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Abstract 

The numbers of spanning trees of the cubic cycle C 3 and the quadruple cycle C, 4 are 
considered in this paper. Two recursive relations are obtained. When we use our approach to 
consider the square cycle C. z, the proof is simpler than the previous ones. Furthermore, we may 
deal with the general case with the aid of the ideas and techniques in this paper. 

1. Introduction and notation 

For the cycle graph G = C, p, i.e., the graph G = C, p has points labelled as 
0, 1, 2 . . . . .  n - 1 and each point i, 0 ~< i ~< n - 1, is adjacent to the points i + 1, i + p 
(mod n), respectively, we denote by T (C. p) the number of spanning trees (the complex- 
ity) of C, p, The formula for T(C2,) was originally conjectured by Bedrosian and 
subsequently proved by Kleitman and Golden [5]. Without knowledge of Kleitman 
and Golden [5], the same formula was also conjectured by Boesch and Wang [2]. 
Different proofs of the formula can be seen in [1, 3, 61, in which it is given as follows: 

r ( c .  ~) = n F .  ~, 

where F, is the Fibonacci number defined by the recursive relation 

F.=F.-I+F.-2, n = 2 , 3  . . . . .  

with the initial condition Fo = 0,/71 = 1. The present paper provides the formulas for 
T (C, 3) and for T (C,4). Furthermore, one can consider the general case using the ideas 
and techniques in this paper. 
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2. Some basic results 

L e m m a  1 (Biggs [4]).  

n--1 

r(cP) = 1 1--I  (4 - eJ - e - J  - ev~ e - ~ J )  
n 

j = l  

where e - i  is the conjugate of e j, e = e 2~/", 1 ~<p ~< [n /2] .  

L e m m a  2. Let 

fp(x) = x 2p-2 + 2x 2p-3 + ... + (p - -  1)x p + (p + 1)x p - I  

+ (p - 1)X p - 2  + " "  + 2X + 1. 

Then we have the following determinantal expression of T (Cff): 

1 n 
T(CP,) = - A .  = ( - 1 )  tp-  ~)t"- l)  I - ,4~,  + I1, 

n fp(1) 

where 4 9 is the companion matrix of  fp(X), p = 1, 2, . . . ,  [n /2] ,  that is, 

0 0 0 .-- 0 - 1  

1 0 0 ... 0 - 2  

,,o 

0 0 .. .  0 - ( p - - l )  

0 0 .-- 0 - ( p + l )  

0 0 .-. 0 - ( p - l )  

0 0 0 ..- 1 - 2  

,4p = 0 

0 

0 

( 2 p -  2)x ( 2 p -  2) 

and I is the identity matrix of order 2(p  - 1). 

P roof .  Because  we have  

n - 1  

a .  = 1-] (4  - J - ~ - J  - epi  _ ~ - p J )  
j = l  

n - 1  n - 1  n--1 

= ( -1 )~"-"  I-I ~-PJ 1-[ (d - 1) 2 I ]  (~c2~-2, + 2e~29-3, + . . .  
j = l  j = l  j = l  

+ (p + 1)d  p- I~ j  + ( p -  1)e tp-2~j + --. + 2e i + 1), 

a n d  t ha t  

fp(x) = Ix1 -- Apl 

= X2P - 2  or_ 2X2P - 3  -+- . . .  + ( P  - -  1)x p + (p + 1)x p-~ 

+ (p - l ) x  p - 2  q- ... + 1, 

+ ( p - -  1)e pj 
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it yields 

~1--1 
l'-I (/3(2p-2)j + 2e (2p-3 I j  q- " "  + (P - -  I)  ~pj 

j = l  

+ (p  + 1)/3 ( p - D j  + (p  - -  1)/3 (p -2 ) j  + -..  + 2d + 1) 

n - 1  

= I-I ] ~ j I - A p I "  
j = l  

Now,  

II - Apl = f p ( 1 ) ,  

F I  - 1 )  = - n ,  
j = l  

n - 1  

Iq 
j = l  

we have 

A. 

e-p~ _ ( _  1)-v~"- 1), 

( _ 1)tp- i) t . -  x) . -  1 f i  
I I  - Ap[ 1-I ( ej - -  1) 2 I d I  - Ap] 

j = l  j = l  

= ( _  1)tp- 1)t.-  1) n 2 I I  - A p l  

fp(1) 
This completes  the p roof  of L e m m a  2. [] 

3. The  m a i n  results  

Case (a): p = 3. 

T h e o r e m  3. The followin9 relation holds: 

T(C~) = 1 A .  = na2., 
n 

where a. satisfies the recursive relation 

a.  = . , / 2 ( a . -  1 + a . - 3 )  - a . - 4 ,  (1) 

with the initial condition al = 1, a2 = 2w/2, a3 = 5, a4 = 5.v/-2 (they are easily obtained 
by Lemma 2). 

Proof.  By virtue of L e m m a  2, we have 
. - -1 

A. = n 2 1-I f3 (es') • 
j=l  
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This deduces, by letting that f3 (x )=  ( x -  c¢)(x-  ~ - J ) ( x -  6 ) ( x -  6 -1) (from the 
expression off3 (x), such an assumption is feasible), the following: 

I1--1 

a2 = 1~ ( d -  ~ ) ( d -  ~ - l ) ( ~ j _  6 ) ( d -  ~-1) 
j = l  

(1 - c¢") (1 - c~-")  (1 - 6")  (1 - 6 - n )  

(1 - ~)  (1 - ~ -  1) (1 - -  6 )  ( i  - -  6 -  x) 

[ ( 1  - c¢ ' ) (1  - - 

,/iol l" 
where (1 - cOO - ~-1)(1 - a)(1 - 6 -1) --f3(1) = 10. Therefore, we can readily 
check that 

a .  - x / - f 6  I ~ l "  + - - • ( 2 )  

Now, we are to verify that a, is the solution of difference equation (1). According to (2), 
we know that a, is a solution of a difference equation of order 4. That is, 

a, + aa,_ 1 + ba,_ 2 + ca,_ 3 + da._ 4 = O. 

Since seen by (2) that [ct[, 1/1~1, ~/1~1 are eigenvalues of a,, we have readily by Vita's 
theorem and the expression offa(x) that a = c, d = 1. Hence, 

a, + a (a . - x  + a n - 3 )  + ba , -2  + a , _ ,  = O. 

With the help of the initial condition and noting that a5 = 13, a 6 = 16x/2 (by 
Lemma 2), it gives the equation 

{ 7x/ /~  + 5b = - 14, 

18a + 5~/-~ = - 18.v/2. 

This implies that a = - v / 2 ,  b = 0. Therefore, we have the recursive relation as 
follows: 

a , =  , j 2 ( a , - 1  + a , - 3 ) - a , - , .  

The proof is completed. 

Case (b): p = 4. 

T h e o r e m  4.  

T ( C ~ )  = _1 A .  = na2., 
n 

where a. satisfies the recursive relation, 

an = a n - 1  + a n - 3  At- 3 a , - 4  - -  a n -  5 - -  a n - 7  - -  a n - 8 ,  
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with the initial condition 

a 1 = 1, a2 = 1, a 3 = 2, a ,  = 1, a5 = 4, a6 =- 8 ,  aT = 13, a8 = 17. 

The  a, are also easily obtained by Le mma  2, n = 1, 2, . . . , 8 ,  which may  be easily 

calculated by a computer.  

Proof .  R e p e a t i n g  the  p ro ced u re  of p r o v i n g  T h e o r e m  3, a n d  le t t ing  

f4 (x )  = x 6 -t- 2x  5 + 3x 4 + 5x a + 3x 2 + 2x + 1 

= (X - -  (X) (X - -  ~ -  1) (X - -  fl) (X - -  f l -  1) (X - -  7) (X - -  7 -  1), 

we get 

a Z = ( _  1)3~,- 1) (1 - ~") (1 - c~-") (1 - fl") (1 - f l -")  (1 - 7") (1 - 7-")  

(1 - a ) ( 1  - ~ - 1 ) ( 1  - / ~ )  (1 - f l - x ) ( 1  - 7 ) ( 1  - 7 - 1 )  

(1 - ~ . ) 2  (1 - f l . )2  (1 - 7") 2 

( -  ~flT)"f, (1) 
Let  

1 
a. - ~ (~] + ~ + ~ + ~, + ~ + ~ + ~ + ~). 

T h e n ,  as the  case p = 3, we m a y  suppose  tha t  

a, = ba a , - 1  + bz a , -  2 + ... + ba a , -  s. 

This  gives the e q u a t i o n  (the coefficient m a t r i x  is a Toep l i t z  mat r ix )  

(as a7 a6 a5 4 3a2 al)(bl t (a9 / 
a9 . . . . . . . .  a8 aT a6 a5 a4 a3 az b 2  = a lo  , (3) 

a 1 5  a 1 4  a 1 3  a 1 2  a l l  a to  a9 8 a16 /  

where  ai,1 ~< i ~< 8, are  g iven by  T h e o r e m  4. By L e m m a  2 we o b t a i n  easily the accu ra t e  

va lues  of  al, i = 9 . . . .  ,16,  i.e., 

a 9 = 34, a lo  = 64, a l l  = 149, a l e  = 176, a13 = 313, 

a l ,  --- 559, a15 = 968, a16 = 1649. 

By (3), we o b t a i n  easily tha t  

b I = 1, b 2 = 0, b 3 = 1, b4 = 3, b5 = - 1, b6 = 0, 

b7 = - 1, b8 = - 1. 

Therefore ,  

an = a n - 1  -1- a n - 3  - t -  3an- 4 -- an-5 - -  a n - 7  - -  an-8 • 

The  p r o o f  is comple ted .  [] 



298 X. Yong et al./Discrete Mathematics 169 (1997) 293-298 

As a by-product ,  we now consider T(C2n). Since 

An = n 2  an2 = ( _  1)n- 1 (1 - -  a n) (1 - 1/a n) 
(1 - a ) ( 1  - 1 / a )  ' 

we may  suppose that  

an = aan-1 + ban-2.  

By Lemma 2, we obtain al  = 1, az = 1, a 3 = 2, a4 = 3. Therefore, we have 

:)(;) 
which implies that  a = b = 1. 

Corollary 5. 

T(CZ,) = na z, 

where 

a n = a n - 1  + a n - 2 ,  n = 2 , 3 ,  . . . ,  

with initial condition ao = O, al = 1. 

Corol lary  5 is the conjecture of  Boesch and W a n g  [2]. 
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