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a b s t r a c t

Let T (G) be the number of spanning trees in graph G. In this note, we explore the
asymptotics of T (G)when G is a circulant graph with given jumps.
The circulant graph C s1,s2,...,skn is the 2k-regular graph with n vertices labeled

0, 1, 2, . . . , n − 1, where node i has the 2k neighbors i ± s1, i ± s2, . . . , i ± sk where
all the operations are (mod n). We give a closed formula for the asymptotic limit

limn→∞ T (C
s1,s2,...,sk
n )

1
n as a function of s1, s2, . . . , sk. We then extend this by permitting

some of the jumps to be linear functions of n, i.e., letting si, di and ei be arbitrary integers,
and examining

lim
n→∞

T
(
C
s1,s2,...,sk,b

n
d1
c+e1,b

n
d2
c+e2,...,b

n
dl
c+el

n

) 1
n

.

While this limit does not usually exist,we show that there is some p such that for 0 ≤ q < p,
there exists cq such that limit (1) restricted to only n congruent to q modulo p does exist
and is equal to cq. We also give a closed formula for cq.
One further consequence of our derivation is that if si go to infinity (in any arbitrary

order), then

lim
s1,s2,...,sk→∞

lim
n→∞

T (C s1,s2,...,skn )
1
n

= 4 exp

[∫ 1

0

∫ 1

0
· · ·

∫ 1

0
ln

(
k∑
i=1

sin2 πxi

)
dx1dx2 · · · dxk

]
.

Interestingly, this value is the same as the asymptotic number of spanning trees in the k-
dimensional square lattice recently obtained by Garcia, Noy and Tejel.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we permit graphs (digraphs) to contain multiple edges (arcs) and self-loops unless otherwise
specified. Let G and D denote a graph and a digraph, respectively. A spanning tree in G is a tree having the same vertex set as
G. An oriented spanning tree in D is a rooted tree with the same vertex set as D, i.e., there is a specified root node and paths
from it to every vertex ofD. The study of the number of spanning trees in a graph has a long history. Evaluating this number is
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(a) C1,39 . (b) C1,312 . (c) C1,413 . (d) C1,516 .

Fig. 1. 4 circulant graphs. (b) and (d) are C1,2n+14n+8 for n = 1, 2. (a) and (c) are C1,n+14n+1 for n = 2, 3.

not only interesting from a combinatorial perspective but also arises in practical applications, e.g., analyzing the reliability of
a network in the presence of line faults, designing electrical circuits etc. [8]. Given the adjacencymatrix of G (or D), Kirchoff’s
matrix tree theorem [12] gives a closed formula for calculating the number of spanning trees. The real problem, then, is to
calculate the number of spanning trees of graphs in particular parameterized classes, as a function of the parameters. A well
studied class, which we will be further analyzing in this paper, is the circulant graphs.
We start by formally defining the graphs and the values to be counted. Let s1, s2, . . . , sk be positive integers. The circulant

graph with n vertices and jumps s1, s2, . . . , sk is defined by

C s1,s2,...,skn = (V , E)

where

V = {0, 1, 2, . . . , n− 1}, and E =
n−1⋃
i=0

{(i, i± s1), (i, i± s2), . . . , (i, i± sk)}

where all of the additions are modulo n. That is, each node is connected to the nodes that are jumps ±sj away from it, for
j = 1, 2, . . . , k.1 Similarly the directed circulant graph, EC s1,s2,...,skn , has the same vertex set, but

E =
n−1⋃
i=0

{(i, i+ s1), (i, i+ s2), . . . , (i, i+ sk)}

i.e, there is an edge directed from each i to the nodes sj ahead of it, for j = 1, 2, . . . , k. Examples of four undirected circulant
graphs are given in Fig. 1.
We will use T (X) to denote the number of spanning trees in a directed or undirected graph X . It was shown in [17] that,

for directed circulant graphs,

lim
n→∞

T (EC s1,s2,...,skn+1 )

T (EC s1,s2,...,skn )
= k,

where k is the degree of each vertex of EC s1,s2,...,skn+1 . One might hope that similar asymptotic behavior, i.e., a limit dependent
only upon k but independent of the actual values of the si, would also be true for undirected circulant graphs. Unfortunately,
as seen in the asymptotic (numerical) results presented in Table 1 of [18], this is not the case; the asymptotic limits do seem
somehow dependent on the si.
We therefore, in that paper, posed ‘‘the analysis of the asymptotics as a function of the si’’ as an open question. This paper

addresses that question.
The problem of calculating the asymptotic maximum number of spanning trees in a circulant graph with k jumps was

treated in [13], but their technique does not seem to permit analyzing the number of spanning trees for any given fixed
jumps. Asymptotic limits for grids and tori (which turn out to be equal) were obtained in [6,9]. More recently, while
examining the structure of non-constant jump circulant graphs, it was conjectured in [10] that the asymptotics of the
number of spanning trees of them× n tori and grids and the circulant graphs C1,nmn would be the same.
Themain result of this paper is the derivation in Section 2 of closed formulas for the first order asymptotics of the number

of spanning trees in undirected circulant graphs, both for fixed jump circulants and linear jump ones (in which the jump

1 To avoid confusion, we emphasize that, since we are allowing multiple edges in our graphs, C s1,s2,...,skn is always 2k-regular and EC s1,s2,...,skn is always k-
regular. For example, in our notation, C1,n2n is the 4-regular graph with 2n vertices such that each vertex i is connected by one edge to each of (i−1) mod 2n
and (i+ 1) mod 2n and by two edges to (i+ n) mod 2n. Our techniques would, with slight technical modifications, also permit analyzing graphs in which
multiple edges are not allowed, e.g., the Mobius ladder M2n . This is the 3-regular graph with 2n vertices such that each vertex i is connected by one edge
to each of (i − 1) mod 2n, (i + 1) mod 2n and (i + n) mod 2n. The reason that we do not explicitly analyze such graphs is that such an analysis would
require rewriting all of our theorems a second time to deal with these special instances without introducing any new interesting techniques.
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sizes can depend linearly upon n).2We note that the corresponding problem for directed circulants was recently addressed
by [7].
A secondary result that follows from our primary ones is that, as described in Section 3, the limiting asymptotics of the

number of spanning trees of circulant graphs C s1,s2,...,skn as s1, s2, . . . , sk, n tend to infinity will be exactly the same as the
limiting asymptotics of the number of spanning trees in the k-dimensional tori (and k-dimensional grids) when the number
of vertices in the tori (and grids) tend to infinity.
Returning to our main result, it is not reasonable to assume a priori that

lim
n→∞

T
(
C
s1,s2,...,sk,b

n
d1
c+e1,b

n
d2
c+e2,...,b

n
dl
c+el

n

) 1
n

(1)

exists. Consider, for example, the simple case of C
1,b n3 c
n , and partition the graphs by the congruence classes of nmodulo 3.

q = 0 : If n = 3k then C
1,b n3 c
n is the union of k+ 1 disjoint cycles; one of size 3k = n and k = n/3 of size 3.

q = 1 : If n = 3k+ 1 then C
1,b n3 c
n is the union of exactly two disjoint cycles, each of size n.

q = 2 : If n = 3k+ 2,
– if k is odd, then C

1,b n3 c
n is the union of exactly two disjoint cycles, each of size n,

– if k is even it is the union of 3 cycles; one of size 3k = n and 2 of size n/2.

It is unreasonable to expect that all three types of graphs have the same limiting behavior. In fact, they do not. Our results
will imply though, that, for q = 0, 1, 2,

lim
n→∞

n mod 3=q

T
(
C
1,b n3 c
n

)
= cq

where the cq are three different constants.
More specifically, in the next section (Theorem 4), we will show that, if p = lcm(d1, d2, . . . , dl), where lcm denotes the

least common multiple, then for 0 ≤ q < p,

lim
m→∞

m mod p=q

T
(
C
s1,s2,...,sk,b

m
d1
c+e1,b

m
d2
c+e2,...,b

m
dl
c+el

m

) 1
m

= cq,

and we will give a closed form for cq in terms of the si, di, and ei.
Most studies of the number of spanning trees in circulants start with the following facts. It is known [8] that the formula

for the number of spanning trees in a d-regular graph G can be expressed as

T (G) =
1
n

n−1∏
j=1

(d− λj), (2)

whereλ0 = d,λ1,λ2, . . .,λn−1 are the eigenvalues of the corresponding adjacencymatrix of the graph. Because the adjacency
matrix of C s1,s2,...,skn is circulant, from [3] we have

λj = ε
s1j + εs2j + · · · + εskj + ε−s1j + ε−s2j + · · · + ε−skj, j = 0, 1, . . . , n− 1,

where ε = e
2π
√
−1
n . This fact directly implies the known result:

T (C s1,s2,...,skn ) =
1
n

n−1∏
j=1

(
2k− 2

k∑
i=1

cos
2πsij
n

)
. (3)

Starting from this, in [18] it was proved that

Lemma 1. For any fixed integers 1 ≤ s1 ≤ s2 ≤ · · · ≤ sk,

T (C s1,s2,...,skn ) = na2n,

where the an satisfy linear recurrence relations of order 2sk−1. Furthermore, the largest characteristic root (in modulus) of an is
unique.

(This lemma is actually a combination of Lemma 4 and Lemma 5 from [18] and the ‘‘Note’’ following Lemma 4. Technically,
the results in [18] state that 1 ≤ s1 < s2 < · · · < sk, but, strict inequality was never used in the proofs there, so the results
hold for 1 ≤ s1 ≤ s2 ≤ · · · ≤ sk.)

2 We note that, recently, Lyons [15] has developed general techniques for deriving the asymptotics of the spanning trees of large graphs. His techniques
can be used to derive the asymptotics of fixed jump circulants (our Lemma 2) but do not seem to be usable to derive the asymptotics when the jumps are
not fixed constants.



M.J. Golin et al. / Discrete Mathematics 310 (2010) 792–803 795

Eq. (3) and the formula in Lemma 1 will be crucial for our later analysis.
Lemma 1 assumes fixed jumps. The number of spanning trees in non-fixed jump circulant graphs,

T
(
Ca1n+b1,a2n+b2,...,akn+bkpq+r

)
, was also shown [11] to satisfy a linear fixed order recurrence relation but no theorem as strong

as Lemma 1 is known for the non-fixed jump cases.
Lemma 1 actually provides an algorithmic way of determining the asymptotics of

lim
n→∞

T (C s1,s2,...,skn )1/n = lim
n→∞

(
na2n
)1/n
= lim
n→∞

(
a2n
)1/n

.

Recall that Kirchoff’sMatrix Tree Theoremprovides a closed formula for the number of spanning trees in any given graph. For
fixed s1, s2, . . . , sk it can be used to evaluate T (C

s1,s2,...,sk
n ) for n ≤ 2sk and calculate the corresponding an. Lemma 1 states

that an satisfies a linear recurrence relation of order 2sk−1. The 2sk initial values then permit solving for the coefficients
of the recurrence relation. Since the recurrence relation has a unique largest characteristic root, we can then derive the
asymptotics of

(
a2n
)1/n and thus T (C s1,s2,...,skn )1/n. In the non-fixed jump case, the results in [11] similarly permit deriving a

recurrence relation and then the asymptotics.
As a simple example, consider the square cycle C1,2n . Using Lemma 1 it is not hard to derive that

T (C1,2n ) = nF 2n ,

(this was originally conjectured by [2,5] and variously proven by [4,16,18]) where Fn is the Fibonacci sequence, i.e., F1 =
F2 = 1, and for n > 2, Fn = Fn−1 + Fn−2. This implies that

lim
n→∞

T (C1,2n )1/n = lim
n→∞

T (C1,2n+1)

T (C1,2n )
= lim
n→∞

F 2n+1
F 2n
=
3+
√
5

2
.

Note though, that we did not calculate 3+
√
5

2 , by plugging s1 = 1, s2 = 2 into a closed formula. Instead, we essentially used
the fact that T (C1,2n ) satisfied a recurrence relation to then derive the recurrence relation and then plugged in the asymptotics
of the solution to the recurrence relation. In this paper, we show the existence of a simple formula in the si that yields the
asymptotics.

2. Spanning trees in circulant graphs

The ultimate goal of this section is to analyze the following quantity,

lim
n→∞

T
(
C
s1,s2,...,sk,b

n
d1
c+e1,b

n
d2
c+e2,...,b

n
dl
c+el

n

) 1
n

(4)

as a function of given integers si, di and ei. We will do this in stages. Note that, from symmetry considerations, restricting
si to be positive and di > 1 will not change the classes of circulants that we address, so we will implicitly make these
assumptions.
Before starting, we need to note an important caveat, which is that all limits will be over non-zero values. More

specifically, note that, if gcd(n, s1, . . . , sk) > 1, then C
s1,s2,...,sk
n is disconnected so it has no spanning trees. This makes it

impossible for us to define a limit. For example, when n is even, C2,4n has two components, so no spanning tree exists and
T (C2,4n ) = 0. On the other hand, when n is not even, T (C2,4n ) > 0 and we can show the existence of c > 0 such that
limm→∞ T (C

2,4
2m+1)

1/(2m+1)
= c . Thus, technically, limn→∞ T (C2,4n ) does not exist. But, as mentioned, we will take all of our

limits to be over non-zero values, so we will write limn→∞ T (C2,4n )1/n = c .
We first start by analyzing (4) when all of the jumps are constant, i.e., l = 0, and prove the following lemma. We should

point out that, as mentioned, Lyons’ [15] recent results also imply the following lemma. Our reason for giving an alternative
proof is thatwewill apply the same techniques later in the paper to derive the formulas for the caseswith somenon-constant
jumps.

Lemma 2. For any fixed integers 1 ≤ s1 ≤ s2 ≤ · · · ≤ sk,

lim
n→∞

T (C s1,s2,...,skn )
1
n = lim

n→∞

T (C s1,s2,...,skn+1 )

T (C s1,s2,...,skn )

= 4 exp

[∫ 1

0
ln

(
k∑
i=1

sin2 πsix

)
dx

]
.

Proof. Write Tn for T (C
s1,s2,...,sk
n ). From Lemma 1, Tn = na2n where an = αn(1 + O(εn)) for some α > 1 and ε < 1. Set

β = α2. Then

Tn = na2n = nα
2n (1+ O(εn))2 = nβn(1+ O(εn)),
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so

lim
n→∞

Tn+1
Tn
= β = lim

n→∞
T 1/nn ,

proving the first equality of the Lemma.
To prove the second equality, note that, from (3) and 1− cos(2x) = 2 sin2 x, we get

lim
n→∞

Tn
1
n = lim

n→∞

[
1
n

n−1∏
j=1

(
2k− 2

k∑
i=1

cos
2πsij
n

)] 1
n

= lim
n→∞

exp

[
ln

(
n−1∏
j=1

(
2k− 2

k∑
i=1

cos
2πsij
n

))
×
1
n

]

= 4 lim
n→∞

exp

[
ln

(
n−1∏
j=1

(
k∑
i=1

sin2
πsij
n

))
×
1
n

]

= 4 lim
n→∞

exp

[
n−1∑
j=1

ln

(
k∑
i=1

sin2
πsij
n

)
×
1
n

]
.

We can conclude by using the fact that, if f (x) is a continuous non-negative real function defined on (0, 1] such that∫ 1
0 ln(f (x))dx exists, then

lim
n→∞

(
n−1∑
j=1

ln
(
f
(
j
n

))
×
1
n

)
=

∫ 1

0
ln(f (x))dx,

to get

lim
n→∞

Tn
1
n = 4 exp

[∫ 1

0
ln

(
k∑
i=1

sin2 πsix

)
dx

]
. �

We now derive the asymptotics of the simplest non-constant jump case:

Theorem 3. Let 1 ≤ s1 ≤ · · · ≤ sk, p and 0 ≤ a1 ≤ · · · ≤ al < p be integers. Then

lim
n→∞

T (C s1,...,sk,a1n,...,alnpn )
1
n = 4p exp

[
p−1∑
t=0

∫ 1

0
ln

(
k∑
i=1

sin2 πsix+
l∑
i=1

sin2
πait
p

)
dx

]
.

(Note that if p = 1, then l = 0 and this theorem reduces to Lemma 2.)

Proof. By (3), we have

T (C s1,...,sk,a1n,...,alnpn ) =
1
pn

pn−1∏
j=1

[
2(k+ l)− 2

k∑
i=1

cos
2πsij
pn
− 2

l∑
i=1

cos
2πainj
pn

]

=
1
pn

pn−1∏
j=1

(j mod p)6=0

[
2(k+ l)− 2

k∑
i=1

cos
2πsij
pn
− 2

l∑
i=1

cos
2πainj
pn

]

×

pn−1∏
j=1

(j mod p)=0

[
2(k+ l)− 2

k∑
i=1

cos
2πsij
pn
− 2

l∑
i=1

cos
2πainj
pn

]

=
1
pn

p−1∏
t=1

 pn−1∏
j=1

(j mod p)=t

[
2(k+ l)− 2

k∑
i=1

cos
2πsij
pn
− 2

l∑
i=1

cos
2πaij
p

]
×

n−1∏
j′=1

[
2k− 2

k∑
i=1

cos
2πsij′

n

]
.
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To evaluate the limit of the nth root of the second product recall that, in the proof of Lemma 2, we already saw that

lim
n→∞

[
n−1∏
j=1

(
2k− 2

k∑
i=1

cos
2πsij
n

)] 1
n

= 4 exp

[∫ 1

0
ln

(
k∑
i=1

sin2 πsix

)
dx

]
.

To evaluate the limit of the nth root of the first product note that if (j mod p) = t 6= 0 then j = pj′ + t for some j′ and

lim
n→∞

 pn−1∏
j=1

(j mod p)=t

[
2(k+ l)− 2

k∑
i=1

cos
2πsij
pn
− 2

l∑
i=1

cos
2πainj
pn

]
1
n

= lim
n→∞

exp

[
ln

(
n−1∏
j′=1

[
2

(
k+ l−

l∑
i=1

cos
2tπai
p

)
− 2

k∑
i=1

cos 2πsi

(
j′

n
+
t
pn

)])
×
1
n

]

= lim
n→∞

exp

[
n−1∑
j′=1

(
ln

[
2

(
k+ l−

l∑
i=1

cos
2tπai
p

)
− 2

k∑
i=1

cos 2πsi

(
j′

n
+
t
pn

)])
×
1
n

]
.

Since

cos 2πsi

(
j′

n
+
t
pn

)
→ cos 2πsi

j′

n

uniformly (in j′) as n→∞, the exact same type of calculation as in the proof of Lemma 2 yields that the limit is

exp

[∫ 1

0
ln

(
2

[
k+ l−

l∑
i=1

cos
2tπai
p

]
− 2

k∑
i=1

cos 2πsix

)
dx

]

= 4 exp

[∫ 1

0
ln

(
k∑
i=1

sin2 πskx+
l∑
i=1

sin2
πait
p

)
dx

]
.

where the last equality again comes from 2 sin2 x = 1− cos 2x.
Combining the above equations gives

lim
n→∞

T (C s1,...,sk,a1n,...,alnpn )
1
n = lim

n→∞

(
1
pn

) 1
n

4 exp

[∫ 1

0
ln

(
k∑
i=1

sin2 πsix

)
dx

]

×

p−1∏
t=1

(
4 exp

[∫ 1

0
ln

(
k∑
i=1

sin2 πsix+
l∑
i=1

sin2
πait
p

)
dx

])

= 4p exp

[
p−1∑
t=0

∫ 1

0
ln

(
k∑
i=1

sin2 πsix+
l∑
i=1

sin2
πait
p

)
dx

]
. �

We can now extend this to the case where the number of vertices in the graph is no longer an exact multiple of p.

Corollary 1. Let 1 ≤ s1 ≤ · · · ≤ sk and 0 ≤ a1 ≤ · · · ≤ al < p be integers and let q be an integer such that 0 < q < p. Then

lim
n→∞

T
(
C s1,...,sk,a1n,...,alnpn+q

) 1
n = 4p exp

[
p−1∑
t=0

∫ 1

0
ln

(
k∑
i=1

sin2 πskx+
l∑
i=1

sin2 πai

(
t
p
−
q
p
x
))
dx

]
.

Proof. Similar to the proof of the previous theorem, we have

T (C s1,...,sk,a1n,...,alnpn+q ) =
1

pn+ q

pn+q−1∏
j=1

[
2(k+ l)− 2

k∑
i=1

cos
2πsij
pn+ q

− 2
l∑
i=1

cos
2πainj
pn+ q

]

=
1

pn+ q

p−1∏
t=0

 pn+q−1∏
j=1

(j mod p)=t

[
2(k+ l)− 2

k∑
i=1

cos 2πsi
j

pn+ q
− 2

l∑
i=1

cos
2πainj
pn+ q

] .
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Now let j = pj′ + t for some j′ and t with 0 ≤ t ≤ p− 1. Then 1 ≤ j′ ≤ n and

j′

n+ q
p

≤
j

pn+ q
=
pj′ + t
pn+ q

=
j′ + t

p

n+ q
p

<
j′ + 1
n+ q

p

,

and cos 2πsi
j

pn+q = cos 2πsi
j′+ tp
n+ qp
. Since jp = j

′
+
t
p we have that

cos
2πainj
pn+ q

= cos
2πaij
p

(
1−

q
pn+ q

)
= cos

2πait
p
cos
2πaiq
p

j
pn+ q

+ sin
2πait
p
sin
2πaiq
p

j
pn+ q

= cos
2πait
p
cos
2πaiq
p

j′ + t
p

n+ q
p

+ sin
2πait
p
sin
2πaiq
p

j′ + t
p

n+ q
p

= cos 2πai

(
t
p
−
q
p

j′ + t
p

n+ q
p

)
.

Plugging these identities into the above formula and replacing each index j with the appropriate j′ in the last expression,
and then taking limits and simplifying the expression as in the proofs of Lemma 2 and Theorem 3, we obtain the following

lim
n→∞

T (C s1,...,sk,a1n,...,alnpn+q )
1
n

= exp

[
lim
n→∞

ln

(
pn+q−1∏
j=1

[
2(k+ l)− 2

k∑
i=1

cos 2πsi
j

pn+ q
− 2

l∑
i=1

cos
2πainj
pn+ q

])
×

1
n+ q

p

×
n+ q

p

n

]

= 4p exp

[
p−1∑
t=0

∫ 1

0
ln

(
2(k+ l)−

k∑
i=1

cos 2πskx−
l∑
i=1

cos 2πai

(
t
p
−
q
p
x
))
dx

]

= 4p exp

[
p−1∑
t=0

∫ 1

0
ln

(
k∑
i=1

sin2 πskx+
l∑
i=1

sin2 πai

(
t
p
−
q
p
x
))
dx

]
.

We can generalize even more to allow the jumps to be shifted slightly from linear:

Corollary 2. Let 1 ≤ s1 ≤ · · · ≤ sk and 0 ≤ a1 ≤ · · · ≤ al < p be integers and q the integer such that 0 < q < p. Furthermore
let b1, b2, . . . , bl be any arbitrary integers. Then

lim
n→∞

T
(
C s1,...,sk,a1n+b1,...,aln+blpn+q

) 1
n
= 4p exp

[
p−1∑
t=0

∫ 1

0
ln

(
k∑
i=1

sin2 πskx+
l∑
i=1

sin2 π [ai

(
t
p
−
q
p
x
)
+ bix]

)
dx

]
.

Proof. Note that

T
(
C s1,...,sk,a1n+b1,...,aln+blpn+q

)
=

1
pn+ q

pn+q−1∏
j=1

[
2(k+ l)− 2

k∑
i=1

cos
2πsij
pn+ q

− 2
l∑
i=1

cos
2π(ain+ bi)j
pn+ q

]

=
1

pn+ q

p−1∏
t=0

 pn+q−1∏
j=1

(j mod p)=t

[
2(k+ l)− 2

k∑
i=1

cos 2πsi
j

pn+ q
− 2

l∑
i=1

cos
2π(ain+ bi)j
pn+ q

] .
Same as before we may let j = pj′ + t for some j′ and t with 0 ≤ t ≤ p − 1. Using the fact that j

pn+q =
j′+ tp
n+ qp
, simple

manipulation gives

cos
2π(ain+ bi)j
pn+ q

= cos
2πainj
pn+ q

cos
2πbij
pn+ q

− sin
2πainj
pn+ q

sin
2πbij
pn+ q

= cos 2πai

(
t
p
−
q
p

j′ + t
p

n+ q
p

)
cos

2πbij
pn+ q

− sin 2πai

(
t
p
−
q
p

j′ + t
p

n+ q
p

)
sin
2πbij
pn+ q
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= cos 2πai

(
t
p
−
q
p

j′ + t
p

n+ q
p

)
cos 2πbi

j′ + t
p

n+ q
p

− sin 2πai

(
t
p
−
q
p

j′ + t
p

n+ q
p

)
sin 2πbi

j′ + t
p

n+ q
p

= cos 2π

[
ai

(
t
p
−
q
p

j′ + t
p

n+ q
p

)
+ bi

j′ + t
p

n+ q
p

]
.

We now (almost) copy the proof of the previous corollary to get

lim
n→∞

T
(
C s1,...,sk,a1n+b1,...,aln+blpn+q

) 1
n
= 4p exp

[
p−1∑
t=0

∫ 1

0
ln

(
k∑
i=1

sin2 πskx+
l∑
i=1

sin2 π
[
ai

(
t
p
−
q
p
x
)
+ bix

])
dx

]
. �

A simple example. Recall the graph C1,n2n with 2n vertices 0, 1, . . . , 2n− 1 in which each node i is connected by one edge
to node (i + 1) mod (2n), by one edge to node (i − 1) mod (2n), and by two edges to node (i + n) mod (2n). It is known
(e.g. Theorem 4 in [19]) that

T (C1,n2n ) =
n
2
[(
√
2+ 1)n + (

√
2− 1)n]2, (5)

so

lim
n→∞

T (C1,n2n )
1
n = (
√
2+ 1)2. (6)

We now see that Theorem 3 yields exactly the same result. Theorem 3 immediately yields the closed form

lim
n→∞

T (C1,n2n )
1
n = 42 exp

(∫ 1

0
(ln(sin2 πx+ 1)+ ln(sin2 πx))dx

)
. (7)

This integral can be evaluated by splitting into two parts.
To evaluate the first part we note that since sin2 πx+ 1 = 2− cos2 πx,∫ 1

0
ln (sin2 πx+ 1)dx = lim

n→∞

(
n−1∑
j=1

ln
(
2− cos2

π j
n

))
×
1
n

(8)

= lim
n→∞

ln

(
n−1∏
j=1

(
2− cos2

π j
n

))
×
1
n
.

We now recall the fact that Un(x), the nth Chebyshev polynomial of the second kind, satisfies ([4] and formulas (6) and (9)
in [19])

U2n−1(x) = 4
n−1

n−1∏
j=1

(
x2 − cos2

π j
n

)
and

Un(x) =
1

2
√
x2 − 1

[(
x+

√
x2 − 1

)n+1
+

(
x−

√
x2 − 1

)n+1]
.

Plugging back into (8) yields∫ 1

0
ln (sin2 πx+ 1)dx = lim

n→∞
ln

(
U2n−1(

√
2)

4n−1

)
×
1
n

= ln
(
√
2+ 1)2

4
.

To evaluate the second part, recall the well known identity, c.f., [1] 4.3.145,∫ π/2

0
ln sin tdt = −

π

2
ln 2.

Thus ∫ 1

0
ln(sin2 πx)dx =

1
π

∫ π

0
ln(sin2 u)du

=
4
π

∫ π/2

0
ln sin udu = − ln 4.
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Plugging the values of the two integrals just evaluated into (7) gives

lim
n→∞

T (C1,n2n )
1
n = 42 exp

[
ln
(
√
2+ 1)2

4
− ln 4

]
= (
√
2+ 1)2,

which is exactly (6).
We now return to prove our main theorem:

Theorem 4. Let 1 < d1 ≤ · · · ≤ dl be fixed positive integers and p = lcm(d1, d2, . . . , dl). Let 1 ≤ s1 ≤ · · · ≤ sk be positive
integers and e1, e2, . . . , el be arbitrary integers. Set ai =

p
di
, and for 0 ≤ q < p also set bq,i =

⌊
q
di

⌋
+ ei Then, for fixed q,

lim
m→∞

m mod p=q

T

(
C
s1,s2,...,sk,

⌊
m
d1

⌋
+e1,

⌊
m
d2

⌋
+e2,...,

⌊
m
dl

⌋
+el

m

) 1
m

= 4 exp

(
1
p

p−1∑
t=0

∫ 1

0
ln

(
k∑
i=1

sin2 πskx+
l∑
i=1

sin2 π
[
ai

(
t
p
−
q
p
x
)
+ bq,ix

])
dx

)
.

Proof. The definitions of ai, bi imply

ifm = pn+ q then
⌊
m
di

⌋
+ ei = ain+ bq,i. (9)

Combining Theorem 3, Corollaries 1 and 2 yields, for fixed q,

lim
n→∞

T
(
C
s1,...,sk,a1n+bq,1,...,aln+bq,l
pn+q

) 1
n

= 4p exp

(
p−1∑
t=0

∫ 1

0
ln

(
k∑
i=1

sin2 πskx+
l∑
i=1

sin2 π
[
ai

(
t
p
−
q
p
x
)
+ bq,ix

])
dx

)
.

This implies

lim
m→∞

m mod p=q

T

(
C
s1,s2,...,sk,

⌊
m
d1

⌋
+e1,

⌊
m
d2

⌋
+e2,...,

⌊
m
dl

⌋
+el

m

) 1
m

= lim
n→∞

T
(
C
s1,...,sk,a1n+bq,1,...,aln+bq,l
pn+q

) 1
pn+q

= 4 exp

(
1
p

p−1∑
t=0

∫ 1

0
ln

(
k∑
i=1

sin2 πskx+
l∑
i=1

sin2 π
[
ai

(
t
p
−
q
p
x
)
+ bq,ix

])
dx

)
. �

3. The asymptotics of T (C s1,s2,...,sk
n )

1
n

In the previous section, we saw that, if s1, s2, . . . , sk are fixed, then T (C
s1,s2,...,sk
n )

1
n converges to a constant dependent

upon the si. In this section we discuss how this constant changes as n and the jumps si themselves tend to infinity.

Lemma 5. If s1, s2, . . . , sk are arbitrary positive integers and t ≤ k, then

lim
s1,s2,...,st→∞

lim
n→∞

T
(
C s1,s2,...,skn

) 1
n = 4 exp

(∫ 1

0
· · ·

∫ 1

0
ln

(
t∑
i=1

sin2 πxi +
k∑

i=t+1

sin2 πsix

)
dx1 · · · dxtdx

)
where s1, s2, . . . , st →∞ in any arbitrary order.

Proof. From Lemma 2, we have that, if s1, s2, . . . , sk are fixed, then

lim
n→∞

ln
(
T
(
C s1,s2,...,skn

))
n

= ln 4+
∫ 1

0
ln
(
sin2 πs1x+ sin2 πs2x+ · · · + sin2 πskx

)
dx.
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Setting s1x = x1 yields

lim
n→∞

ln(T (C s1,s2,...,skn ))

n
= ln 4+

∫ s1

0
ln
(
sin2 πx1 + sin2 πs2

x1
s1
+ · · · + sin2 πsk

x1
s1

)
1
s1
dx1

= ln 4+
s1−1∑
j=0

(∫ j+1

j
ln
(
sin2 πx1 + sin2 πs2

x1
s1
+ · · · + sin2 πsk

x1
s1

)
dx1

)
1
s1
.

For all s1, j and x1 that appear in the last integral,
j
s1
≤
x1
s1
≤
j+1
s1
. Furthermore, sin2 π(t + j) = sin2 π t . Therefore, fixing

s2, s3, . . . , sk and writing x1 = t + j for x1 ∈ [j, j+ 1), permits evaluating

lim
s1→∞

s1−1∑
j=0

(∫ j+1

j
ln

(
sin2 πx1 +

k∑
i=2

sin2 πsi
x1
s1

)
dx1

)
1
s1
= lim
s1→∞

s1−1∑
j=0

(∫ 1

0
ln

(
sin2 π t +

k∑
i=2

sin2 πsi
t + j
s1

)
dt

)
1
s1

=

∫ 1

0

∫ 1

0
ln

(
sin2 πx1 +

k∑
i=2

sin2 πsiy

)
dx1dy.

Thus

lim
s1→∞

lim
n→∞

ln(T (C s1,s2,...,skn ))

n
= ln 4+ lim

s1→∞

s1−1∑
j=0

(∫ 1

0
ln
(
sin2 πx1 + sin2 πs2

x1
s1
+ · · · + sin2 πsk

x1
s1

)
dx1

)
1
s1

= ln 4+
∫ 1

0

∫ 1

0
ln
(
sin2 πx1 + sin2 πs2y+ · · · + sin2 πsky

)
dx1dy.

Setting s2y = x2 similarly yields

lim
s1→∞

lim
n→∞

ln(T (C s1,s2,...,skn ))

n
= ln 4+

∫ s2

0

∫ 1

0
ln
(
sin2 πx1 + sin2 πx2 + sin2 πs3

x2
s2
+ · · · + sin2 πsk

x2
s2

)
1
s2
dx1dx2

= ln 4+
s2−1∑
j=0

(∫ j+1

j

∫ 1

0
ln
(
sin2 πx1 + sin2 πx2 + sin2 πs3

x2
s2
+ · · · + sin2 πsk

x2
s2

)
dx1dx2

)
1
s2
.

Again, for all s2, j and x2 that appear in the integral,
j
s2
≤
x2
s2
≤
j+1
s2
. Therefore, for fixed s3, s4, . . . , sk, the same reasoning as

above yields

lim
s2→∞

lim
s1→∞

lim
n→∞

ln(T (C s1,s2,...,skn ))

n
= ln 4+

∫ 1

0

∫ 1

0

∫ 1

0
ln
(
sin2 πx1 + sin2 πx2 + sin2 πs3y

+ · · · + sin2 πsky
)
dx1dx2dy.

Assume for the moment that t < k. Continuing in the same fashion for s3, . . . , st gives,

lim
st→∞

lim
st−1→∞

· · · lim
s1→∞

lim
n→∞

ln(T (C s1,s2,...,skn ))

n

= ln 4+
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
ln

(
t∑
i=1

sin2 πxi +
k∑

i=t+1

sin2 πsix

)
dx1dx2 · · · dxtdx

which is equivalent to the statement of the lemma.
For the case t = k note that the analysis of t = k− 1 gives, for fixed sk,

lim
sk−1→∞

lim
sk−2→∞

· · · lim
s1→∞

lim
n→∞

ln(T (C s1,s2,...,skn ))

n

= ln 4+
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
ln

(
k−1∑
i=1

sin2 πxi + sin2 πskx

)
dx1dx2 · · · dxk−1dx

= ln 4+
sk−1∑
j=0

(∫ j+1

j

∫ 1

0
· · ·

∫ 1

0
ln

(
k−1∑
i=1

sin2 πxi + sin2 πxk

)
dx1dx2 · · · dxk

)
1
sk
.
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Taking the limit as sk →∞ gives

lim
sk→∞

lim
sk−1→∞

· · · lim
s1→∞

lim
n→∞

ln(T (C s1,s2,...,skn ))

n

= ln 4+
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
ln

(
k∑
i=1

sin2 πxi

)
dx1dx2 · · · dxk.

To conclude, note that the proof as given requires that the limits be taken in the specific order

lim
st→∞

lim
st−1→∞

· · · lim
s1→∞

.

The fact that the order inwhich the limits is taken does notmatter, i.e., that the s1, . . . , st →∞ in any arbitraryway, follows
from the symmetry of T (C s1,s2,...,skn )with respect to s1, s2, . . ., sk. �

We restate the special case t = k as a theorem:

Theorem 6. Let s1, s2, . . . , sk be arbitrary positive integers. Then

lim
s1,s2,...,sk→∞

lim
n→∞

T (C s1,s2,...,skn )
1
n = 4 exp

(∫ 1

0

∫ 1

0
· · ·

∫ 1

0
ln

(
k∑
i=1

sin2 πxi

)
dx1dx2 · · · dxk

)
.

Interestingly, this quantity is exactly the asymptotic limit of the number of spanning trees in k-dimensional square tori
as derived by Garcia, Noy and Tejel in [9]. Let T kn be the number of spanning trees in the k-dimensional square torus with
n-vertices, i.e., each dimension has span n1/k. In [9] it is shown that limn→∞

(
T kn
)1/nis exactly the quantity given in Theorem6.

For another special case let G(m, n) and TS(m, n) denote, respectively, the 2-dimensionalm× n grid and torus. [6,9] tell
us that

lim
m,n→∞

T (TS(m, n))
1
mn = lim

m,n→∞
T (G(m, n))

1
mn

= 4 exp
(∫ 1

0

∫ 1

0
ln
(
sin2 πx+ sin2 πy

)
dxdy

)
= 3.20991230 . . . .

As noted in [10], when drawing the circulant graph C1,nmn on the grid G(n,m) (mapping node k in C
1,n
mn to the unique node (i, j)

in G(n,m)where k = ni+ j), C1,nmn is actually identical to the torus TS(n,m) except for side edges all of whose left endpoints
are shifted up by one. Thus, in [10] it was conjectured that the asymptotics of the circulant would be similar to that of the
torus. This will now be seen to be true:

Corollary 3.

lim
m→∞

lim
n→∞

T (C1,mmn )
1
mn = lim

m,n→∞
T (TS(m, n))

1
mn = lim

m,n→∞
T (G(m, n))

1
mn .

Proof. Lemma 5 with n = s, s1 = m and t = 1 gives

lim
m→∞

lim
s→∞

T
(
C1,ms

)1/s
= 4 exp

(∫ 1

0

∫ 1

0
ln
(
sin2 πx+ sin2 πy

)
dxdy

)
.

Thus

lim
m→∞

lim
n→∞

T (C1,mmn )
1
mn = lim

m→∞
lim
s→∞

T (C1,ms )
1
s

= 4 exp
(∫ 1

0

∫ 1

0
ln
(
sin2 πx+ sin2 πy

)
dxdy

)
. �

Lemma 5 states that, in calculating the limits, as long as n → ∞ first, the order in which the si go to infinity does not
matter. An interesting remaining question here would be to show for the circulants that, as in the case of k-dimensional
grids and tori, the order in which the limit over n is taken does not matter either. That is, viewing T (C s1,s2,...,skn ) as a function
of n, s1, s2, . . . , sk, is it true that

lim
n,s1,s2,...,sk→∞

T (C s1,s2,...,skn )
1
n = 4 exp

(∫ 1

0
· · ·

∫ 1

0
ln
(
sin2 πx1 + · · · + sin2 πxk

)
dx1 · · · dxk

)
.
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4. Concluding remarks

In this paperwederived closed formulas for limn→∞(T (C(n)))
1
n , whereC(n) is a circulant graphwith given fixed and linear

jumps and T (C(n)) denotes the number of spanning trees in C(n). As a secondary result, our techniques can also be used to
derive the limiting asymptotics of the number of spanning trees of circulant graphs C s1,s2,...,skn when jumps s1, s2, . . . , sk and
n tend to infinity. We saw that this is exactly the same as the limiting asymptotics of the number of spanning trees in the
k-dimensional tori (and k-dimensional grids) when the number of vertices in the tori (and grids) tend to infinity.
We concludewith a question about growth rates. In Lemma 2we showed that for any fixed integers 1 ≤ s1 ≤ s2 ≤ · · · ≤

sk,

lim
n→∞

T (C s1,s2,...,skn )
1
n = lim

n→∞

T (C s1,s2,...,skn+1 )

T (C s1,s2,...,skn )
.

Note that this quantity represents the average growth rate of the number of spanning trees of the circulant graph C s1,s2,...,skn .
Since Lemma 2 also tells us that this value is equal to

4
∫ 1

0
ln

(
k∑
i=1

sin2 πsix

)
dx, (10)

finding the jumps si that maximize or minimize the average growth rate among all families of 2k-regular circulant graphs
would be equivalent to finding s1, s2, . . . , sk that maximize or minimize (10). To the best of our knowledge, this problem
has only been addressed for directed circulant graphs with k = 2 [14] (with only partial solutions). It would be interesting
to try and solve this more generally.
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