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Abstract

There is a very large literature devoted to counting
structures, e.g., spanning trees, Hamiltonian cycles,
independent sets, acyclic orientations, in the n×m grid
graph G(n,m). In particular the problem of counting
the number of structures in fixed height graphs, i.e.,
fixing m and letting n grow, has been, for different
types of structures, attacked independently by many
different authors, using a transfer matrix approach.
This approach essentially permits showing that the
number of structures in G(n,m) satisfies a fixed-degree
constant-coefficient recurrence relation in n.

In contrast there has been surprisingly little work
done on counting structures in grid-cylinders (where the
left and right, or top and bottom, boundaries of the grid
are wrapped around and connected to each other) or in
grid-tori (where the left edge of the grid is connected to
the right and the top edge is connected to the bottom
one). The goal of this paper is to demonstrate that, with
some minor modifications, the transfer matrix technique
can also be easily used to count structures in fixed height
grid-cylinders and tori.

1 Introduction

Grid graphs are very common and there is an extremely
large literature devoted to counting structures in them.
See Table 1. Let G(n,m) denote the n×m grid graph.
Much of the counting literature asks questions of the
type “let m and/or n go to ∞; how does the number
of spanning trees (or Hamiltonian cycles, independent
sets, acyclic orientations, k-colorings, etc.) grow as a
function of n and/or m. Table 1 presents a selection
of these results. Many of the results in this area work
by assuming that m (the “height” of the grid) is fixed
and examine how the number of structures grows as
n → ∞; in almost all cases the technique used follows
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a transfer matrix formulation (or something equivalent,
e.g., recursively calculating the Tutte-polynomial of the
growing fixed-height grid [12]). This very natural tech-
nique was developed independently by many authors
without knowing that it had been used for solving other
grid counting problems. The technique permits showing
that, for fixed height-m grids, the number of designated
structures in G(n,m) will grow as ~aAn

m
~bt where Am is

some square matrix and ~a,~b are vectors, all with non-
negative integral entries. As will be explained shortly,
this immediately implies that, for fixed m, the number
of structures in G(n,m) satisfies a fixed-order constant
coefficient recurrence relation in n, something that was
not a-priori obvious.

Given the large amount of prior work on grid-graphs
it is surprising to note that there seems to be very little
work done on counting structures in related graphs such
as cylinders or tori1. The main goal of this paper is
to show that, by adding a little extra framework, the
transfer matrix method can also easily count structures
in grid cylinders and tori.

We start by formally defining the graphs and the
values to be counted. See Figure 1.

Definition 1.1. The n × m grid graph Grid Graph
G(n,m), has vertex set

V (n,m) = {(i, j) : 0 ≤ i < n, 0 ≤ j < m}

and edge set

EG(n,m) = {((i, j), (i
′, j′)) : |i− i′|+ |j − j′| = 1} .

Let

Top(n,m) = {((j,m− 1), (j, 0)) : 0 ≤ j < n},

Side(n,m) = {((n− 1, i), (0, i)) : 0 ≤ i < m}.

Fat Cylinders FC(n,m), Thin Cylinders TC(n,m)
and Tori T (n,m) are graphs with the same vertex set

1One of the few exceptions is the analysis in [4] of spanning

trees in what we will later define as fat-cylinders.



V (n,m) but respective edge sets:

EFC(n,m) = EG(n,m) ∪ Side(n,m)

ETC(n,m) = EG(n,m) ∪ Top(n,m)

ET (n,m) = EG(n,m) ∪ Top(n,m) ∪ Side(n,m)

Definition 1.2. Let S be one of the structures de-
scribed in Table 1. Let G ∈ {G,FC, TC, T} be a grid,
fat cylinder, thin cylinder or torus. Then SG(n,m) will
be the set of all structures of type S in the graph G(n,m)
and |SG(n,m)| will be the number of structures of type
S in the graph G(n,m), e.g., STFC(n,m) is the number
of spanning trees in the n×m fat-cylinder.

The goal of this paper is to point out the following
“meta-theorem”,

Theorem 1.1. Let S be one of the structures listed in
Table 1, G ∈ {G,FC, TC, T}, and m ≥ 1 an integer.
Define the function in n,

f(S,G,m;n) = |SG(n,m)|.

Then there exists

• an integer k (function of S, G, and m)

• A k×k transfer matrix A(S,G,m) with nonnegative
integer entries

• two 1× k vectors ~a(S,G,m), ~b(S,G,m), with non-
negative integer entries

such that

f(S,G,m;n) = ~a(S,G,m)An(S,G,m) ~bt(S,G,m)(1.1)

As an example, if S = HC and G = T (torus) then
the theorem says that, for fixed m, the number of
Hamiltonian Cycles in a n × m torus grows as ~aAn~bt

for some fixed integral matrix A and vectors ~a,~b. For
the grid graph this general technique is well known (see
all of the results referenced in Table 1) but for the other
graphs this does not seem to have been commented on
before.

Also note that Theorem 1.1 implies that
f(S,G,m;n) = |SG(n,m)| satisfies a fixed-degree
constant-coefficient recurrence relation in n. To see
this drop the labelling and write f(n) = ~aAn~bt. Let
Q(x) =

∑t
i=0

qixi be any polynomial that annihilates
A, i.e., Q(A) = 0 (by the Cayley-Hamiltonian theorem
the characteristic polynomial of A must annihilate A so
such a polynomial exists.). Then it is easy to see that
∀n ≥ t,

t
∑

i=0

qif(n+ i) = ~a

(

t
∑

i=0

qiA
n+i

)

~bt

= ~aAn

(

t
∑

i=0

qiA
i

)

~bt

= ~aAn 0 ~bt = 0

where 0 denotes the k× k zero matrix and 0 a scalar so
f(n) satisfies the degree-t constant coefficient recurrence

relation f(n+ t) =
∑t−1

i=0
− qi

qt

f(n+ i) in n.
As an interesting side note we point out that, for all

of the problems S listed in Table 1 (with the exception
of Eulerian Orientations and Eulerian Tours which are
not well defined except on the torus) our derivation will
have the further property that

A(S, FC,m) = A(S, G,m)
~b(S, FC,m) = ~b(S, G,m),

and
A(S, T,m) = A(S, TC,m)
~b(S, T,m) = ~b(S, TC,m);

in particular, we will only need to build two transfer
matrices, one shared by G and FC and a second shared
by TC and T , and not four.

Before proceeding to the derivation we will need
some simple observations as to how graphs grow. In
particular we note that a grid/thin-cylinder of size
(n + 1) × m can, independently of n, be recursively
built by starting with G(n,m)/TC(n,m), adding the
rightmost column of nodes and the appropriate set of
“right-edges”. Furthermore, the fat-cylinders/tori can
be built from the corresponding grids/thin-cylinders by
adding the edges Side(n,m) (The fat-cylinders/tori are
thus a special case of what have recently been labelled
Recursively constructible graphs in [13].) Since these
observations are at the core of our derivation we collect
these facts in the following lemma (see Figure 2)

Lemma 1.1. Define L(m) and R(n,m) to be the “left-
most” and “rightmost” columns of vertices in the n×m
graphs we are considering

L(m) = {(0, i) : i = 0, . . . ,m− 1}

R(n,m) = {(n− 1, i) : i = 0, . . . ,m− 1}

A grid/thin-cylinder of size (n + 1) × m can be recur-
sively built by starting with G(n,m)/TC(n,m), adding
the column R(n,m) and the appropriate set of “right-
edges”. That is, defining

RtG(n,m) = { ((n− 1, i), (n, i))) : 0 ≤ i < m}

∪ { ((n, i), (n, i+ 1)) : 0 ≤ i < m− 1}

RtTC(n,m) = RtG(n,m) ∪ {((n,m− 1), (n, 0))}

gives

EG(n+ 1,m) = EG(n,m) ∪ RtG(n,m)

and ETC(n+ 1,m) = ETC(n,m) ∪ RtTC(n,m)



IS Independent Sets/2D (1,∞) RLL codes
V ′ ∈ V s.t ∀u, v ∈ V ′, (u, v) 6∈ E
Independent sets in grid graphs are in 1−1 correspondence
with 2-Dimensional (1,∞) run-length limited codes

[5] [3] [8] [14] [6]
Emphasis is on deriving
upper & lower bounds on
cIS(G)

DM Dimer Matchings
A placement of 1× 2 “dominos” that covers V such that a
domino covers nodes u, v iff (u, v) ∈ E.

[16] [18] [7] give
“closed formula”
for |DMG(n,m)|

HC Hamiltonian Cycles
A simple cycle containing all of the vertices

[9] [17]

ST Spanning Trees
A connected acyclic subgraph containing all vertices

[12] [15] [4]

SF Spanning Forests
An acyclic subgraph containing all vertices

[2] [12]

EO Eulerian Orientations/Ice Condition
An orientation of the edges in which every vertex has
indegree 2 and outdegree 2 (only defined for tori)

[10] gives closed
expression for cEO(T )

ET Eulerian Tours
An orientation of the edges along with a circular ordering
of the edges such that the source of each edge is equal to
the sink of its predecessor
(only defined for tori)

this paper

CC

DCC

Cycle Covers/Directed Cycle Covers
CC is a collection of simple cycles that together contain
each vertex exactly once. DCC is a Cycle cover along with
an orientation (clockwise/counterclockwise) of each vertex

[1]

AO Acyclic Orientations
An orientation of the edges that contains no directed cycle.

[2] [12]

kC k Colorings
A function f : E → {1, . . . , k} such that if (u, v) ∈ E then
f(u) 6= f(v)

[12]

Table 1: The problems addressed, short descriptions, and (a representative list of) references.
If G = (V,E) is an undirected graph, an edge orientation of G transforms G into a directed graph by giving each
(u, v) ∈ E a direction.
DM is the only case for which a closed form in n,m is known for |SG(n,m)|.

Define cS,G = limn,m→∞ |SG(n,m)|
1/mn

(if the limit exists).
EO is the only case for which a closed form of cS,G is known. In other problems, only upper and lower bounds
on cS,G have been found.
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Figure 1: The basic graphs. Note that EFC(n,m) = EG(n,m) ∪ Side(n,m) and ET (n,m) = ETC(n,m) ∪
Side(n,m)

(a) EG(n + 1, m) = EG(n, m) ∪

RtG(n, m)
(b) ETC(n + 1, m) = ETC(n, m) ∪

RtTC(n, m)

Figure 2: How grid graphs and thin-cylinders grow. The dark edges are RtG(n,m) and RtTC(n,m).

Finally, note that

EFC(n,m) = EG(n,m) ∪ Side(n,m)

and ET (n,m) = ETC(n,m) ∪ Side(n,m)

2 The General Technique

In this section we describe our technique. Due to the
space limitations of this extended abstract we do not
prove it for all cases. Instead we describe the general
framework and, to illustrate, sketch how the structure
S = ST fits into the framework.

Also, our general framework is only described
for structures that are defined as subsets of the
edges of the graphs possessing special properties.
This general framework is applicable for S ∈
{HC,DM,ST,SF,CC}

In the case of {ET,AO} where the structure is an
orientation of all of the edges in the graph possessing a
certain property or {IS,EO,kC} where the structure is
a labelling of the vertices possessing a certain property,
some of the notation and definitions of the general
framework must be changed appropriately (but the
general approach can still be used). In this extended

abstract we do not give these changes but they are very
straightforward.

We start by assuming that we are interested in
counting the number of S (e.g., spanning trees) in
grid graphs. We first show how to construct the
transfer matrix A(S, G,m). We then show how to define

~a(S, G,m), ~b(S, G,m), such that

f(S, G,m;n) = ~a(S, G,m)An(S, G,m) ~bt(S, G,m).
(2.2)
We then show how to solve the problem on fat-cylinders
by defining ~a(S, FC,m), for the fat-cylinders such that

f(S, FC,m;n) = ~a(S, FC,m)An(S, G,m) ~bt(S, G,m)
(2.3)

(so the transfer matrix and ~b for grids and fat cylinders
will be the same).

After this we will discuss how to modify the con-
struction of transfer matrix A(S, G,m) to construct
the transfer matrix A(S, TC,m) for thin cylinders and

~a(S, TC,m), ~b(S, TC,m), such that

f(S, TC,m;n) = ~a(S, TC,m)An(S, TC,m) ~bt(S, TC,m).
(2.4)



We conclude by showing how to construct new
~a(S, T,m), for the torus such that

f(S, T,m;n) = ~a(S, T,m)An(S, TC,m) ~bt(S, TC,m)
(2.5)

(so the transfer matrix and ~b for thin-cylinders and tori
will be the same).

2.1 Specifics Fix m, the height of the grid. The
technique starts by defining legal objects in G(n,m) and
letting L(n,m) be the set of legal objects in G(n,m).
The structures that we are counting must be legal
objects but there may be many other legal objects as
well.

For ST (spanning trees), legal objects will be forests
in (n,m) having the property that every connected com-
ponent of the forest contains at least one vertex in
L(m) ∪R(n,m). See Figure 3.

The next step is to define a set of classifications P
of legal objects. The classifications will be expressed
in terms of the 2m elements in L(m) ∪ R(n,m). Every
L ∈ L(n,m) will have a unique classification C(L) ∈ P.
Set LX(n,m) = {L ∈ L(n,m) : C(L) = X} and
fX(n) = |LX(n,m)|. (Note that in C(L), n should be
considered a label and not a value.)

Classifications have the property that if L is a S
structure with C(L) = X then every legal object L′

with C(L′) = X must also be a good S structure.

Order the elements of P arbitrarily as
X1, X2, . . . , X|P|. We then set ~f(n) to be the |P|-

tuple ~f(n) = (fX1
(n), fX2

(n), . . . , fX|P|
(n)).

See Figure 3. For ST, P will be the set of partitions
of 2m elements in L(m) ∪ R(n,m). The classification
of legal forest F in G(n,m) will be the partition of
L(m) ∪ R(n,m) such that x, y ∈ L(m) ∪ R(n,m) are
in the same set in the partition C(F ) if and only if x, y
are in the same connected component of F.

Note that in a spanning tree every node is in the
same connected component so every spanning tree has
the same classification which is the partition containing
the one set X = {L(m) ∪R(n,m)}. Furthermore every
legal object with classification X = {L(m)∪R(n,m)} is
a spanning tree.

The next step is to show that legal structures with
the same classification behave the same when the same
set of edges are added/subtracted from them. This is
encapsulated in the following properties.

(P1) Let E ⊆ RtG(n,m) and X ∈ P. ∀L ∈
LX(n,m) either all L∪E are legal objects in L(n+1,m)
or no L∪E are legal objects in L(n+1,m). We denote
these options by X ∪ E 6= ∅ or X ∪ E = ∅

(P2) Let E ⊆ RtG(n,m) and X ∈ P. If X ∪ E 6= ∅
then there exists a unique X ′ ∈ P such that ∀L ∈
LX(n,m) C(L ∪ E) = X ′. We denote this by X ∪ E =
X ′.

(P3) If L is a legal object in L(n + 1,m), let
L− RtG(n,m) be the object in G(n,m) that is created
by starting with L and throwing away all of the edges
in RtG(n,m) and vertices in R(n,m). Property (P3) is
that L−RtG(n,m) must be a legal object in L(n+1,m).

For spanning trees these properties are immediately
obvious. (P1) and (P2) says that if two legal spanning
forests L1, L2 in L(n,m) induce the same partition on
the vertices in L(m)∪R(n,m) then adding the same set
of edges E ⊆ RtG(n,m) to L1, L2 either creates legal
forests of both or it doesn’t (e.g., it causes a cycle in
both). (P3) states that if L is a legal forest in L(n+1,m)
then throwing away the edges in the last column and the
edges connecting the last column to the column preceding
it, leaves a legal forest in the smaller grid graph.

For X,Y ∈ P define

aY,X = |{E ⊆ RtG(n,m) : X ∪E = Y }(2.6)

to be the number of subsets of the “new edges”
RtG(n,m) that, added to a legal structure in LX(n,m),
yield a legal structure in LY (n+1,m),. Properties (P1),
(P2) tell us that this is independent of the actual struc-
ture and n and only dependent upon X and E. Since
P and RtG(n,m) are finite (size dependent only upon
S, and m) these values can be calculated. (P3) tells us
that all legal structures in LY (n+ 1,m) are built from
legal structures in L(n,m). Combining yields

∀Y ∈ P, fY (n+ 1) =
∑

X∈P

aY,XfX(n)(2.7)

Letting A = {aY,X}X,Y ∈P (where the ordering of the

X,Y are the same as in ~f(n)) this last equation can be
rewritten as

~f(n+ 1) = A(~f(n))t or ~f(n+ 1) = An(~f(1))t(2.8)

To finish, let aX = 1 if legal objects of classification
X are S structures and aX = 0 otherwise. Set ~a =
(aX1

(n), aX2
(n), . . . , aX|P|

(n)) and ~b = ~f(1). Then

f(S, G,m;n) =
∑

X∈P

aXfX(n) = ~a(~f(n))t = ~aAn~bt

(2.9)
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E′, E′′ ⊂ Side(4, 5). We see that adding E ′ to A creates a spanning tree in FC(4, 5). Adding E ′′ to A does not
create a spanning tree in FC(4, 5)



so we have proven eq (2.2), i.e., we have derived a
recurrence relation for spanning trees in a fixed-height
grid-graph.

In order to derive eq (2.3), the recurrence relation
for fixed-height fat-cylinders, we will need two more
properties.

(P4) Let L be any S-structure in fat-cylinder
FC(n,m). Then L − Side(n,m) is a legal object in
G(n,m).

(P5) Let E ⊆ Side(n,m) and X ∈ P. ∀L ∈
LX(n,m) either all L∪E are S-structures in FC(n,m),
in which case we say that (X,E) is good, or no L∪E is
a legal S-structures in FC(n,m), in which case (X,E)
is bad.

For spanning trees of fat-cylinders property (P4) is
immediately obvious. The endpoints of the Side(n,m)
edges are all in L(m) ∪ R(n,m) so all of the con-
nected components that arise after disposing of the
Side(n,m) edges must contain at least one vertex in
L(m)∪R(n,m). Property (P5) follows from similar ob-
servations.

From (P5) we can define

aX = |{E ⊆ Side(n,m) : (X,E) is good}|(2.10)

to be the number of subsets of Side(n,m) that can make
a X-legal structure in G(n,m) into a spanning tree of
FC(n,m). From (P4)

f(S, FC,m;n) =
∑

X∈P

aXfX(n) = ~a(~f(n))t = ~aAn~bt

(2.11)
and we have proven eq (2.3).

We have just seen how to count structures for grid
graphs and fat-cylinders. This essentially follows from
the facts that EG(n + 1,m) = EG(n,m) ∪ RtG(n,m)
and EFC(n,m) = EG(n,m) ∪ Side(n,m)

The technique to count structures in thin-cylinders
and tori is almost exactly the same. The only differences
arise from the facts that

ETC(n+ 1,m) = ETC(n,m) ∪ RtTC(n,m)

and

ET (n,m) = ETC(n,m) ∪ Side(n,m),

so we must replace RtG(n,m) in our properties by

RtTC(n,m) = RtG(n,m) ∪ {((m− 1, n), (0, n))},

e.g., in (P1), (P2), (P3), and replace FC(n,m) by
T (n,m) in P(4) and (P5). We then need to check that

all properties still hold, which they do in all of our cases.
Note that we must also change RtG(n,m) to RtTC(n,m)
in eq (2.6). This changes the values of the aX,Y which,
in turn, changes the transfer matrix A = {aX,Y }. After
making these changes we then derive eq (2.4) and (2.5).

For spanning trees it is easy to see that, using
the same definitions of legal objects and classifications,
properties (P1)-(P5) still hold for thin-cylinders and
tori so the derivations of the number of spanning trees
in fixed-height thin-cylinders and tori remain correct.

3 Comments and Extensions

In this note we sketched the technique for using trans-
fer matrices to count various types of structures in grid
graphs, cylinders, and tori. Although this technique
has been widely used in various forms for grid-graphs
it doesn’t seem to have been previously explicitly de-
scribed for the other types of graphs. One possible rea-
son for this lack, is that while most of the papers refer-
enced in table 1 did use transfer matrices, because they
were only interested in the grid graph they only indexed
their classifications using the nodes R(n,m) (from the
right-hand side) and did not use the nodes L(m) (from
the left hand side). This suffices for the grid case and ac-
tually leads to a smaller transfer matrix. But, to count
structures in fat-cylinders or tori, it is necessary to un-
derstand how Side(m.n) contributes and, to do that, it
is necessary to index the states using L(m) ∪R(n,m).

We should point out that the technique in this pa-
per, by its very generality, is by necessity not particu-
larly efficient. For specific structures it is usually pos-
sible to improve the calculations. As an example, in
the case of Hamiltonian cycles on grid graphs Stoyan
and Strehl [17] showed that the fact that the Hamilto-
nian cycle can not cross itself tremendously reduces the
size of what we call P (by showing a correspondence
between achievable classifications and Motzkin words).
Another way of reducing complexity is by showing that
the associated transfer matrix has a specific structure
[19], e.g., block diagonalizable with very special blocks,
that reduces the size of its characteristic polynomial.

Finally, we point out that the technique described
here would also work to count structures in “Mobius
Cylinders”. These are the G(n,m) grid graph where
the ends are connected together with a twist, i.e, instead
of adding Side(n,m) = {((n, i), (0, i)) : 0 ≤ i < m} to
G(n,m) we add Mobius(n,m) = {((n, i), (0,m−1−i)) :
0 ≤ i < m}. The only change needed in the analysis
is to replace eq (2.10) by aX = |{E ⊆ Mobius(n,m) :
(X,E) is good}|. The canonical example of this type of



graph is the Mobius ladder which has m = 2. Thus, the
techniques in this paper easily permit counting all types
of structures on the Mobius ladder (which was recently
done in a different way by [11]).
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A Appendix

As an illustration of our technique we have derived the
recurrence relations for the number of spanning trees in
the height-3 grids, fat cylinders, thin-cylinders and tori
and appended them below. For technical reasons (sim-
plifying calculations) we start our recurrence relations
with initial values at n = 3.

1) f(n) = STG(n, 3), the number of spanning trees in
the height-3 grid, satisfies,

f(n) = 15f(n− 1)− 32f(n− 2)

+15f(n− 3)− f(n− 4)

with initial values 192, 2415, 30305, 380160 for n =
3, 4, 5, 6

Calculation shows that f(n) ∼ 0.0975 . . .×φn
1 where

φ1 = 12.543 . . ..

2) f(n) = STFC(n, 3), the number of spanning trees in
the height-3 fat-cylinder, satisfies,

T (n) = 48T (n− 1)− 960T (n− 2) + 10622T (n− 3)

−73248T (n− 4) + 335952T (n− 5)

−1065855T (n− 6) + 2396928T (n− 7)

−3877536T (n− 8) + 4548100T (n− 9)

−3877536T (n− 10) + 2396928T (n− 11)

−1065855T (n− 12) + 335952T (n− 13)

−73248T (n− 14) + 10622T (n− 15)

−960T (n− 16) + 48T (n− 17)− T (n− 18)

with initial values 1728, 31500, 508805, 7741440,
113742727, 1633023000, 23057815104, 321437558750,
4435600730891, 60699082752000, 824853763418893,
11142718668655210, 149755467741359040,
2003730198180606000, 26705200059067689617,
354688416147207905280, 4696298144208387062419,
62009696321724473437500 for n = 3, 4, ..., 20

Calculation shows that f(n) ∼ 1

3
n×φn

1 where φ1 is
as above.

3) f(n) = STTC(n, 3), the number of spanning trees in
the height-3 thin-cylinder, satisfies,

T (n) = 24T (n− 1)− 24T (n− 2) + T (n− 3)

with initial values 1728, 39675, 910803 for n = 3, 4, 5

Calculation shows that f(n) ∼ 0.142 . . .×φn
2 where

φ2 = 22.956 . . ..

4) f(n) = STT (n, 3), the number of spanning trees in
the height-3 torus, satisfies,

T (n) = 58T (n− 1)− 1131T (n− 2) + 8700T (n− 3)

−29493T (n− 4) + 43734T (n− 5)

−29493T (n− 6) + 8700T (n− 7)

−1131T (n− 8) + 58T (n− 9)− T (n− 10)

with initial values 11664, 367500, 10609215,
292626432, 7839321861, 205683135000,
5312031978672, 135495143785470, 3421536337406913,
85686871818240000 for n = 3, 4, ..., 12

Calculation shows that f(n) ∼ 1

3
n×φn

2 where φ2 is
as above.

Note: We can rewrite the above as

STG(n, 3) ∼ c1φ
n
1 , STFC(n, 3) ∼ c′1nφ

n
1 ,

STTC(n, 3) ∼ c2φ
n
2 , STT (n, 3) ∼ c′2nφ

n
2

for appropriate constants c1, c
′
1.c2, c

′
2, φ1, φ2. It is not

surprising that STG(n, 3) and STFC(n, 3) share the
same first-order growth rate φn

1 ; φ1 is just the largest
eigenvalue of the matrix A(ST, FC,m) = A(ST, G,m)
which defines both of them. Similarly, φ2 is the largest
eigenvalue of the matrix A(ST, TC,m) = A(ST, T,m).
What is a-priori unexpected is the fact that STG(n, 3)
and STTC(n, 3) both grow as φ

n
i but STFC(n, 3) and

STT (n, 3) both grow as nφn
i (for the associated i).

It would be interesting to study whether this is just
a coincidence or a reflection of some more general
phenomenon.


