
An External Memory Algorithm of Maxima-Finding Problems* 
 

                                                           
* This work was supported by the National Science Foundation of Gansu province, P.R.C..(Grant No. 3ZS051-A25-037). 

Xiang-Quan Gui, Yuan-Ping Zhang, Li Li 
College of Computer and Communication, Lanzhou 
University of Technology, Lanzhou, 730050, Gansu, 

P.R.C., 
e-mail: xqgui@lut.cn, ypzhang@lut.cn, 

lili0226@mail2.lut.cn 

Xue-Rong Yong 
Department of Mathematics, University of Puerto Rico 

at Mayaguez, P.O.Box 9018,  
PR 00681, USA 

e-mail: xryong@math.uprm.edu 

 
 

Abstract—Maxima-finding problems are the fundamental 
problem in computational geometry with a great deal of 
application in many areas, and it has resurfaced with the 
advent of Skyline Queries for relational databases and data 
mining recently. The existed algorithms in the field of Maxima-
finding problem (Skyline Queries) have been summarized in 
this paper. But for the massive data sets, there has no I/O 
linear algorithm yet. A new kind of External Memory 
Algorithm of Maxima-finding problem (EMMF) has been 
presented, the I/O complexity of algorithm is linear, the 
corresponding reliability has been validated from experiments, 
and the status of 2-dimensional space has been proved in 
theory too. 

Keywords-Maxima-finding problem; Skyline query; external 
memory algorithm; I/O algorithm 

I.  INTRODUCTION  
The Maxima-finding problem is to find the subset of the 

points such that each is not dominated by any of the points 
from the set. Given a set S of N points in R-dimensional 
space, Point P is said to dominate point Q if each coordinate 
of P is greater than the corresponding coordinate of Q. A 
point in S that is not dominated by any other point in S is a 
maximal point. The undominated points in S are the maxima 
of the point set [13]. This problem has been considered for 
many years, a number of algorithms have been proposed for 
efficiently finding the maximal. 

The Maxima-finding problem has been rediscovered 
recently in the database context with the introduction of 
skyline queries. Instead of vectors or points, this is to find 
the maximal over tuples. Certain columns (with numeric 
domains) of the input relation are designated as the skyline 
criteria, and dominance is then defined with respect to these. 
The non-dominated tuples then constitute the skyline set [10]. 
A classic illustrative example of skyline queries is to search 
for hotels in Nassau (Bahamas) which are cheap and close to 
the beach [4]. Suppose each hotel has two attributes: the 
price and the distance to the beach. Hotel A dominates hotel 
B (or, A is a better choice than B in the context of this 
example) if A.price ≤ B.price, A.distance ≤ B.distance and 
at least one inequality holds. Those hotels not dominated by 
others in terms of price and distance to the beach form the 

skyline. In other words, the skyline hotels are all possible 
trade-offs between price and distance to the beach that are 
superior to other hotels. 

Skyline queries have attracted a fair amount of attention 
since their introduction in [4]. It is thought that skyline offers 
a good mechanism for incorporating preferences into 
relational queries, and its implementation could enable data 
mining more efficiency. Actually, skyline queries and 
maxima-finding problems are almost the same in 
fundamental concepts and algorithms.  

From 1966 Barndorff-Nielsen and Sobel study the 
number of maxima in the literature [1] as beginning, the idea 
itself is old, the maxima problems has been a lot of research 
results. There are a considerable number of algorithms to 
find the maxima in a data set. And we classified as 
Sequential algorithm[2, 13], Divide-and-conquer algorithm 

[3, 4, 5, 7, 13], Bucket algorithm[8, 9], Selection 
algorithm[6], Sieve algorithm [2, 10].  

But for the massive data sets, that can be seen in the areas 
of data mining and knowledge discovery often, the Maxima-
finding algorithm is very lack. Because for dealing with the 
massive data, the data are usually too large to fit the inner 
memory, the main constraints of algorithm efficiency has 
become the cost of data transfer between the inner and outer 
of the memory. Although there are seldom parts of algorithm 
can deal with massive data, such as  the BNL algorithm in 
the literature [4] and the SFS algorithm in the literature [5], 
the I/O complexity of these algorithms is expensive. Because 
these algorithms all need to sorting points beforehand, when 
dealing with massive data,  only the I/O cost of sorting will 
be /( log )M BN NΘ , where N denotes the points (tuples) 
number, M the size of main memory and B the size of 
loading data every time. About the details of the massive 
data-processing algorithms can be seen in the Vitter’s review 
literature [14]. To deal with these cases, a new kind of 
external memory maxima-finding algorithm (EMMF for 
short) is presented in this paper, the corresponding reliability 
has been validated from experiments, the status of 2-
dimension has been proved in theory also. The EMMF 
algorithm is linear in number of I/O. 

Section II of this paper describes the algorithm in detail, 
Section III describes the experiment data, and Section IV 

2009 First International Workshop on Education Technology and Computer Science

978-0-7695-3557-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ETCS.2009.439

795

2009 First International Workshop on Education Technology and Computer Science

978-0-7695-3557-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ETCS.2009.439

795

2009 First International Workshop on Education Technology and Computer Science

978-0-7695-3557-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ETCS.2009.439

795

2009 First International Workshop on Education Technology and Computer Science

978-0-7695-3557-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ETCS.2009.439

795



discusses the theory proof. Conclusions are then offered in 
Section V.  

II. THE EXTERNAL MEMORY MAXIMA-FINDING 
ALGORITHM（EMMF） 

The algorithm is designed according the principle that the 
number of maximal points is very little relative to the 
number of whole points set. Let N be the number of R-
dimensional data points, with the independently and 
identically distribution (I.I.D.). The expectation of maxima 

number in the set approximate to 
1log

( 1)!

R N
R

−

−
 [11]. Therefore, 

we consider opening a resident area in main memory that 
called as the general maxima index room, used to store all 
index of maximal points that has been found in running time. 
In practice, data sets may carry some other information that 
is useless in comparison. Let those information always in 
main memory will waste a lot of memory space. So the local 

maximal points (i.e. points that be considered as maximal 
point temporarily in running time and may not as a maximal 
point finally ) will be established index and others is 
unnecessary for reducing I/O and CPU time. Initially, insert 
a virtual point to the general maxima index room to 
dominate more points and to insure the room not overflows 
at the beginning. Then of all points in the external memory, 
loaded by paging and compared with points in the general 
maxima index room. There will be three cases happened as 
follow, if it can be dominated by a point in the general 
maxima index room, choose another candidate point to do 
the same things. If it can dominate some points in the general 
maxima index room, replace those points. If it incomparable 
with each points in the general maxima index room, make 
index of it and insert to the room. The point P and point Q 
are incomparable means P can not dominate Q and Q can not 
dominate P too. The pseudo code of the algorithm as follow. 

the External Memory Maxima-Finding algorithm（EMMF） 
1. Opening a general maxima index room (the room for short)in main memory. 
2. Insert a virtual point. 
3. Setting the size of pages (G points). 
4. While（have not computed all points in the external memory）do 
5.        Loading a page (G points) into the main memory. 
6.        For  i=1 to G do 
7.                If（the i-th point can be dominated by a point in the room）then 
8.                    CONTINUE. 
9.                Else if （the i-th point can dominate some points in the room）then 
10.          Delete those points from the room. 
11.      Else if （the i-th point incomparable with each points in the room）then 
12.                     Make index of the i-th point and insert into the room. 
13.If the virtual point has not been dominated, the algorithm is failed. Exit and use other algorithms. 
14.Output all points in the general index maxima room. 
 

The algorithm setting a space in main memory, called as 
the general maxima index room, used to store all maximal 

points at the 1st sentence. The 
1log[ ]

( 1)!

R Nk
R

−⎡ ⎤
⎢ ⎥−⎢ ⎥

 points index 

can be stored in it (let N be the number of all points in R-
dimensional space and k>1). Then insert a virtual point into 
the general maxima index room at the 2nd sentence, set the 

every dimension number of the virtual point is 
1ln1 ( )RN

N
−  

(let every dimension is bounded in [0, 1]). This position will 
have good performance in practice and can be dominated 
easily in running time. The probability of virtual point can 
not be dominated finally is at most 1/N (the prove can be 
seen latter in Theorem 1). Then loading a page (G points) 
into the main memory each time. The general maxima index 
room will overflow (this algorithm will fail) when insert 
points into the general maxima index room at the 12th 
sentence. If this status happened, can use other algorithms to 
find the maxima set. Whereas the probability of this status 
happened is very tiny in I.I.D. from the examination and 

theory prove. Now we will give experiment data as follows 
to explaining the credibility of the algorithm.  

III. EXPERIMENT DATA 
In simulant experiment of EMMF algorithm, let main 

memory is 512MB. The every dimension coordinate value of 
points is 32 bit double float number in (0, 1) that created 
randomly. For every point, let the space usage is 1MB by 
adding some additional data. Let G=200, the size of 
200MB’s points load into main memory a time. And Let the 
size of general maxima index room is 1log[ ]

( 1)!

R Nk
R

−⎡ ⎤
⎢ ⎥−⎢ ⎥

 KB (k∈ 

[2, 3], every point index own 1KB, R∈ {1,..,8}). We create 
100 teams data in randomly, and the points number N of 
teams from 2000 to 200200 (the space size of points from 
2000MB to 200GB). 

796796796796



  

 
Experimental results can be seen from Fig.1 to Fig.4. 

Without lose of generality, we only show experimental 
results in these four figures with data of 2, 3, 5, 8-dimensions 
respectively. The results completely match expectation. In 

the figures, the capacity of general maxima index room 
always bound the greatest number of maximal points that 
means there is no overflow happening during running 
algorithm in every set of N points. In fact, this overflow may 
happen but the probability is very small which is almost 0. 
The proof will be given in next section. 

The EMMF algorithm’s I/O time is linear, because of 
loading G points a time and only the loading in of points 
without loading out. The I/O times of EMMF is only N/G. 
Moreover, for about 200GB data, there can not be computed 
by common microcomputer or simplicial using the paging 
technology of OS. Because with the increase of I/O times, 
the running efficiency of programs will significant decline. 
The EMMF algorithm not only completes the computation, 
but also the I/O time is linear. 

IV. THEORY PROOF  
We insert a virtual point that is not necessarily a number 

of the set S at the beginning of the EMMF algorithm. If this 
virtual point can not be dominated by a point in set S, the 
EMMF algorithm will be failed. The probability that none of 
the N points is dominate the virtual point is at most 1/N, 
proved by the Theorem 1. After then the corresponding 
reliability in 2-dimension space has been proved in Theorem 
3. The cases of higher dimension space have not proved in 
theory yet, since the proof will be very complex and we will 
discuss in the later paper. 
Theorem 1. The probability that none of the N points is 
dominate the virtual point is at most 1/N. 
Proof. The instance of 2-dimension space is illustrated in 
this picture: 

 
The probability that none of the N points is dominate the 

virtual point equals to the region D is empty. This 

probability is
1ln{1 [( ) ] }R NRN

N
− , since 

1ln{1 [( ) ] }R NRN
N

− = ln[1 ( )]NN
N

−+ ln Ne−≤ =1/N (for any 

X, (1 )N XX e
N

+ ≤ ). 

Theorem 2[12].  
2 /(2 )Pr( ) NH

N NM H e ε εε − +− ≥ ≤  
Where MN denotes the number of maximal points in a 

point set S that points number equal to N , 

(1,1) 

D 
1ln( ) RN

N
 

Virtual point 

(0,0)

797797797797



1/N j N
H j

≤
=∑  is N-order Harmonic Series, and 

0ε > . 

Lemma 1. 

2[( 1) log ]
( 1) logPr( log )
k N
k N

NM k N e
γ
γ

− −−
+ +≥ <  

Proof. When the i tends to infinity, 
log 0.57721...iH i γ− → = (Euler constant). So let 

ε =klogN-HN, and because that HN>logN+γ，we have,  

Pr( log )NM k N≥
2( log )

2 log
N

N N

k N H
H k N He

−
−

+ −≤ =

2( log )
log

N

N

k N H
k N He

−
−

+ <
2[( 1)log ]

( 1) log
k N
k Ne

γ
γ

− −−
+ + . 

Lemma 2. 

2[ log log( ) ]
log log( )Pr( log )

k N pG
k N pG

pGM k N e
γ
γ

− −−
+ +≥ <  

Where G denotes the number of points in every loading 
pages. p the number of pages that has loaded in main memory 
currently, value between [1， /N G⎢ ⎥⎣ ⎦ ]. MpG the number of 

maximal points after loading p pages. Pr( log )pGM k N≥  
the probability of the maximal points number in p pages 
bigger than the number of points in the general maxima index 
room.  
Proof. From lemma 2. we have, 

2
1

1

[( 1)log( ) ]
( 1)log( )

1Pr[ log( )]
k pG
k pG

pGM k pG e
γ
γ

− −−
+ +≥ < . Let 

k1=klogN/log(pR), there have 

1Pr( log )pGM k pG≥ =

Pr( log )pGM k N≥ <

2log[( 1) log( ) ]
log( )

log( 1) log( )
log( )

k N pG
pG

k N pG
pGe

γ

γ

− −
−

+ +
=

2[ log log( ) ]
log log( )

k N pG
k N pGe

γ
γ

− −−
+ +

. 
From above-mentioned we have: 
Theorem 3. Pr(Overflow)< 

2[ log log( ) ]
log log( )

2 2[ log log( ) ] [ log log( ) ]
log log( ) log log( )

/

1

/

1

1 {1 } % 0

% 01 {1 } {1 }

k N pG
k N pG

k N N k N pG
k N N k N pG

N G

p

N G

p

e N G

N Ge e

γ
γ

γ γ
γ γ

− −
+ +

− − − −
+ + + +

⎢ ⎥⎣ ⎦ −

=

⎢ ⎥⎣ ⎦− −

=

⎧
− − =⎪

⎪
⎨
⎪ ≠− − −⎪
⎩

∏

∏
 

Where Pr(Overflow) denotes the probability of overflow 
in the general maxima index room when algorithm was 
running. 

The Fig.5 shows that the probability of overflow decrease 
with the augmentation of G, but decrease is not significant. 
In other words, the size of G has a few infections to the 
running of algorithm. In practice, just need sets G by the size 
of actual memory. The Fig. 6 shows that when k≥3, i.e. the 

general maxima index room can have points at lest 3logN, 
the probability of overflow will be very teeny. 

 

  
 

 

V. CONCLUSION 
The existed algorithms in the field of Maxima-finding 

problem (Skyline Queries) have been summarized in this 
paper. A new kind of Maxima-finding algorithm (EMMF) 
that dealing with I.I.D.’s massive data has been presented. 
On this basis, the corresponding reliability has been proved 
from two aspects of theory and experiments. To our 
knowledge, this is the first demonstration of the pure external 
memory algorithm of maxima-finding problem. The main 
result, the EMMF algorithm, may have a number of 
applications in data mining, spatial databases, geographic 
information systems (CIS), and computer graphics, as data in 
those areas become more and larger today and the EMMF 
algorithm have good reliability and its I/O complexity is 
linear. In addition, it is easy programming in practice. 

We will study the data in others distribution and theory 
prove higher dimensional space in the future work. 

REFERENCES 

Fig. 5. the function figure of  theorem 3 where N
denotes the points number of set S, G the number of points 
in every loading pages, γ=0.577, k=3(i.e. the points 
number of the general maxima index room is 3logN ).

G 

Fig. 6. the function figure of  theorem 3 where
N denotes the points number of set S, the points
number of the general maxima index room is klogN,
γ=0.577,G=200.

798798798798



[1] O. Barndorff-Nielsen and M. Sobel, On the distribution of the 
number of admissible points in a vector random sample, Theory of 
Prob. and its Appl., 1966, 11(2), pp. 249–269. 

[2] J.L. Bentley, K.L. Clarkson and D.B. Levine, Fast linear expected-
time algorithms for computing maxima and convex hulls, 
Algorithmica, 1993, 9, pp. 168–183. 

[3] J.L. Bentley and M.I. Shamos, Divide and conquer for linear 
expected time, Information Processing Letters, 1978, 7, pp. 87–91. 

[4] S. Börzsönyi, D. Kossmann, and K. Stocker, The skyline operator, In 
ICDE, 2001, pp. 421–430. 

[5] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, Skyline with 
presorting, In ICDE, Mar. 2003, pp. 717–719. 

[6] K.L. Clarkson, More output-sensitive geometric algorithms 
(extended abstract), in IEEE 35th Annual Symposium on 
Foundations of Computer Science, Santa Fe, New Mexico, 1994, pp. 
695–702. 

[7] L. Devroye, Moment inequalities for random variables in 
computational geometry, Computing, 1983, 30, pp. 111–119. 

[8] L. Devroye, A note on the expected time required to construct the 
outer layer, Information Processing Letters, 1985, 20, pp. 255–257. 

[9] L. Devroye, Lecture Notes on Bucket Algorithms, Progress in 
Computer Science, 6, Birkhäuser, Boston, MA,1986. 

[10] P. Godfrey, R. Shipley, J. Gryz, Maximal vector computation in large 
data sets. VLDB 2005 - Proceedings of 31st International Conference 
on Very Large Data Bases, 2005, pp. 229-240. 

[11] M.J. Golin, How many maxima can there be?, Theory of Prob. and 
its Appl., 1993, 2, pp. 335-353. 

[12] M.J. Golin, A provably fast linear-expected-time maxima-finding 
algorithm , Algorithmica, 1994, 11, pp. 501-524. 

[13] H.T. Kung, F. Luccio and F.P. Preparata, On finding the maxima of a 
set of vectors, Journal of the ACM, 1975, 22, pp. 469–476. 

[14] J.S. Vitter, External Memory Algorithms and Data Structures: 
Dealing with Massive Data, ACM Computing Surveys, 2001, 33, pp. 
209-271

 

799799799799


