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Abstract

The numbers of spanning trees of the cubic cycle C? and the quadruple cycle C* are
considered in this paper. Two recursive relations are obtained. When we use our approach to
consider the square cycle C2, the proof is simpler than the previous ones. Furthermore, we may
deal with the general case with the aid of the ideas and techniques in this paper.

1. Introduction and notation

For the cycle graph G = C%, ie., the graph G = CZ has points labelled as
0,1,2, ... ,n— 1 and each point i, 0 < i < n — 1, is adjacent to the pointsi + 1,i + p
(mod n), respectively, we denote by T (C?) the number of spanning trees (the complex-
ity) of CE The formula for T(C2) was originally conjectured by Bedrosian and
subsequently proved by Kleitman and Golden [5]. Without knowledge of Kleitman
and Golden {5], the same formula was also conjectured by Boesch and Wang [2].
Different proofs of the formula can be seen in [1, 3, 6], in which it is given as follows:

T(C}) =nFy,
where F, is the Fibonacci number defined by the recursive relation
Fn=F‘n41+F;l—25 n:2335"'5

with the initial condition F, = 0, F; = 1. The present paper provides the formulas for
T (C2)and for T (Cy). Furthermore, one can consider the general case using the ideas
and techniques in this paper.
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2. Some basic results

Lemma 1 (Biggs [4]).
177 o .
T(CP) =~ 4 — gl —gI_gpi _ ¢TIy
(cn== H @8 o7~ o —s7)
where ¢4 is the conjugate of ¢/, e = ", 1 < p <[n/2].

Lemma 2. Let
LX) =x2P72 4 2% 4+ (p— DXP - (p 4 Dx?T!
+(p—DxP"2+ - +2x+ 1.

Then we have the following determinantal expression of T (CI):

1 n -
T(C))==A,=(—1)F~" V"D _— |4} + 1],
e AT
where A, is the companion matrix of f,(x), p = 1,2, ... ,[n/2], that is,
000 - 0 -1 )
1 0 0 -~ 0 -2
A,=|0 0 0 0 —(p-1
000 - 0 —(p+1]
000 - 0 —(p—1)
000 - 1 -2 (2p—-2)x(2p-2)

and I is the identity matrix of order 2(p — 1).

Proof. Because we have

n—1
A,=J] G—¢—¢7 —eP —¢™F)
i=1

n—1

n—1 n—1
(=) O[T e ® ] (@ — 1)? [] 27729 4+ 262273 4 oo 4 (p— 1)e¥
j j=1 j=1

j=1 J
+(p+De? Vg (p—1)e?P2 4 ... 4260+ 1),
and that
fox) = |xI — 4|
=xPT2 4234 4 (p—DxP +(p + DxP!
+(p—DxP" 2+ - 41,
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it yields
n=- 1 . . .
H (8(21:*2)1 4 2e2P3 L 4 (p— 1)e?
j=1

+(p+ 1D 4 (p—De®P D 4 .o+ 254 1)

n-1
=[] 161 — 4,
i=1
Now,
|~ A, = f,(1),
n—1
[TE-1)=—n,
j=1
n—1
H e b = (_1)—p(n—1),
j=1
we have
(_1)(p—1)(n—1) n-1 " _
A” = ——— H (8‘) _ 1)2 H |8JI - Ap]
II - Apl j=1 j=1
e 11 — 4}
— (__1)(1: Dn-1y 217~ p1
1(1)

This completes the proof of Lemma 2. O

3. The main results
Case (a). p=3.
Theorem 3. The following relation holds:
T(C3) = Ay = nak,

where a, satisfies the recursive relation

a, = \/E(an—l + p-3) — Ay,

295

(1)

with the initial conditiona, = 1,a, =2./2,a3 = 5,a4 = 5\/5 (they are easily obtained

by Lemma 2).

Proof. By virtue of Lemma 2, we have

n—1
An = nZ H f3(£j)'
j=1



296 X. Yong et al. [ Discrete Mathematics 169 (1997) 293-298

This deduces, by letting that f3(x) =(x —a)(x —a ) (x — &) (x —a " !) (from the
expression of f3(x), such an assumption is feasible), the following:

=T -2 =2 ) 0@ =5
(L= o) (L~ a) (1 =) (1 57
e T T
[t oy
\/Elocl" ’

where (1 —a)(1 —a ) (1 —&) (1 —a ') =f3(1) = 10. Therefore, we can readily
check that

ool (- 30)

Now, we are to verify that a, is the solution of difference equation (1). According to (2),
we know that q, is a solution of a difference equation of order 4. That is,

a,+aa, | +ba,_ 5+ ca, 3 +da,_4=0.

Since seen by (2) that |«|, 1/]a|, &/|a| are eigenvalues of a,, we have readily by Vita’s
theorem and the expression of f3(x) that a = ¢,d = 1. Hence,

an + a(an‘l + an—S) + ban—Z +an-4 = 0.

With the help of the initial condition and noting that as =13, a¢ = 16\/5 (by
Lemma 2), it gives the equation

{7 2a + 5b = — 14,
18a + 5,/2b = — 18,/2.

This implies that a = — \/5, b = 0. Therefore, we have the recursive relation as
follows:

an = \/E(an—l + an—3) —Qp-a.
The proof is completed.
Case (b). p = 4.

Theorem 4.
4 1 2
T(Cn) =;An = na,,

where a, satisfies the recursive relation,

Ay = 0p-1 + ay-3 + 3y-4 — Qy-5 — Qy—7 — Q-3
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with the initial condition
a,=1, a,=1, ays=2, as=1, as=4, ac=8, a,=13, ag=17.
The a, are also easily obtained by Lemma 2, n=1,2, ... ,8, which may be easily
calculated by a computer.
Proof. Repeating the procedure of proving Theorem 3, and letting
fa(x)=x5+2x> +3x* +5x> +3x2 +2x + 1
=(x—a(x—a N -PHx—-FHEx—-pP—y,

2 (_ppe-n (Lm0 =2 )L =B =BT (=) (L —y")
" T-—a(l—a HYA-AHA-F HU DT~y
(1—am? (1 — 2 (1 =y
(—apy) a ()

Let

a, = (o} + o + o3 + o +a% + ag + o + ag).

1
Vfa(l)

Then, as the case p = 3, we may suppose that
a,=bya,—1 +bsa,->+ -+ + bga,_s.

This gives the equation (the coefficient matrix is a Toeplitz matrix)

asg ay 273 as a4 [ZE} [4%) ag bl ag
dg dg 47 de¢ A5 Q4 43 b, aio

= .| 3
di1s Q14 Qg3 Ay Ay 49 4dg dag by e

where g;,1 < i < 8, are given by Theorem 4. By Lemma 2 we obtain easily the accurate
values of a;,i =9, ..., 16, ie,

as =34, a,;,=064, a;; =149, a;, =176, a,;; =313,
ajs =559, a;5=968, a;c= 1649.

By (3), we obtain easily that
bi=1, by,=0, by=1, by=3, bs=—1, bs=0,
b;=—1, bg=—1.

Therefore,
Ay =0y 1+ Ay-3+ 30,4 — Ay 5 —Au_7 — Ay_g.

The proof is completed. O
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As a by-product, we now consider T (C?). Since

a1 (1 —=a") (1 —1/a"
1-a(-1/a)’

A, =na? =(~1)

we may suppose that
a,=ada,_, + ban_z.

By Lemma 2, we obtain a, = 1, a, = 1, as = 2, a4 = 3. Therefore, we have

1 1\fa\ (2
2 1/\s) \3)
which implies that a = b = 1.

Corollary 5.
T(C7) = nay,
where
Ay =0y—1+ay—5, =23 ...,

with initial condition ag = 0,a; = 1.

Corollary 5 is the conjecture of Boesch and Wang [2].
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