1 ; s2 ; :::; sk

(
1
x

)
=

1
x2sk−2

fs1 ; s2 ; :::; sk (x)

so � is a root if and only if 1=� is a root. More generally, set

�f s1 ; s2 ;:::; sk (x) =
fs1 ; s2 ; :::; sk (x)

(x − �)(x − 1=�) :

Then

�f s1 ;s2 ;:::;sk

(
1
x

)
=

1
x2sk−4

�f s1 ; s2 ;:::; sk (x):

Continuing in this fashion it is possible to show that � and 1=� always have the same
multiplicity as roots of fs1 ; s2 ; :::; sk (x).
Combining all the above observations let us write

fs1 ; s2 ; :::; sk (x) = c
sk−1∏
i=1

(x − �i)(x − �−1i )

for some constant c. But, from (1) and (2) we �nd that f(0) = 1 so c = 1 and

fs1 ; s2 ; :::; sk (x) =
sk−1∏
i=1

(x − �i)(x − �−1i ): (4)
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By de�nition

fs1 ; s2 ; :::; sk (1) = |I −Ms1 ; s2 ; :::; sk |=
sk−1∏
i=1

(1− �i)(1− �−1i ):

From Lemma 2,

An = (−1)(sk−1)(n−1)n2
n−1∏
j=1

fs1 ; s2 ; :::; sk (�
j):

Thus

a2n = (−1)(sk−1)(n−1)
n−1∏
j=1

sk−1∏
i=1

(�j − �i)(�j − �−1i )

= (−1)(sk−1)(n−1)
sk−1∏
i=1

(1− �ni )(1− �−ni )
(1− �i)(1− �−1i )

=


 ∏sk−1

i=1 (1− �ni )√
fs1 ; s2 ; :::; sk (1)

√
(
∏sk−1
i=1 (−�i))n



2

:

Consequently, an=1=
√
fs1 ; s2 ; :::; sk(1)

∑2sk−1

i=1 rni for some complex numbers ri; 16i62
sk−1

(where it is possible that ri = rj for some i 6= j).

Note. It is well known that if an = c
∑2sk−1

i=1 rni for some constant c then an is the
coe�cient of xn in the generating function

G(x) =
2sk−1∑
i=1

c
1− rix = c

∑2sk−1

i=1

∏
j 6=i (1− rix)∏2sk−1

i=1 (1− rix)
:

Thus, G(x) = P(x)=Q(x); where P(x) and Q(x) are polynomials and (i.e., G(x) is a
rational function) since degree of Q(x)62sk−1 there exist bi; 16i62sk−1 such that an
satisfy a recurrence relation of the form

∀n¿2sk−1; an =
2sk−1∑
i=1

bian−i :

We can �nd these bi by noting that Lemma 2 gives us a direct way of calculating
any ai: We can therefore use Lemma 2 to evaluate all ai for i62sk and then solve
for the bi. We will see many examples of this in the next section.
We also note that we can say even more about the structure of G(x). Suppose that

G(x) = P(x)=Q(x) where the P(x) and Q(x) are now relatively prime. We claim that
every root of Q(x) must be simple. This follows from the fact that if r was not a
simple root then the coe�cient of xn in G(x) would include an additive term of the
form h(n)rn where h(n) is a non-constant polynomial, contradicting the lemma.
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Lemma 5. For any 16s1¡s2¡ · · ·¡sk; we have the following formula:

T (C̃s1 ; s2 ; :::; skn ) = nan;

where an satis�es a linear recurrence relation of order 2sk−1 with initial conditions
given by Lemma 3:

Proof. Let f̃ s1 ; s2 ;:::; sk (x) =
∏sk−1
j=1 (x − �j), where �1, �2; : : : ; �sk−1 are roots of

f̃ s1 ; s2 ;:::; sk (x). The proof of the remaining part of the theorem is similar to the proof of
Lemma 4.

We now prove a lemma saying that, in many cases, fs1 ; s2 ; :::; sk (�) = 0 does not have
a unit root; this in turn will imply that the minimum modulus root of Q(x) is not only
simple (which is true for all roots) but is also the only root of minimum modulus. This
fact will later permit us to derive the asymptotic growth of the number of spanning
trees as n increases.

Lemma 6. If gcd(s1; s2; : : : ; sk) = 1; and fs1 ; s2 ; :::; sk (�) = 0; then |�| 6= 1.

Proof. From Eq. (3) we know that �= 1 is not a root of fs1 ; s2 ; :::; sk (x).
Recall that

fs1 ; s2 ; :::; sk (x) =−x
sk gs1 ; s2 ; :::; sk (x)
(x − 1)2 :

This means that if � 6= 1 is a root of fs1 ; s2 ; :::; sk (x) then � is also a root of gs1 ; s2 ; :::; sk (x).
Now suppose that some � 6= 1 with |�|= 1 is a root of gs1 ; s2 ; :::; sk (x). Then

�= ei’ = cos’+ i sin’

for some ’. Thus

gs1 ; s2 ; :::; sk (�) =
k∑
j=1

(2− �−sj − �sj)

=
k∑
j=1

(2− 2 cos sj’)

= 0:

This implies that

∀16j6k; cos sj’= 1:

This in turn implies that

∀16j6k; eisj’ = (cos’+ i sin’)sj = 1 (5)

which means that � is a unit root of 1. Let m be the minimum positive integer such
that � is a unit root of degree m. From (5) m|sj; j = 1; 2; : : : ; k; from the fact that
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� 6= 1; we have that m¿ 1. This contradicts the assumption gcd(s1; s2; : : : ; sk) = 1 so
gs1 ; s2 ; :::; sk (x) cannot have a root with |�|= 1 and thus neither can fs1 ; s2 ; :::; sk (x).

Now let G(x) =
∑

n anx
n be the generating function of an: It was previously shown

that G(x) is a rational function. The preceding lemma will imply that the minimum
modulus pole of G(x) is unique in modulus.

Corollary 1. Let P(x); Q(x) be relatively prime polynomials such that
G(x) = P(x)=Q(x). Then if gcd(s1; s2; : : : ; sk) = 1; there is only one root of Q(x) that
has minimum modulus.

Proof. Referring back to the proof of Lemma 4 we �nd (Eq. (4)) that

fs1 ; s2 ; :::; sk (x) =
sk−1∏
i=1

(x − �i)(x − �−1i )

for some �i: Without loss of generality, we may assume that ∀i; |�i|¿1; otherwise we
may swap �i and 1=�i.
In the same proof we found that

a2n =


 ∏sk−1

i=1 (1− �ni )√
fs1 ; s2 ; :::; sk (1)

√
(
∏sk−1
i=1 (−�i))n



2

:

We used this to derive that an = 1=
√
fs1 ; s2 ; :::; sk (1)

∑2sk−1

i=1 rni for some complex
numbers ri; 16i62sk−1. By de�nition, these ri are the roots of Q(x). Expanding the
product we see that each rj is of the form

rj =
∏sk−1
i=1 �

ej(i)
i√∏sk−1

i=1 (−�i)
;

where ej(i) ∈ {0; 1} and, taken over all roots ri, all 2sk−1 choices of ej(i) may occur.
Note that because all of the �j satisfy |�j|¿1 the minimum modulus over the ri is∣∣∣∣∣∣

1√∏sk−1
i=1 (−�i)

∣∣∣∣∣∣ :
This modulus is only achieved by roots ri that satisfy

if ej(i) = 1 then |�j|= 1:
From Lemma 6 we know that ∀j; |�j| 6= 1. Thus, a minimum modulus root of Q(x) is
only realized for the one root ri such that ∀j; ej(i) = 0. This proves the corollary.

The previous lemmas assumed that gcd(s1; s2; : : : ; sk) = 1. We will now see that this
is a reasonable assumption since, otherwise, the problem can easily be transformed to
the one in which the gcd( ) really is 1.
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Lemma 7. If gcd(n; d) = 1; then

T (Cs1 ; s2 ; :::; skn ) = T (Cds1 ;ds2 ; :::;dskn );

T (C̃s1 ; s2 ; :::; skn ) = T (C̃ds1 ;ds2 ; :::;dskn ):

Proof. From Lemmas 1 and 2 we have

T (Cs1 ; s2 ; :::; skn ) =
1
n

n−1∏
j=1

gs1 ; s2 ; :::; sk (�
j);

T (Cds1 ;ds2 ; :::;dskn ) =
1
n

n−1∏
j=1

gds1 ;ds2 ;:::;dsk (�
j) =

1
n

n−1∏
j=1

gs1 ; s2 ; :::; sk (�
dj):

If gcd(n; d) = 1, then dj ≡ dj′ (mod n) if and only if j ≡ j′ (mod n) so
{1; 2; : : : ; n− 1}= {dmod n; 2dmod n; : : : ; (n− 1)dmod n}:

Thus

T (Cs1 ; s2 ; :::; skn ) = T (Cds1 ;ds2 ; :::;dskn ):

Similarly,

T (C̃s1 ; s2 ; :::; skn ) = T (C̃ds1 ;ds2 ; :::;dskn ):

Note. Lemma 7 can actually be proven directly by noting that, if gcd(n; d) = 1, there
is an isomorphism between graphs Cs1 ; s2 ; :::; skn and Cds1 ;ds2 ; :::;dskn . We de�ne the function
f : i 7→ dimod n from {0; 1; 2; : : : ; n − 1} to itself. As in the proof of Lemma 7, we
see that f is a bijection. Furthermore, if gcd(n; d) = 1, then i1 − i2 = sj (mod n) if and
only if di1−di2 =dsj (mod n), where i1; i2 ∈ {0; 1; 2; : : : ; n−1} and sj ∈ {s1; s2; : : : ; sk}.
Thus (i; j) ∈ Cs1 ; s2 ; :::; skn if and only if (di; dj) ∈ Cds1 ;ds2 ; :::;dskn and f is an isomorphism
between Cs1 ; s2 ; :::; skn and Cds1 ;ds2 ; :::;dskn . The same method can be applied to the directed
case.
Given 16s1¡s2¡ · · ·¡sk , the graphs Cs1 ; s2 ; :::; skn and C̃s1 ; s2 ; :::; skn are connected if and

only if gcd(s1; s2; : : : ; sk ; n) = 1. If the graph is unconnected then it does not contain
any spanning trees. This proves

Corollary 2. If gcd(s1; s2; : : : ; sk) = d 6= 1 then

T (Cs1 ; s2 ; :::; skn ) =

{
0; gcd(n; d) 6= 1;
T (Cs1=d; s2=d; :::; sk =dn ); gcd(n; d) = 1

and

T (C̃s1 ; s2 ; :::; skn ) =

{
0; gcd(n; d) 6= 1;
T (C̃s1=d; s2=d; :::; sk =dn ); gcd(n; d) = 1:
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3. Results

In this section we show how to apply Lemma 4. In the �rst two proofs we work
from basic principles, specializing Lemma 4.

Theorem 8 (Case 1). s1 = 1; s2 = 5.

T (C1;5n ) =
1
n
An = na2n;

where an satis�es the recurrence relation:

an =
√
2an−1 + an−4 + 4

√
2an−5 − 6an−6 −

√
2an−7 −

√
2an−9

− 6an−10 + 4
√
2an−11 + an−12 +

√
2an−15 − an−16

with the initial conditions a1 = 1; a2 =
√
2; a3 = 2; a4 = 2

√
2; a5 = 1; a6 = 4

√
2;

a7=13; a8=16
√
2; a9=34; a10=29

√
2; a11=89; a12=128

√
2; a13=325; a14=377

√
2;

a15 = 842; a16 = 1088
√
2.

Proof. We specialize Lemma 4. Let f1;5(x) =
∏4
i=1 (x− �i)(x− �−1i ). As in the proof

of Lemma 2 we �nd that f1;5(1) =
∏4
i=1(1− �i) (1− �−1i ) = |I −M1;5|= 26.

By Lemma 2,

An = n2
n−1∏
j=1

f1;5(�j):

Thus

a2n =
n−1∏
j=1

4∏
i=1

(�j − �i)(�j − �−1i )

=
4∏
i=1

(1− �ni )(1− �−ni )
(1− �i)(1− �−1i )

=

(
(1− �n1)(1− �n2)(1− �n3)(1− �n4)√

26
√
(�1�2�3�4)n

)2
:

Consequently, an = 1√
26

∑16
i=1 r

n
i for some complex numbers ri; 16i616.

Thus there exist bi; 16i616, such that an =
∑16

i=1 bian−i. This gives the following
linear equations:

16∑
j=1

bja16+i−j = a16+i ; 16i616:

The values of ai for i632 can be calculated using Lemma 2 (the values for
i616 are shown in the theorem statement). Using these 32 values we can solve for the
bi to derive that b1 =

√
2; b2 = 0; b3 = 0; b4 = 1; b5 = 4

√
2; b6 =−6; b7 =−√

2; b8 =
0; b9 =−√

2; b10 =−6; b11 = 4
√
2; b12 = 1; b13 = 0; b14 = 0; b15 =

√
2; b16 =−1.
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Theorem 9 (Case 2). s1 = 2; s2 = 3.

T (C2;3n ) =
1
n
An = na2n;

where an satis�es the recurrence relation:

an = an−1 + an−2 + an−3 − an−4
with the initial conditions a1 = 1; a2 = 1; a3 = 1; a4 = 3.

Proof. Repeat the procedure above. Let

f2;3(x) = (x − �1)(x − �−11 )(x − �2)(x − �−12 ):
Then f2;3(1) = (1− �1)(1− �−11 )(1− �2)(1− �−12 ) = |I −M2;3|= 13:
By Lemma 2,

An = n2
n−1∏
j=1

f2;3(�j);

so

a2n =
n−1∏
j=1

(�j − �1)(�j − �−11 )(�j − �2)(�j − �−12 )

=

(
(1− �n1)(1− �n2)√
13
√
(�1�2)n

)2
;

an = 1√
13
(rn1 + r

n
2 + r

n
3 + r

n
4) for some numbers r1; r2; r3; r4, and there exist b1; b2; b3; b4,

such that an=b1an−1+b2an−2+b3an−3+b4an−4. Finally, by solving the linear equations,
we have b1 = b2 = b3 = 1, b4 =−1.

Theorem 10 (Case 3). s1 = 2; s2 = 4.

T (C2;4n ) =

{
0; n even;

T (C1;2n ); n odd:

Proof. Follows directly from Corollary 2.

As described in Lemma 4 we can use the methods above for any value of s1; s2; : : : ; sk
to �nd bi, such that

∀n¿ 2sk−1; an =
2sk−1∑
i=1

bian−i ;

where T (Cs1 ; s2 ; :::; skn ) = na2n. We have done this for all such si tuples with sk65. The
results are presented in Fig. 2. The �rst table presents the bi coordinates. The second
presents the initial values of an for n62sk−1.
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All of the above results were for non-directed graphs. Using Lemma 5 we can
similarly �nd formulae for the number of spanning trees in any directed circulant graph.
For example, T (C̃2;3n )=nan, where an satis�es the recurrence relation an=an−1+2an−2+
2an−3−4an−4 with the initial conditions a1=1, a2=1, a3=1, a4=5; and T (C̃1;2;3n )=nan,
where an satis�es the recurrence relation an=2an−1 + 2an−2 + 6an−3− 9an−4 with the
initial conditions a1 = 1, a2 = 2, a3 = 3, a4 = 16.

4. Asymptotic properties

Given the recurrence relations for an it is a simple matter to �nd the asymptotic
growth rate of T (Cs1 ; s2 ; :::; skn )= na2n as n increases. In this section we present asymptotic
formulae for an for all undirected circulant graphs T (Cs1 ; s2 ; :::; skn ) for which sk65.
We �rst derive the recurrence relations and initial conditions for all of these an; These

are listed in the tables in Fig. 2. It is well known that if an satis�es a linear recurrence
relation then the generating function G(x) =

∑
i anx

n of the an can be expressed as
a rational function G(x) = F(x)=Q(x) where F(x) and Q(x) are polynomials. If Q(x)
has a root � with unique minimum modulus, such that � is a simple root, then an ∼
−F(�)=�Q′(�)(1=�)n [10]. From the note following Lemma 4 we know that every root
of Q(x) is simple. From Corollary 1, we know that if gcd(s1; s2; : : : ; sk) = 1 then the
root with the minimum modulus has unique minimum modulus. We used Maple to �nd
the minimum modulus root � of each of the equations that satisfy gcd(s1; s2; : : : ; sk) =
1. We then calculated c = −F(�)=�Q′(�) and � = 1=�. The results are displayed in
Table 1 below.
For the case in which gcd(s1; s2; : : : ; sk) 6= 1, the case s1 = 2; s2 = 4; we did not cal-

culate the roots. From Corollary 2 we know that for even n (the graph is disconnected
so) T (C2;4n ) = 0 and for odd n; T (C

2;4
n ) = T (C

1;2
n ). The 2; 4 row thus simply presents

the same growth rate as the 1; 2 row but its growth rate only applies for odd n.

Table 1

{sk} c � {sk} c �

{1; 2} 0.4472136 1.618034 {2; 3; 4} 0.1856953 2.181935
{1; 3} 0.3162278 1.700016 {1; 2; 5} 0.1825742 2.183137
{1; 4} 0.2425356 1.736815 {1; 3; 5} 0.1690309 2.200510
{1; 5} 0.1961161 1.755602 {1; 4; 5} 0.1543035 2.194750
{2; 3} 0.2773501 1.722084 {2; 3; 5} 0.1622214 2.189798
{2; 4} 0.4472136 1.618034 {2; 4; 5} 0.1490712 2.211485
{2; 5} 0.1856934 1.759576 {3; 4; 5} 0.1414214 2.224979
{3; 4} 0.2000000 1.754878 {1; 2; 3; 4} 0.1825742 2.509601
{3; 5} 0.1714986 1.764394 {1; 2; 3; 5} 0.1601282 2.537090
{4; 5} 0.1561738 1.769046 {1; 2; 4; 5} 0.1474420 2.555259
{1; 2; 3} 0.2672612 2.102256 {1; 3; 4; 5} 0.1400280 2.563612
{1; 2; 4} 0.2182179 2.147396 {2; 3; 4; 5} 0.1360828 2.572032
{1; 3; 4} 0.1961161 2.165786 {1; 2; 3; 4; 5} 0.1348400 2.866404
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349Figure 2. The top table contains the bi values: ∀n¿ 2sk−1, an =
∑2sk−1

i=1
bian−i . The bottom table contains the initial conditions an for n62sk−1. The

bi values for the (s1; s2) = (2; 4) case are not reported since, as described in the text, T (C
2;4
n ) = 0 for even n and T (C2;4n ) = T (C1;2n ) for odd n.
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5. Conclusion

In this paper we described a general method for determining a recurrence relation for
T (Cs1 ; s2 ; :::; skn ), the number of spanning trees in the undirected circulant graph described
by indices s1; s2; : : : ; sk and T (C̃s1 ; s2 ; :::; skn ), the same quantity for directed circulant graphs.
Our method does not, though, provide a general recurrence relation or formula for
general case T (Cs1 ; s2 ; :::; skn ) or T (C̃s1 ; s2 ; :::; skn ) when the si are permitted to vary. Finding
such a general relationship, if one exists, would be an interesting problem.
We conclude by pointing out that it is known [14] that T (C̃s1 ; s2 ; :::; skn )) ∼

nkn=f̃s1 ; s2 ;:::; sk (1). One might hope that a similar asymptotic property, independent of
s1; s2; : : : ; sk ; would hold for undirected graphs. Unfortunately, the asymptotic results
presented in the table seem to show that such a strong result does not apply. This also
implies that, for the undirected case, the result presented in [14] is not true. An interest-
ing open question would be to discover if there are some weaker asymptotic properties
that are not dependent upon s1; s2; : : : ; sk but only upon k, or possibly on sk (or s1).

Acknowledgements

This paper was completed while we were visiting the DIMACS center at,
Rutgers, The State University of New Jersey. The third author was also visiting AT&T
Labs-Research at the time and would like to thank them for their support as well.

References

[1] G. Baron, H. Prodinger, R.F. Tichy, F.T. Boesch, J.F. Wang, The number of spanning trees in the
square of a cycle, Fibonacci Quart. 23.3 (1985) 258–264.

[2] S. Bedrosian, The Fibonacci numbers via trigonometric expressions, J. Franklin Inst. 295 (1973) 175–177.
[3] N. Biggs, Algebraic Graph Theory, 2nd Edition, Cambridge University Press, London, 1993.
[4] F.T. Boesch, H. Prodinger, Spanning tree formulas and Chebyshev polynomials, Graph Combin. 2

(1986) 191–200.
[5] F.T. Boesch, J.F. Wang, A conjecture on the number of spanning trees in the square of a cycle, in:

Notes from New York Graph Theory Day V, New York Academy Sciences, New York, 1982, p. 16.
[6] D. Cvetkovi�c, M. Doob, H. Sachs, Spectra of Graphs: Theory and Applications, 3rd Edition, Johann

Ambrosius Barth, Heidelberg, 1995.
[7] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[8] G. Kirchho�, �Uber die Au
�osung der Gleichungen, auf welche man bei der Untersuchung der linearen

Verteilung galvanischer Str�ome gef�uhrt wird, Ann. Phys. Chem. 72 (1847) 497–508.
[9] D.J. Kleitman, B. Golden, Counting trees in a certain class of graphs, Amer. Math. Mon. 82 (1975)

40–44.
[10] R. Sedgewick, P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading,

MA, 1996.
[11] Talip, X.R. Yong, The number of spanning trees of three special cycles, preprint, 1994.
[12] X.R. Yong, Talip, Acenjian, The numbers of spanning trees of the cubic cycle C3N and the quadruple

cycle C4N , Discrete Math. 169 (1997) 293–298.
[13] X.R. Yong, F.J. Zhang, A simple proof for the complexity of square cycle C2p, J. Xinjiang Univ. 11

(1994) 12–16.
[14] F.J. Zhang, X.R. Yong, Asymptotic enumeration theorems for the numbers of spanning trees and

Eulerian trails in circulant digraphs & graphs, Sci. China, Ser. A 43 (2) (1999) 264–271.


