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ABSTRACT 

The general elliptic matrices are investigated. Some properties are derived. The 
signs of coefficients of the eigenpolynomials are discussed. The paper generalizes 
some results presented by M. Fiedler. Furthermore, as an application, Smith’s result 
that a simple connected graph is completely multipartite iff it has exactly one positive 
eigenvalue is reproved. 0 Elsevier Science Inc., 1997 

1. INTRODUCTION, NOTATION, AND PRELIMINARIES 

All matrices considered in this paper will be real if not otherwise stated. 
A symmetric matrix is called elliptic if it has exactly one, simple positive 

eigenvalue. An elliptic matrix with all diagonal entries equal to zero is known 
as a special elliptic matrix [l]. We denote by %n the class of all elliptic - 
matrices of order n, and by x its subclass consisting of all nonnegative 
matrices in 2”. In addition, xn stands for the class of all special elliptic 
matrices of order n, and q for the subclass of 2”, in which elements are 
nonnegative matrices. M. Fiedler studied the matrices in xn and provided 
some interesting results in [l]. 
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We define a normalized general diagonal matrix as a matrix of the block 
form 

Id, 0 *** 0 

0 d, +.. 0 
. . . . . . . . . . . 
0 0 ... d, 

\o 0 ... o/ 

where the dis, i = 1,2,. . ., t, are column unit vectors with all coordinates 
different from zero [l]. 

The present paper is concerned with the matrices in gn; some results may 
be regarded as a generalization of M. Fiedler’s work in [l]. In Section 2 we 
shall explore the general properties of matrices in gn. Their principal 
submatrices and the signs of coefficients of the eigenpolynomials will be 
considered in Section 3, in which we shall also establish the Smith’s result 
that a simple connected graph is complete k-partite if and only if it has 
exactly one positive eigenvalue. 

LEMMA 1.1. Given an n X n Hermitian matrix A = (ajj>, then A is 
unitarily similar to a matrix each of whose muin diagonal entries is equal to 
(l/n) tr A. 

Proof. We shall use induction on n. For n = 2, in case a,, # az2, let 

B = (bij) = (coo; 

We have 

bl, = a,, cos2 0 - 2 Re aI2 cos 8 sin 0 + up2 sin’ 0, 

b,, = a,, sin” 8 + 2 Re aI2 cos 8 sin 0 + a22 cos2 0. 

Setting b,, = b,,, this leads to 

(an - a22) cos28 = 2Re al2 sin28, 

and yields the following: 

e = ij arctan 
2 Re aI2 

91 - a22 
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This implies that the assertion is true for n = 2. Supposing that it is valid for 
II - 1. we are to consider the case for II. Let 

and let s = (1,’ &>(x, + -rg + ..* +x,,). Th en we may construct a unitan 
matrix V = (x, Q) such that 

V*AV = 
tr A 
~ * 

n 
* B 

which gives 

tr A tr B __=- 
12 II - 1 

According to the induction, there exists a unitary matrix I’, such that 

V;BV, = 

tr B ~ . . . * 
n-l 

tr B 

I * . . . 
n - 1 I 

U*AU = 

\ 

1 trA 
~ . . . 

11 

* . . . 
\ 

I tr A 
- . . . 

I1 

* 

\ 

* 

tr ,4 

I2 

. . . 

* 

tr A 

n 

??

COROLLARY 1.2. Let A = (a,,) E.%~ and tr ‘4 > 0. Then there exists arl 

orthogonal matrix Q such that Q%Q = B = (hi,) E,@~, and hii = (tr A)/n 
> 0, i = 1,2,. . . , n. 
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LEMMA 1.3. Let 

p(z) = zn - plz”-l - p2z”-Z - **f -p,_lz - p,, 

where pi > 0, i = 1,2, . . . , n, and Cp, 1 pi > 0. Then p(z) = 0 has exactly 
one positive root, which is the dominant one among the n roots of p(z) = 0. 

Proof. The proof of the first part may be found in [2], and the second 
follows because the companion matrix of p(z) is a nonnegative matrix of 
order n. W 

2. THE MATRICES IN %n 

We shall first present some properties of matrices in gn. For a special 
case, this yields some related results considered in [I], 

LEMMA 2.1. The determinant of a nonsingular matrix A ~5~ has sign 
(- 1y-l. 

Proof. Noticing that the determinant is the product of the eigenvalues, 
the validity is trivial. ??

THEOREM 2.2. Let m, n be integer numbers, m < n. lf A = (aij) E%,, 
and a,, > 0, i = 1,2,. . . , n, then every m X m principal submatrix, say 
A rnxrn, of A either belongs to gm or is zero. In particular, if a,, > 0, 
i = 1,2 ,..., n, thenA,,, ~2~. 

Proof. In view of the interlacing theorem, every nonzero (n - 1) X 
(n - 1) principal submatrix of A ~3~ has at most one positive eigenvalue. 
On the other hand, its trace being nonnegative, it has at least one such 
eigenvalue. The rest follows by induction. ??

THEOREM 2.3. Let A = (aij) EP~, n > 2, have all diagonal entries 
nonnegative and all off-diagonal entries diflerent from zero. Then there exists 
a diagonal matrix &ag(a,, s2, . . . , 
*. 

s,), with si = 1 or - 1, such that SAS E 

Proof. The case n = 2 is obvious. Let n > 3; for 1 < i < j, we consider 
the principal minor with indices 1, i, j. 



ELLIPTIC MATRICES AND THEIR EIGENPOLYNOMIALS 

By Lemma 2.1 and Theorem 2.2, we have 

a11 ali alj 

0 G ai, aii aiJ 

ajl ‘ji ajj 

= allaiiaij + 2a,ia,J 2 2 
- a,,aij - ajiafj - ajjali. 

We show that a .a .a.. 11 1J ‘J 
> 0. In case a,ialjaiJ < 0, we would have 
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0 < a,,ajiajj - a,la:j - aiiafJ - ajjafi, 

and this implies that aij > 0, i = 1,2, . . . , n. Therefore, by Theorem 2.2 we 
have the following: 

0 < al,aijajj - alla; = a,, 
aii aij I I aji aj.i 

< 0. 

This is a contradiction. It now suffices to choose s1 = 1, si = sign a,,, 
i = 2,3, . . . , n. W 

COROLLARY 2.4. Let A = (aij) ~2” have all diagonal entries nonnega- 
tive and all ofi-diagonal entries dijfferent from zero. Then the spectral radius 
of A is the positive eigenvalue 

Proof. The assertion follows from Theorem 2.3 and from the Perron- 
Frobenius theorem [3]. ??

LEMMA 2.5. Let A = (aij) ??2” have all diagonal entries nonnegative 
and the off-diagonal entry ap y equal to zero. Then either the p th and q th 
rows are proportional of the p th row is zero. 

Proof. The assertion is trivial for n = 2. For the case n = 3, by Theo- 
rem 2.2, we have 

a11 a12 a13 

0 G azl a22 a23 = alla22a33 - alId - a2243 - a3342. 

a31 ‘32 a33 
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It is then easy to see the validity of the assertion by following the proof of 
Theorem 2.3. Now we consider the case n > 4. Let r, s be any indices such 
that the four numbers p, q, T, s are all distinct; then the principal minor in 
the rows with these indices is nonpositive due to Lemma 2.1 and Theorem 
2.2. Set 

aPP 
0 apr aps 

0 a44 aqr aqs 
a 
r'p 

a rq a a rr rs 

a 
SP 

a sq a a 8r ss 

= -a’<O; 

then since 

aPP 
0 l I 0 a44 

E5s 

(or is zero), we have two situations to consider. 

(1) If a 
PP 

= a 
qq 

= 0, then we have readily that 

aP’ I I) al~s = 0 

aq’ a,, 

which implies that the assertion is true for arbitrary r’, s. 
(2) If (1) is not the case, we can assume, without loss of generality, that 

aPP 
= 0 and aqq > 0; then by Lemma 2.1 and Theorem 2.2, we have 

-aqqa;r > 0 (by considering the principal minor in the rows with indices p, 
q, r). Hence, apr = 0. Now in case arr = 0, this case can be changed into 
situation (1). So we may also suppose that arr > 0, old consider the following 
3 x 3 principal submatrix: 

0 0 
aPS I I 0 arr ars . 

ups ars a,, 

As considered above, we obtain then ups = 0. Continuing this procedure, we 
find, at last, that the matrix A has the property that either the pth and qth 
rows are proportional or the p th row is zero. 1 
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COROLLARY 2.6. LetA=(a,j)E~I,andleta,,b0,i=1,2 ,..., n. Zf 
A is nonsingular, then A has all off-diagonal entries diRerent from zero. 

COROLLARY 2.7. Let A = (aij) ~g”, and let aii > 0, i = 1,2, . . . , n. If 

aP4 
= 0, and qqS = 0 for some s, then app X aqq = 0 and ups = 0. 

THEOREM 2.8. Let A = (aij> E%~ have rank r, and a,, > 0, i = 
1,2,. . . ) n. Then there exists an integer t, r < t < n, an n X n permutation 
matrix P, an n x t normalized general diagonal matrix D, and a matrix 
A,, E% with rank r such that 

A = PDA 0 DTP7’. (1) 

The matrix A, is unique up to a .simultaneous permutation of rows and 
columns. 

Conversely, if A, E% has rank r and if D is a normalized n X t 
diagonal matrix and P an n X n permutation matrix, then A from (1) is an 
elliptic matrix in S$ with rank r. 

Proof. This theorem can be proved by using Corollary 2.7, Lemma 2.5, 
and Theorem 2.3 above and Lemma A in [l]. The details are similar to the 
proof of Theorem 2.9 in [ 11. We omit them here. ??

3. ON THE PRINCIPAL SUBMATRICES AND THE EIGENPOLY- 
NOMIAL OF A MATRIX IN z, 

THEOREM 3.1. Let A = (ajj) E%~, and a,Oio > 0 for some i, (1 < i0 < 
n). Then A has a sequence of nested principal submatrices I AJ such that 
Ai E%, i = 1,2,. . . , n. 

Proof. Without loss of generality, we can assume that a,, > 0. We need 
only show that all the leading principal submatrices of A are elliptic. For the 
(n - 1) X (n - 1) leading principal submatrix, by the interlacing theorem 
and noticing that an > 0, it suffices to see the validity. The rest follows by 
induction. ??

THEOREM 3.2. Let A = (aij> E%~, and tr A > 0, then the eigenpolyno- 
mial of A, say p(h), has the form p(h) = A” - alA”-’ - a,A”-* 
r--.;a;;,.i.l A”-‘+ ’ - a,. A”- r, where a, 2 0, ai > 0, i = 2,3,. . . , r, and 
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Proof. By Corollary 1.2 and Theorem 2.2, we need only consider the 
matrix B of Corollary 1.2. Letting r = rank A = rank B, it is easy to see that 

p(h) = A” - +-I - @n-s - . . . _ar_lA”-‘+l - arh”-‘, 

where ai > 0, i = 1,2, . . . , r - 1, a,. > 0. The is suffices to show that 
ai > 0, i = 2,. . . , r - 1. If, for some p, 2 Q p < r - 1, we have that 

aP 
= 0, then since all the principal minors of p X p have same sign ( - l)P- ’ 

(if not zero>, up = 0 implies that they are all zeros. Suppose that A, + i is a 
principal submatrix of order p + 1 of B, and A, is a principal submatrix of 
A p+ i. Noticing that both A, and A, + 1 are elliptic, we know that A, + 1 has 
an eigenvalue equal to zero by the interlacing theorem. Therefore, we obtain 
that all the principal minors of order p + 1 are zeros, and consequently, we 
have that up = up+ 1 = ... = a,. = 0. But a, > 0. This is a contradiction. ??

THEOREM 3.3. Let A = (aij) ET”, aii > 0, i = 1,2, . . . , 12, and det A 
# 0. Then every principal submatrix of order r, n - 1 > r > 2, of A is 
nonsingular. 

Proof. The proof follows from Theorem 2.2 and the interlacing theorem. 
??

REMARK. Even if a matrix A ~2~ together with every principal subma- 
trix of order r (2 < r < n - 1) is nonsingular and elliptic, we can’t deduce 
that det A # 0. For example, consider 

‘0 1 1 2’ 
1 0 4 1 

Ai= 14 0 1’ 
,l 1 1 0) 

THEOREM 3.4. Let A ~2~. Zf A h as no proper principal submatrix that 
is elliptic, then the positive eigenvalue is the smallest one (in modulus) among 
the eigenvalues of A, and so det A # 0. 

Proof. Since A E TI, by the interlacing theorem we know that any 
principal submatrix of A is negative semidefinite. This states that the 
eigenpolynomial of A is given by 

p(A) = A” + alAnml + ... +a,_,A - a,, 
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where ai > 0. If a, = 0, then p(h) = 0 has no positive root. This is a 
contradiction. Therefore, a, > 0 and we have 

P(A)= -~~*n[(~)n_~(i)“-‘_..._~(lj -$I, 

which gives the assertion by Lemma 1.3. ??

DEFINITION. We call a simple connected graph elliptic of rank r if its 
adjacency matrix is elliptic and has rank r. 

As an application of the previous results, we now give Smith’s results (see 
[4, pp. 403-4061 or 15, p. 163, Theorem 6.71). 

THEOREM 3.5. A simple graph of order n is complete k-partite if and 
only if it is an elliptic graph of rank k. 

Proof. The “only if” part: Since we may assume that the adjacency 
matrix of a complete k-partite graph is given by 

A= 

0 4, 4, ... AH 
A,, 0 A,, ... A,,, 

Akl Ak2 Ak3 .a. 0 
(2) 

where Ai. is the li X 1. matrix with all entries equal to 1, i, j = 1,2,. . . , k, 
and xi= 1 i = n, it k f suf rl ces to prove that A has exactly one positive eigen- 
value. By the Perron-Frobenius theorem [3], A has at least one positive 
eigenvalu. On the other hand, noticing that 

I 

El, 0 

A=E,- *. 

0 . Efk 
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where Ei is the i X i matrix with all entries equal to 1, i = Z,, I,, . . . , E,, for 
any real vector x = (x,, x2,. . . , x,JT satisfying xTe = 0 we have that 

xTAx = - (x1 + x2 + *** +xJ + (Xl, + 1 .** +%,+1, )” + . . . 

+(x.l,+...+ll,_,+r + *** +%,+...+l, )“I 

< 0, 

which indicates that A has at most one positive eigenvalue. 
The “if” part: Let the adjacency matrix of an elliptic graph be B; then it 

is readily seen that, by Lemma 2.5, there exists a permutation matrix P such 
that PTBP = A, where A is given by (2). This implies that such an elliptic 
graph and a complete k-partite graph are isomorphic. ??

We would like to thank Professor M. Fiedlerfor bringing elliptic matrices 
to our attention. We are also very grateful to the referee for helping us to 
improve the proof and pointing out some errors in the original version of this 
paper. 
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