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Abstract 

Let G be a simple undirected graph with n > 2 vertices and let Q(G) > . , tl+ I (G) be the 
eigenvalues of the adjacency matrix of G. It is shown by Cao and Yuen (1995) that if C(I (G) = - 1 
then G is a complete graph, and therefore Q(G) = n - 1 and cc,(G) = - 1 for 1 <i <n - 1. We 
obtain similar results for graphs whose complement is bipartite. We show in particular, that if 
the complement of G is bipartite and there exists an integer k such that 1 <k <(n - 1)/2 and 
Q(G) = - 1 then cc,(G) = -1 for k < i < n - k + 1. We also compare and discuss the relation 
between some properties of the Laplacian and the adjacency spectra of graphs. @ 1999 Elsevier 
Science B.V. All rights reserved 

1. Introduction 

We consider undirected graphs having no loops or parallel edges. All notions on 
graphs that are not defined here can be found in [l]. 

Let V(G)={ul,..., v,} be the set of vertices of a graph G. Let &(U) denote the 
degree of a vertex v in G. We assume that V(G) # 0 and E(G) # 0 (and so n > 0). 

Let A(G)= {aij} h w ere aij = 1 if U;Uj EE(G) and aij = 0 if U;U~ $E(G). Let 
D(G)= {dij} h w ere dij=dG(Ui) if i=j and d,=O if i#j,i,jE{i ,..., n}, i.e. 
D(G) is the diagonal matrix with the degrees of the corresponding vertices of G on 
the main diagonal. Let L(G) = D(G) - A(G). 
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The matrices A(G) and L(G) are called the adjacency matrix and the Laplacian 
matrix of G, respectively. 

Many papers are devoted to study the characteristic polynomials and spectra of the 
adjacency and Laplacian matrices of a graph and their possible relations with various 
properties of the graph (see, for example, [2-181). 

In Section 2 we compare and discuss the relation between some properties of the 
Laplacian and the adjacency spectra of graphs. 

In Section 3 we use some facts described in Section 2 to prove some new results 
concerning the distribution of the adjacency eigenvalues of graphs. 

2. Comparison of properties of the Laplacian and adjacency spectra of graphs 

Since both A(G) and L(G) are symmetric matrices, clearly their eigenvalues are real 
numbers. 

Let Q(G) > ... aa,-, and &(G) d ... d Jbn- i(G) be the spectrum of A(G) 
and L(G), respectively. If G is a r-regular graph then clearly L(G) = rl -A(G), and so 
&(G) = r - ai( Therefore many results on the Laplacian spectrum of graphs can be 
translated into the adjacency spectrum language and vice versa. For non-regular graphs 
the situation turns out to be quite different. 

Theorem 2.1 (Coulson and Rushbrooke [4] and Sachs [IS]). A graph G is bipartite 
if and only if 

u~(G)+c+-~(G)=O for iE{O,...,n- I}. 

This theorem is an important result establishing a connection between the structure 
and adjacency spectra of graphs. It is known in chemistry as the ‘paring theorem’ [5]. 

From Theorem 2.1 we have for regular graphs: 

Theorem 2.2. An r-regular graph G is bipartite if and only if 

Ai(G)+&-i-~(G)=2r for iE{O,...,n- 1). 

Let G be a graph with n vertices, G denote the graph complement to G. 

Theorem 2.3 (Kelmans [8,9]). Let i E { 1,. . . , n - 1). Then 
(L) n,(G) + L(G)=n, 

and therefore 
(A) if G is a regular graph then ai + a,,-i (d) = -1. 

Theorem 2.3 (and its generalization on weighted graphs [ll]) opens various op- 
portunities. It allows to find a simple algorithm that provides formulas for the Laplacian 
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polynomial and spectrum, and the number of spanning trees of so called decompos- 
able graphs [8,9,11]. One of many applications of this algorithm is a description 
of the Laplacian spectrum and the number of spanning trees of a threshold graph 
in terms of the vertex degrees of the graph [6]. Theorem 2.3 also allows to estab- 
lish the so called inclusion-exclusion properties of the Laplacian polynomial of a 
graph [ 10,131. Comparison of graphs by their number of spanning trees and finding 
graphs with an extremal (maximum or minimum) number of spanning trees among 
graphs of a certain type is an important problem in the extremal graph theory and 
network reliability. One of the approaches to this problem is based on Theorem 2.3 
[13-161. 

It is known and it is easy to see that 

Theorem 2.4 (Kelmans [8,9], see also Cvetkovic et al. [.5]). Let G he u gruph. 
Then 

(L1 ) L(G) is positive semi-definite and therefore &(G) 3 0, 
(L2) &(G)=O and the multiplicity of the Luplacian eigenvalue 0 is equal to the 

number @components of G, 
and therefore 

(A) if G is r-regular, then IQ(G) = r and the multiplicity of the adjacency eigenvalue 
r is equal to the number of components of G. 

From Theorems 2.3 and 2.4 it follows that 

Theorem 2.5 (Kelmans [8,9], see also Cvetkovic et al. [5]). Let i E { 1,. . ,n - I}. 
Then 

(L) O<&(G) dn, 
and therefore 

(A) zf G is a regular graph of degree r then r - n d a,(G) d r. 

Let d(G) and 6(G) denote the maximum and the minimum vertex degree in G, 
respectively. Let n,,,,(G) = ,$-l(G) and &in(G) = )*I (G). 

Theorem 2.6 (Kelmans and Chelnokov [13]). Let G be a graph with V(G) # 0 and 
E(G j # 0. Then 

(Ll) d(G) + l<&,,,(G) <min{n,max{d(u,G)) + d(v,G): u,u~V(G),u#v}} < 
min{n,2d(G)}, and IQ(G) > 1 for k l {n - d(G),. ,n - l}, 

(L2) if G is not a complete graph then A,,,(G) 6 6(G), 
and therefore for r-regular graph G we have: 

(Al) max{r - n,-r} < cc,-,(G) d -1, 
(A2) 17 G is not a complete graph, then al(G) 3 0, 
(A3) if G is a complete graph with at least 2 vertices, then al(G) = -1 (and 

therefore there is no regular graph with ccl(G) E (- 1,O)). and 
(A4) xk(G)<r-lfork~{n-A(G),...,n-1). 
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It is easy to see that 

Theorem 2.7 (Kelmans [12]). Let G be a connected graph with at least 2 vertices. 
Then &,,,(G)=A(G)+ 1 zfand only if]V(G)]=A(G)+ 1. 

From Theorem 2.7 we have 

Theorem 2.8 (Kelmans [12]). Let G be a graph with at least 2 vertices. Then 
A,,,,,(G) = A(G) + 1 if and only if 

(c) ] V(D)] = A(G)+ 1 for every component D of G containing a vertex of maximum 
degree and &,,,(C) < A(G) + 1 for every component C of G that contains no vertex 
of maximum degree. 

From Theorems 2.3 and 2.8. We have 

Theorem 2.9 (Kelmans [12]). Let G be a non-complete graph. Then &n(G)=o(G) 
tf and only tf G satisjies condition (c) in Theorem 2.8. 

From Theorem 2.9 we have for the adjacency spectrum: 

Theorem 2.10 (Kelmans [12]). Let G be a r-regular graph with n 3 2 vertices. Then 
i,(G) = r (or equivalently, al(G) = 0) zf and only tf G is a complete k-partite graph 
with k <n. 

It turns out that Theorems 2.6(A2) and 2.10 hold not only for regular graphs. 

Theorem 2.11 (Cao and Yuen [12]). Let G be a graph with n 3 2 vertices. Then 
(Al) if G is not a complete graph, then al(G) > 0, 
(A2) tf G is a complete graph, then CII (G) = - 1 (and therefore there is no regular 

graph with a(G) E (-- 1, 0)), and 
(A3) al(G) = 0 if and only if G is a complete k-partite graph with k < n. 

From Theorems 2.1 and 2.3 it follows that 

Theorem 2.12. Let G be a r-regular graph and G is bipartite. Then an-i- I(G) = 
cc,-,(G) + 1, and in particular, al(G) =n - r - 2. 

Theorem 2.13 (Cao and Yuen [3]). Let i E (2,. . . ,n - l}. Then 

q(G) + cc,-;(@ < - 1 (2.1) 

- 1 < Q(G) + cc,z-;-i(G). (2.2) 
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If G is regular then the above statement follows immediately from Theorem 2.3(A). 
Therefore Theorem 2.13 can be interpreted as an analogue of Theorem 2.3(L) and an 
extension of Theorem 2.3(A) for the adjacency spectrum of graphs. 

Theorem 2.14 (Cao and Yuen [3]). Let G be a graph with n vertices. Then 
(Al) if Q(G) < - 1 then G is isomorphic to a path with 3 vertices, 
(A2) if G has at least 4 vertices then al(G) 3 -1, 
(A3) [f x2(G) = -1 then G is a complete bipartite graph plus possible isolated 

vertices, 
(A4) if or?(G) < 0 then G is a bipartite graph, and 
(A5) there is no graph G with CQ(G)E(--l,--(a - l/2). 

From Theorems 2.6 and 2.14 we have for the Laplacian spectrum: 

Theorem 2.15. Let G be an r-regular graph with n vertices. Then 
(Ll) r + 1 < I.,,-l(G) d min{n,2r}, 
(L2) Y < &-2(G), 
(L3) 12(G) d r + 1, 
(L4) AZ(G) = r + 1 if and only if G has exactly two components each isomorphic 

to a complete graph with r + 1 vertices, 
(L5) if r < ,Iz(G) then G is r-regular bipartite graph, 
(L6) there is no r-regular graph G with AZ(G) E (r + (a - 1)/2, r + 1). 
(L7) tf G is not a complete graph, then AI(G) d r, and 
(LS) tf G is a complete graph with at least 2 vertices, then I.l(G)=r + 1 (and 

therefore there is no r-regular graph with i,(G) E (r, r + 1)). 

3. Main results 

Theorem 3.1. Let G be a simple undirected graph with n vertices, Suppose that G is 
bipartite. Then 
(al) Q(G) b-l for 0 d k d (n-1)/2. 
(a2) @r(G) G-1 for (n + 1)/2 < k d (n-l), and 
(a3) ifak(G)=-l+dkfor some kE{l,..., L(n-1)/2]}, where 8k >, 0 (see (al)), then 

cc,,pk+,(G) G-l--& < U,+-,(G) < ... < Q(G)=-1 + 6k, (3.1) 

(3.2) 

PrOOf. (pl) Let us first prove (al) and (a3). Let &k(G)=-1 + 8k. By (2.1) in 
Theorem 2.13, 

Q(G) + a,-,@) G-1 (3.3) 
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and by (2.2) in Theorem 2.13, 

-1 d Q(G) + a,-~(@. 

Since Q(G) =- 1 + 6k we have 

&d@) < -&, 

-& < C&-,(c). 

Since G is a bipartite graph, we have by Theorem 2.1(A), 

for 1 6 i < n. From (3.6) and (3.7) with i= k we have 

ak(c‘) d bk. 

Suppose that k d (n- 1)/2. Then n-k-l d k and therefore 

&-k-,(e) < k&-k-2(@ < ” d c(k(@, 

an-k-l(G) d &,-k-z(G) d . < Q(G). 

From (3.6), (3.8), and (3.9) we obtain 

--6k 6 an-k-,(G) < c(,-k-2(@ 6 ‘.’ d c(k(@ < Sk. 

From (3.11) we have & > 0. Thus if k d (n- 1)/2 then 

Q(G)=--1 + & 2-1, 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(and so (al) Theorem 3.1 is proved). By (3.4) in Theorem 2.13 with i = k and G := G’, 

-1 < c(/@) + C&k-,(G). 

Therefore from (3.8) and (3.13), &-k-r(G) a-l-&. Thus from (3.10) 

-I-& <C&-k-,(G) <@.,-k-2(G) < ‘.. < &k(G)=-1 +& 

By (3.5) and (3.7) with i=k-I, 

-&,(G)=C(,-k(e) <--dk. 

Therefore 

‘& d &l(G). 

By (2.1) in Theorem 2.13 with i = k-l and G := G, 

xk--l(e) + an-k+l(G) G-1. 

From (3.16) and (3.17) we have 

a,-k+l(G) d - l-dk. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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Now (3.1) in Theorem 3.1 follows from (3.14) and (3.18) and (3.2) in Theorem 3.1 
follows from (3.11), (3.15), and (3.16). 

(~2) Now let us prove (a2). Suppose on the contrary that x~(G) =- 1 + 0 for some 
6~0and(n+1)/2~kdn-l.Since(n+1)/2dk~n-l,clearlyn-kdk-l,and 
therefore 

EL&@) d x,,+2(C). (3.19) 

Now by 3.15, 3.16, and 3.19, 6 d q-,(G) < q-n(G) 6-6. This contradicts the fact 
that 6>0. Therefore ax(G) G-1 if (n + 1)/2 <k < n-l. Cl 

Now assume that &(G) for some k E {2,.. , [(n + 1)/2]} is known with a certain 
accuracy. Then the following modification of Theorem 3.1 (a3) describes the corre- 
sponding localization results, and can be proved by using similar arguments. 

Theorem 3.2. Let G be u simple undirected graph. Suppose that C? is bipartite. Let 
-1 +6~<cx/;(G)b--l+6~for some kE{l,...,[(n-1)/2]}, where Sy>,O (und so 
0 d 6; < 8;). Then 

From Theorems 2.14 (A4) and Theorem 3.1 we have 

Theorem 3.3. rf’ az(G)<O then the statements (al), (a2), and (a3) of Theorem 3.1 
and the statement of Theorem 3.2 hold. 

From Theorem 3.1 we have the following corollary. 

Theorem 3.4. Suppose that 
(hl) G is bipartite (or a2(G)<O) and 
(h2) there exists an integer k such that 1 < k <(n- 1)/2 and uk =-I 

Thena,=-lforeveryiE{k,k+l,...,n-kfl}. 

Proof. Follows from (3.1) in Theorem 3.1 if we put 6k = 0. 0 

From Theorem 3.1 we have the following corollary. 
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Theorem 3.5. Let G be a graph with n > 6 vertices. Then Q(G) =- 1 implies that 
Q(G) =-1 for i E (2,. . ,n-3). 

Theorem 3.6. Suppose that G is a disconnected graph with n vertices and @z(G) < 0. 
Then G has exactly two components and each of these components is a complete 
graph, and therefore if G has no isolated vertices then ai =- 1 for i E (2,. . . , n- l}. 

Proof. Since az~(G) <O, by Theorem 2.14, 6 is bipartite. Since G is a disconnected 
graph and C? is bipartite, clearly G has exactly two components and each of these com- 
ponents is a complete graph. It is also easy to see that if s 3 2 then a~(&) = s- 1 and 
ai =- 1 for i E { 1,. . . , s- 1). Therefore if G has no isolated vertices then &i(G) =- 1 
for iE{2,...,n-1). 0 
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