

DISCRETE MATHEMATICS

Discrete Mathematics 169 (1997) 293-298

Note

The numbers of spanning trees of the cubic cycle C_N^3 and the quadruple cycle C_N^4

Xue-rong Yong*, Talip, Acenjian

Department of Mathematics, Xinjiang University, Urumqi, 830046, China

Received 7 July 1993; revised 17 January 1996

Abstract

The numbers of spanning trees of the cubic cycle C_n^3 and the quadruple cycle C_n^4 are considered in this paper. Two recursive relations are obtained. When we use our approach to consider the square cycle C_n^2 , the proof is simpler than the previous ones. Furthermore, we may deal with the general case with the aid of the ideas and techniques in this paper.

1. Introduction and notation

For the cycle graph $G = C_n^p$, i.e., the graph $G = C_n^p$ has points labelled as 0, 1, 2, ..., $n-1$ and each point $i, 0 \le i \le n-1$, is adjacent to the points $i + 1, i + p$ (mod n), respectively, we denote by $T(C_n^p)$ the number of spanning trees (the complexity) of C_n^p . The formula for $T(C_n^2)$ was originally conjectured by Bedrosian and subsequently proved by Kleitman and Golden [5]. Without knowledge of Kleitman and Golden [5], the same formula was also conjectured by Boesch and Wang [2]. Different proofs of the formula can be seen in $[1, 3, 6]$, in which it is given as follows:

$$
T(C_n^2)=n F_n^2,
$$

where F_n is the Fibonacci number defined by the recursive relation

$$
F_n = F_{n-1} + F_{n-2}, \quad n = 2, 3, \ldots,
$$

with the initial condition $F_0 = 0$, $F_1 = 1$. The present paper provides the formulas for $T(C_n^3)$ and for $T(C_n^4)$. Furthermore, one can consider the general case using the ideas and techniques in this paper.

^{*} Corresponding author.

2. Some basic results

Lemma 1 *(Biggs* [4]).

$$
T(C_n^p) = \frac{1}{n} \prod_{j=1}^{n-1} (4 - \varepsilon^j - \varepsilon^{-j} - \varepsilon^{pj} - \varepsilon^{-pj}),
$$

where ε^{-j} *is the conjugate of* ε^{j} , $\varepsilon = e^{2\pi i/n}$, $1 \leq p \leq [n/2]$.

Lemma 2. *Let*

$$
f_p(x) = x^{2p-2} + 2x^{2p-3} + \dots + (p-1)x^p + (p+1)x^{p-1} + (p-1)x^{p-2} + \dots + 2x + 1.
$$

Then we have the following determinantal expression of $T(C_n^p)$:

$$
T(C_n^p) = \frac{1}{n} A_n = (-1)^{(p-1)(n-1)} \frac{n}{f_p(1)} \big| - \overline{A}_p^n + I \big|,
$$

where \overline{A}_p *is the companion matrix of* $f_p(x)$, $p = 1, 2, \ldots, \lfloor n/2 \rfloor$, *that is*,

$$
\bar{A}_p = \begin{pmatrix}\n0 & 0 & 0 & \cdots & 0 & -1 \\
1 & 0 & 0 & \cdots & 0 & -2 \\
& & \cdots & & & \\
& & & \cdots & & \\
0 & 0 & 0 & \cdots & 0 & -(p-1) \\
& & & & 0 & -(p+1) \\
& & & & & \\
0 & 0 & 0 & \cdots & 0 & -(p-1) \\
& & & & & \\
& & & & & \\
0 & 0 & 0 & \cdots & 1 & -2\n\end{pmatrix}_{(2p-2)\times(2p-2)}
$$

and I is the identity matrix of order $2(p - 1)$ *.*

Proof. Because we have

$$
A_n = \prod_{j=1}^{n-1} (4 - \varepsilon^j - \varepsilon^{-j} - \varepsilon^{pj} - \varepsilon^{-pj})
$$

= $(-1)^{(n-1)} \prod_{j=1}^{n-1} \varepsilon^{-pj} \prod_{j=1}^{n-1} (\varepsilon^j - 1)^2 \prod_{j=1}^{n-1} (\varepsilon^{(2p-2)j} + 2\varepsilon^{(2p-3)j} + \dots + (p-1)\varepsilon^{pj}$
+ $(p+1)\varepsilon^{(p-1)j} + (p-1)\varepsilon^{(p-2)j} + \dots + 2\varepsilon^j + 1),$

and that

$$
f_p(x) = |xI - \bar{A}_p|
$$

= $x^{2p-2} + 2x^{2p-3} + \dots + (p-1)x^p + (p+1)x^{p-1}$
+ $(p-1)x^{p-2} + \dots + 1$,

it yields

$$
\prod_{j=1}^{n-1} \left(\varepsilon^{(2p-2)j} + 2\varepsilon^{(2p-3)j} + \dots + (p-1)\varepsilon^{pj} \right)
$$

+
$$
(p+1)\varepsilon^{(p-1)j} + (p-1)\varepsilon^{(p-2)j} + \dots + 2\varepsilon^j + 1)
$$

=
$$
\prod_{j=1}^{n-1} |\varepsilon^j I - \overline{A}_p|.
$$

Now,

$$
|I - \bar{A}_p| = f_p(1),
$$

\n
$$
\prod_{j=1}^{n-1} (\varepsilon^j - 1) = -n,
$$

\n
$$
\prod_{j=1}^{n-1} \varepsilon^{-pj} = (-1)^{-p(n-1)},
$$

we have

$$
A_n = \frac{(-1)^{(p-1)(n-1)} \prod_{j=1}^{n-1} (\varepsilon^j - 1)^2 \prod_{j=1}^n |\varepsilon^j I - \overline{A}_p|}{(-1)^{(p-1)(n-1)} n^2 \frac{|I - \overline{A}_p^n|}{f_p(1)}}.
$$

This completes the proof of Lemma 2. \square

3. The main results

Case (a):
$$
p = 3
$$
.

Theorem 3. *The followin9 relation holds:*

$$
T(C_n^3)=\frac{1}{n}A_n=na_n^2,
$$

where a. satisfies the recursive relation

$$
a_n = \sqrt{2(a_{n-1} + a_{n-3}) - a_{n-4}}, \tag{1}
$$

with the initial condition $a_1 = 1$ *,* $a_2 = 2\sqrt{2}$ *,* $a_3 = 5$ *,* $a_4 = 5\sqrt{2}$ *(they are easily obtained in the initial condition a₁ by Lemma* 2).

Proof. By virtue of Lemma 2, we have

$$
A_n = n^2 \prod_{j=1}^{n-1} f_3(\varepsilon^j).
$$

This deduces, by letting that $f_3(x) = (x - \alpha)(x - \alpha^{-1})(x - \overline{\alpha}) (x - \overline{\alpha}^{-1})$ (from the expression of $f_3(x)$, such an assumption is feasible), the following:

$$
a_n^2 = \prod_{j=1}^{n-1} \left(\varepsilon^j - \alpha \right) \left(\varepsilon^j - \alpha^{-1} \right) \left(\varepsilon^j - \bar{\alpha} \right) \left(\varepsilon^j - \bar{\alpha}^{-1} \right)
$$

=
$$
\frac{\left(1 - \alpha^n \right) \left(1 - \alpha^{-n} \right) \left(1 - \bar{\alpha}^n \right) \left(1 - \bar{\alpha}^{-n} \right)}{\left(1 - \alpha \right) \left(1 - \alpha^{-1} \right) \left(1 - \bar{\alpha} \right) \left(1 - \bar{\alpha}^{-1} \right)}
$$

=
$$
\left[\frac{\left(1 - \alpha^n \right) \left(1 - \bar{\alpha}^n \right)}{\sqrt{10} |\alpha|^n} \right]^2,
$$

where $(1 - \alpha)(1 - \alpha^{-1})(1 - \bar{\alpha})(1 - \bar{\alpha}^{-1}) = f_3(1) = 10$. Therefore, we can readily check that

$$
a_n = \frac{1}{\sqrt{10}} \left[|\alpha|^n + \left(\frac{1}{|\alpha|} \right)^n - \left(\frac{\alpha}{|\alpha|} \right)^n - \left(\frac{\bar{\alpha}}{|\alpha|} \right)^n \right].
$$
 (2)

Now, we are to verify that a_n is the solution of difference equation (1). According to (2), we know that a_n is a solution of a difference equation of order 4. That is,

$$
a_n + aa_{n-1} + ba_{n-2} + ca_{n-3} + da_{n-4} = 0.
$$

Since seen by (2) that $|\alpha|$, $1/|\alpha|$, $\bar{\alpha}/|\alpha|$ are eigenvalues of a_n , we have readily by Vita's theorem and the expression of $f_3(x)$ that $a = c, d = 1$. Hence,

$$
a_n + a(a_{n-1} + a_{n-3}) + ba_{n-2} + a_{n-4} = 0.
$$

With the help of the initial condition and noting that $a_5 = 13$, $a_6 = 16\sqrt{2}$ (by Lemma 2), it gives the equation

$$
\begin{cases}\n7\sqrt{2a} + 5b = -14, \\
18a + 5\sqrt{2b} = -18\sqrt{2}.\n\end{cases}
$$

This implies that $a = -\sqrt{2}$, $b = 0$. Therefore, we have the recursive relation as follows:

$$
a_n = \sqrt{2}(a_{n-1} + a_{n-3}) - a_{n-4}.
$$

The proof is completed.

Case (b): $p = 4$.

Theorem 4.

$$
T(C_n^4) = \frac{1}{n} A_n = na_n^2,
$$

where a. satisfies the recursive relation,

$$
a_n = a_{n-1} + a_{n-3} + 3a_{n-4} - a_{n-5} - a_{n-7} - a_{n-8},
$$

with the initial condition

 $a_1 = 1$, $a_2 = 1$, $a_3 = 2$, $a_4 = 1$, $a_5 = 4$, $a_6 = 8$, $a_7 = 13$, $a_8 = 17$.

The a_n *are also easily obtained by Lemma 2, n = 1, 2, ..., 8, which may be easily calculated by a computer.*

Proof. Repeating the procedure of proving Theorem 3, and letting

$$
f_4(x) = x^6 + 2x^5 + 3x^4 + 5x^3 + 3x^2 + 2x + 1
$$

= $(x - \alpha)(x - \alpha^{-1})(x - \beta)(x - \beta^{-1})(x - \gamma)(x - \gamma^{-1}),$

we get

$$
a_n^2 = (-1)^{3(n-1)} \frac{(1-\alpha^n)(1-\alpha^{-n})(1-\beta^n)(1-\beta^{-n})(1-\gamma^n)(1-\gamma^{-n})}{(1-\alpha)(1-\alpha^{-1})(1-\beta)(1-\beta^{-1})(1-\gamma)(1-\gamma^{-1})}
$$

=
$$
\frac{(1-\alpha^n)^2 (1-\beta^n)^2 (1-\gamma^n)^2}{(-\alpha\beta\gamma)^n f_4(1)}.
$$

Let

$$
a_n = \frac{1}{\sqrt{f_4(1)}} (\alpha_1^n + \alpha_2^n + \alpha_3^n + \alpha_4^n + \alpha_5^n + \alpha_6^n + \alpha_7^n + \alpha_8^n).
$$

Then, as the case $p = 3$, we may suppose that

$$
a_n = b_1 a_{n-1} + b_2 a_{n-2} + \cdots + b_8 a_{n-8}.
$$

This gives the equation (the coefficient matrix is a Toeplitz matrix)

(as a7 a6 a5 4 3a2 al)(bl t (a9 / a9 a8 aT a6 a5 a4 a3 az b2 = alo , (3) a15 a14 a13 a12 all ato a9 8 *a16/*

where $a_i, 1 \leq i \leq 8$, are given by Theorem 4. By Lemma 2 we obtain easily the accurate values of a_i , $i = 9, ..., 16$, i.e.,

$$
a_9 = 34
$$
, $a_{10} = 64$, $a_{11} = 149$, $a_{12} = 176$, $a_{13} = 313$,
 $a_{14} = 559$, $a_{15} = 968$, $a_{16} = 1649$.

By (3), we obtain easily that

$$
b_1 = 1
$$
, $b_2 = 0$, $b_3 = 1$, $b_4 = 3$, $b_5 = -1$, $b_6 = 0$,
 $b_7 = -1$, $b_8 = -1$.

Therefore,

$$
a_n = a_{n-1} + a_{n-3} + 3a_{n-4} - a_{n-5} - a_{n-7} - a_{n-8}.
$$

The proof is completed. \Box

As a by-product, we now consider $T(C_n^2)$. Since

$$
A_n=n^2a_n^2=(-1)^{n-1}\frac{(1-a^n)(1-1/a^n)}{(1-a)(1-1/a)},
$$

we may suppose that

 $a_n = aa_{n-1} + ba_{n-2}$.

By Lemma 2, we obtain $a_1 = 1, a_2 = 1, a_3 = 2, a_4 = 3$. Therefore, we have

$$
\begin{pmatrix} 1 & 1 \ 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix},
$$

which implies that $a = b = 1$.

Corollary 5.

$$
T(C_n^2)=na_n^2,
$$

where

 $a_n = a_{n-1} + a_{n-2}, \quad n = 2, 3, \ldots,$

with initial condition $a_0 = 0$, $a_1 = 1$.

Corollary 5 is the conjecture of Boesch and Wang [2].

Acknowledgements

We are grateful to the referees for helpful comments and valuable suggestions, which helped us to formulate our results more precisely.

References

- [1] G. Baron, H. Prodinger, R.F. Tichy, F.T. Boesch and J.F. Wang, The number of spanning trees in the square of a cycle, Fibonacci Quart. (1985) 258-264.
- [2] F.T. Boesch and J.F. Wang, A conjecture on the number of spanning trees in the square of a cycle, in: Notes from New York Graph Theory Day V (New York Academy Sciences, New York, 1982) p. 16.
- [3] F.T. Boesch and H. Prodinger, Spanning tree formulas and Chebyshev polynomials, Graphs Combin. 2 (1986) 191-200.
- [4] N. Biggs, Algebraic Graph Theory (Cambridge Univ. Press, Cambridge, 1976).
- [5] D.J. Kleitman and B. Golden, Counting trees in a certain class of graphs, Amer. Math. Monthly 82 (1975) 40-44,
- [6] Xue-rong Yong and Fu-ji Zhang, A simple proof for the complexity of square cycle C_p^2 , J. Xinjiang Univ. 11 (1994) 12-16.