

Linear Algebra and its Applications 320 (2000) 173–182

LINEAR ALGEBRA AND ITS APPLICATIONS

www.elsevier.com/locate/laa

On the largest *k*th eigenvalues of trees with $n \equiv 0 \pmod{k}^{\mathcal{P}}$

Yong Zou, Zheng Wang, Xuerong Yong[∗]

Department of Mathematics, Xinjiang University, Urumqi 830046, People's Republic of China Received 30 January 1996; accepted 22 June 2000

Submitted by R.A. Brualdi

Abstract

We consider the only remaining unsolved case $n \equiv 0 \pmod{k}$ for the largest *k*th eigenvalue of trees with *n* vertices. In 1995, Jia-yu Shao gave complete solutions for the cases $k = 2, 3, 4, 5, 6$ and provided some necessary conditions for extremal trees in general cases (cf. [Linear Algebra Appl. 221 (1995) 131]). We further improve Shao's necessary condition in this paper, which can be seen as the continuation of [Linear Algebra Appl. 221 (1995) 131]. © 2000 Elsevier Science Inc. All rights reserved.

Keywords: Eigenvalues of a graph; Extremal tree; Induced subgraph

1. Introduction

Let *G* be a graph of order *n*. The eigenvalues of *G* are defined as those of its adjacent matrix $A(G)$. Now, $A(G)$ is a symmetric $(0, 1)$ matrix, and so, the eigenvalues of A(G) (or of *^G*) are all real and can be ordered as

 $\lambda_1(G) \geqslant \lambda_2(G) \geqslant \cdots \geqslant \lambda_n(G).$

We call $\lambda_k(G)$ the *k*th *eigenvalue* of G.

E-mail address: xryong@cs.ust.hk (X. Yong).

0024-3795/00/\$ - see front matter \odot 2000 Elsevier Science Inc. All rights reserved. PII: S 0 0 2 4 - 3 7 9 5 (0 0) 0 0 2 1 2 - 3

^ø Research supported in part by XJEC grant of China, RGC CERG grant 652/95E of Hong Kong and DIMACS. [∗] Corresponding author. Present address: Department of Computer Science, Hong Kong University of

Science and Technology, Clear Water Bay, Kowloon, Hong Kong. Fax: 852-2358-1477.

If *T* is a tree of order *n*, then *T* is bipartite, and its eigenvalues satisfy the relation $\lambda_i(T) = -\lambda_{n-i+1}(T)$ $(i = 1, 2, ..., n)$. So, it suffices to study those eigenvalues $\lambda_k(T)$ for $1 \leq k \leq [n/2]$. In this paper we always assume that $1 \leq k \leq [n/2]$.

An interesting unsolved problem in the study of the spectra of trees is to find "the best possible upper bound" for the *k*th eigenvalues of trees of order *n*. In other words, let

$$
\Gamma_n = \{ T \mid T \text{ is a tree of order } n \},
$$

and let

$$
\bar{\lambda}_k(n) = \max\{\lambda_k(T) | T \in \Gamma_n\} \quad (1 \leq k \leq [n/2]).
$$

Then, the above problem asks to determine the function $\bar{\lambda}_k(n)$ and (if possible) find a tree $T \in \Gamma_n$ with $\lambda_k(T) = \lambda_k(n)$.

There have been considerable attempts in studying this problem, and the remaining unsolved case for $\bar{\lambda}_k(n)$ is the case $n \equiv 0 \pmod{k}$, $7 \leq k \leq [n/2]$. For this case, we write $n = kt$ ($t \ge 2$) and let

$$
\bar{\Gamma}_{k,t} = \{ T \in \Gamma_{kt} \mid \lambda_k(T) = \bar{\lambda}_k(kt) \}.
$$

The trees in $\bar{\Gamma}_{k,t}$ are called the extremal trees.

To be clear, we give the same definitions as those in [1] below.

Definition 1. Let $X_{k,t}$ be the subset of trees in Γ_{kt} which consists of *k* disjoint stars S_1, \ldots, S_k of the order t ($S_1 \cong S_2 \cong \cdots \cong S_k \cong K_{1,t-1}$) together with another $k-1$ edges $e_1, e_2, \ldots, e_{k-1}$ such that the two end vertices of each edge e_i (i = $1, 2, \ldots, k - 1$) are noncentral vertices of different stars. We call S_1, \ldots, S_k the stars of this tree $T \in X_{k,t}$, call the edges e_1, \ldots, e_{k-1} the *nonstar edges* of *T*, and call the other edges the *star edges* of *T*.

Definition 2. We define the condensed tree \widehat{T} of T as $V(\widehat{T}) = (S_1, S_2, \ldots, S_k)$, and there is an edge $[S_1, S_2]$ $(i \neq i)$ in \widehat{T} if and only if there exists some nonstar edge of there is an edge $[S_i, S_j]$ $(i \neq j)$ in \hat{T} if and only if there exists some nonstar edge of T with one end in S_i and the other end in S_i . *T* with one end in S_i and the other end in S_i .

Definition 3. Define $X'_{k,t}$ as the subset of $X_{k,t}$ which consists of those trees *T* in $X_{k,t}$ such that for any star *S*: of *T* there is only one vertex in *S*: incident to some $X_{k,t}$ such that for any star S_i of *T*, there is only one vertex in S_i incident to some nonstar edges of *T*.

A considerable necessary condition for extremal trees obtained in [1] is that if $T \in$ $\bar{\Gamma}_{k,t}$ ($k \ge 2$, $t \ge 5$), then $T \in X_{k,t}$ and $\Delta(\widehat{T}) \le 3$, where $\Delta(\widehat{T})$ is the maximal degree of the condensed tree \overline{T} . In this paper, we establish a further necessary condition for extremal trees extremal trees.

2. Some preliminary results

For a graph *G*, let $q(G)$ be the number of edges in a maximal matching of *G*, and let $a_i(G)$ be the number of *j*-matchings (the matchings with *j*-edges) of *G*. (We agree that $a_i(G) = 0$ for $j < 0$ and $j > q(G)$.) We also write

$$
m_G(x) = \sum_{j=0}^{q(G)} (-1)^j a_j(G) x^{q(G)-j}
$$
\n(2.1)

and

$$
h_G(y) = m_G(y+a). \tag{2.2}
$$

We call $h_G(y)$ the *key polynomial of G*. Then the characteristic polynomial of a tree $T \in \Gamma_n$ is

$$
P(T,\lambda) = \lambda^{n-2q(T)} m_T(\lambda^2) = \lambda^{n-2q(T)} h_T(\lambda^2 - a),
$$
\n(2.3)

and thus,

$$
\lambda_k(T) = \sqrt{\lambda_k(m_T)} = \sqrt{a + \lambda_k(h_T)} \quad (k \leq q(T)),
$$
\n(2.4)

where $\lambda_k(m_T)$ and $\lambda_k(h_T)$ are the *k*th largest real roots of the polynomials $m_T(x)$ and $h_T(y)$, respectively.

From now on, we always write

$$
a = t - 1 \tag{2.5}
$$

and let

$$
f_u(y) = (y+a)y^2 - u(y+1)^2,
$$
\n(2.6)

$$
g_1(y) = (y + a)y + 2(y + 2),
$$
\n(2.7)

$$
g_2(y) = 2(y+1)^2 + (y+2)y,
$$
\n(2.8)

$$
g_3(y) = (y+a)(y+1)^2 - (y+2)^2,
$$
\n(2.9)

$$
g_4(y) = 2(y+a)(y+1) - 3(y+3),
$$
\n(2.10)

$$
g_5(y) = (y+1)^2 + (y+2)y,
$$
\n(2.11)

$$
g_6(y) = (y+a)(y+1)^2 - 4(y+2)^2,
$$
\n(2.12)

$$
g_7(y) = (y+a)(y+1) - 2(y+3). \tag{2.13}
$$

These polynomials will play an important role in our studies.

Lemma 1 (Cauchy interlacing theorem). Let V' be a vertex subset with k vertices of *the graph G. Let* $G - V'$ *be the subgraph of G obtained by deleting all the vertices in* V' together with their incident edges. Then

$$
\lambda_i(G) \geq \lambda_i(G - V') \geq \lambda_{i+k}(G).
$$

Lemma 2 [1]. *For* $u > 0$ *, the cubic polynomial* $f_u(y)$ *has three real roots, which we can write as* $\lambda_1(f_u) > \lambda_2(f_u) > \lambda_3(f_u)$ *. Furthermore, we have*

$$
\lambda_3(f_u) \leqslant -1 < \lambda_2(f_u) < 0 < \lambda_1(f_u) \tag{2.14}
$$

and

$$
\lambda_2(f_{\xi}) < \lambda_2(f_u) \quad \text{(for } 0 < u < \xi\text{)}.\tag{2.15}
$$

Lemma 3 [1]. Let $T \in X'_{k,t}$ ($t \ge 2$), and let $u_1 = \lambda_1(\widehat{T})$ be the largest eigenvalue of the condensed tree \widehat{T} . Then *of the condensed tree* T b*. Then*

$$
\lambda_k(T) = \sqrt{t - 1 + \lambda_2(f_{u_1})}.\tag{2.16}
$$

The following lemma will be crucial for the results of this paper.

Lemma 4. Let
$$
f_2(y) = (y + a)y^2 - 4(y + 1)^2
$$
. Then for $n \ge 8$, we have
-1 + $\frac{1}{\sqrt{3}} < \lambda_2(f_2) < 0$ (2.17)

and

$$
g_i(\lambda_2(f_2)) > 0, \quad i = 2, 3, 4,
$$
\n^(2.18)

$$
g_1(\lambda_2(f_2)) < 0. \tag{2.19}
$$

Furthermore, for $a \ge 24$ *, we have*

$$
-1 + \frac{1}{\sqrt{2}} < \lambda_2(f_2) < 0 \tag{2.20}
$$

and

$$
g_i(\lambda_2(f_2)) > 0, \quad i = 2, 3, 4, 5, 6, 7,
$$
\n
$$
(2.21)
$$

$$
g_1(\lambda_2(f_2)) < 0. \tag{2.22}
$$

Proof. We need to prove only (2.17) , (2.18) (for $i = 2$) and (2.19) here. The rest can be obtained in the same way.

For $a \ge 8$, we have

$$
f_2(0) = -4 < 0
$$
 and $f_2\left(-1 + \frac{1}{\sqrt{3}}\right) > 0.$

From (2.14), we have $\lambda_3(f_2) < -1\lambda_2(f_2) < 0 < \lambda_1(f_2)$. So (2.17) holds. $\text{Now, when } -1 + 1/\sqrt{3} < y < 0, \text{ we have } 0 < 0.$

$$
g'_2(y) = 6(y+1) > 0
$$
 and $g_2\left(-1 + \frac{1}{\sqrt{3}}\right) > 0$.

So

$$
g_2(\lambda_2(f_2))>0.
$$

Let $\lambda_1(y)$ be the larger root of $g_1(g) = 0$. Then the direct computations give

$$
f_2(\lambda_1(g_1))<0.
$$

Noticing the quality of the curve $f_2(y)$, we have

$$
\lambda_2(f_2) < \lambda_1(g_1).
$$

Thus, we can easily obtain (2.19). \Box

The seven trees shown in Fig. 1 will be important for our main results: Now, let W_1 ∈ Γ_6 , W_2 , W_6 ∈ Γ_7 , W_3 , W_5 ∈ Γ_8 , W_4 , W_7 ∈ Γ_9 as in Fig. 1, $W = \{W_1, W_2, W_3, W_4, W_5, W_6, W_7\},\$

178 *Y. Zou et al. / Linear Algebra and its Applications 320 (2000) 173–182*

$$
F_5 = \{ T \in X_{8,t} \mid \widehat{T} = W_5 \}, \quad F_5^* \in F_5 \cap X'_{8,t},
$$

$$
F_6 = \{ T \in X_{7,t} \mid \widehat{T} = W_6 \}, \quad F_6^* \in F_6 \cap X'_{7,t},
$$

$$
F_7 = \{ T \in X_{9,t} \mid \widehat{T} = W_7 \}, \quad F_7^* \in F_7 \cap X'_{9,t},
$$

and

$$
F = F_1 \cup F_2 \cup F_3 \cup F_4 \cup F_5 \cup F_6 \cup F_7.
$$

From [2, Table 2], we know that the largest eigenvalue of each W_i ($i = 1, 2, ..., 7$) is 2. Then by Lemma 3

$$
\lambda_6(F_1^*) = \lambda_7(F_2^*) = \lambda_8(F_3^*) = \lambda_9(F_4^*)
$$

= $\lambda_8(F_5^*) = \lambda_7(F_6^*) = \lambda_9(F_7^*)$
= $\sqrt{t - 1 + \lambda_2(f_2)}$, (2.23)

where $t \ge 2$.

Theorem 5. *For* $t \geq 4$ *, we have*

$$
\lambda_6(T) < \lambda_6(F_1^*), \quad T \in F_1 \setminus \{F_1^*\},\tag{2.24}
$$

$$
\lambda_7(T) < \lambda_7(F_2^*), \quad T \in F_2 \setminus \{F_2^*\},\tag{2.25}
$$

$$
\lambda_8(T) < \lambda_8(F_3^*), \quad T \in F_3 \setminus \{F_3^*\},\tag{2.26}
$$

$$
\lambda_9(T) < \lambda_9(F_4^*), \quad T \in F_4 \setminus \{F_4^*\},\tag{2.27}
$$

$$
\lambda_8(T) < \lambda_8(F_5^*), \quad T \in F_5 \setminus \{F_5^*\},\tag{2.28}
$$

$$
\lambda_7(T) < \lambda_8(F_6^*), \quad T \in F_6 \setminus \{F_6^*\},\tag{2.29}
$$

$$
\lambda_9(T) < \lambda_9(F_7^*), \quad T \in F_7 \setminus \{F_7^*\}. \tag{2.30}
$$

Proof. The proofs follow from extensive calculations (available from the authors on request), and Lemmas 4 and 5.1 in [1]. \Box

3. A further necessary condition for extremal trees

Let
$$
P_k
$$
, J_k and $L_k \in \Gamma_k$ as in Fig. 2,

$$
M_9 = \{ T \in \Gamma_9 \mid \Delta(T) = 3 \} \setminus \{ J_9 \},\tag{3.1}
$$

and

$$
M_{9,t} = \{ T \in X_{9,t} \mid \widehat{T} \in M_9 \}. \tag{3.2}
$$

Theorem 6. *Let* M_9 , $M_{9,t}$ *as* (3.1), (3.2)*. Then for* $t \ge 4$ *, we have*

$$
\lambda_9(T) \leqslant \sqrt{t - 1 + \lambda_2(f_2)}, \quad T \in M_{9,t}.\tag{3.3}
$$

Proof. For $T \in M_{9,t}$, it is obvious that \widehat{T} has an induced subgraph isomorphic to some $W \in W, 1 \le i \le 7$ and thus there exists a vertex set $V^* \subset V(T)$ such that some $W_i \in W$, $1 \le i \le 7$, and thus, there exists a vertex set $V^* \subset V(T)$ such that

$$
T - V^* = W^* \cup \overbrace{K_{1,t-2} \cup \cdots \cup K_{1,t-2}}^{\cdot} \cup \overbrace{K_{1,t-3} \cup \cdots \cup K_{1,t-3}}^{\cdot} \cdots \overbrace{K_{1,t-3} \cup \cdots \cup K_{1,t-3}}
$$
\n
$$
(3.4)
$$

where $W^* \in F$, $\widehat{W}^* = W_i$ and n_1, n_2, n_3 are the three finite integers. By Theorem 5 and from (2.23) $\lambda_i (W^*) \leq (t-1+i_2(t_2))$ for some $k_i (6 \leq k \leq 9)$. So, by the 5 and from (2.23) $\lambda_k(W^*) \leq \sqrt{t-1+\lambda_2(f_2)}$ for some k (6 $\leq k \leq 9$). So, by the Cauchy interlacing theorem, we have

$$
\lambda_9(T) \le \lambda_k(T - V^*)
$$

\n
$$
\le \max\{\lambda(W^*), \sqrt{t - 2}, \sqrt{t - 3}, \sqrt{t - 4}\}
$$

\n
$$
\le \sqrt{t - 1 + \lambda_2(f_2)}.
$$

Lemma 7. *Let*

 $M_k = \{T \in \Gamma_k \mid \Delta(T) = 3\} \setminus \{J_k, L_k\} \quad (k \geq 10).$

Then, for $T \in M_k$ *, T has an induced subgraph isomorphic to some* $T_9^0 \in M_9$ *.*

Proof. The proof is trivial. \Box

Theorem 8. For
$$
t \ge 4
$$
, $k \ge 10$, let $M_{k,t} = \{T \in X_{k,t} | T \in M_k\}$. Then
\n
$$
\overline{\Gamma}_{k,t} \cap M_{k,t} = \emptyset.
$$
\n(3.6)

Proof. For $T \in M_{k,t}$, by Lemma 7, we have that \hat{T} has an induced subgraph isomorphic to some $T^0 \in M_0$. Thus as the proof of Theorem 6, we have morphic to some $T_9^0 \in M_9$. Thus, as the proof of Theorem 6, we have

$$
\lambda_k(T) \leqslant \sqrt{t - 1 + \lambda_2(f_2)}.\tag{3.7}
$$

On the other hand, by [1]

$$
\bar{\lambda}_k(kt) \geqslant \sqrt{t - 1 + \lambda_2(f_{\lambda_1(P_k)})} = \sqrt{t - 1 + \lambda_2\left(f_{2\cos\frac{\pi}{k+1}}\right)}
$$
(3.8)

and from (2.15)

$$
\sqrt{t - 1 + \lambda_2 \left(f_{2\cos\frac{\pi}{k+1}}\right)} \geqslant \sqrt{t - 1 + \lambda_2(f_2)}.
$$
\n(3.9)

Combining (3.6) – (3.8) , we obtain (3.5) . \Box

Remark 1. We have also verified that (3.5) holds for $k = 7, 8, 9$. So, for $k \ge 7$ and $t \geqslant 4$, if we denote by

$$
P_{k,t} = \{T \in X_{k,t} | \widehat{T} = P_k \},
$$

$$
J_{k,t} = \{T \in X_{k,t} | \widehat{T} = J_k \},
$$

and

$$
L_{k,t} = \{ T \in X_{k,t} \mid \widehat{T} = L_k \},\
$$

then, from the previous results and Theorem 8, it suffices to find the extremal trees in $P_{k,t} \cup J_{k,t} \cup L_{k,t}$.

4. Some further discussions

In this section, we establish some further results about the left problem of finding the extremal trees in $J_{k,t}$.

Lemma 9. Let P_k , J_k $k \geq 4$ *as in Fig.* 2*. We have*

$$
\lambda_i(J_k) = 2\cos\frac{(2i-1)\pi}{2k-2}, \quad i = 1, 2, \dots, k,
$$
\n(4.1)

i.e.

$$
\lambda_i(J_k) = \lambda_{2i-1}(P_{2k-3}).
$$
\n(4.2)

Proof. From Fig. 2, we can write

$$
A(J_k) = \begin{pmatrix} A & \alpha \\ \alpha^{\mathrm{T}} & 0 \end{pmatrix},
$$

where *A* is the adjacent matrix of P_{k-1} , $\alpha = (0, 1, 0, \ldots, 0)^{\text{T}}$.
Let $I_k(\lambda) = \det(\lambda I - A(L))$. Then we have the recursive

Let $J_k(\lambda) = \det(\lambda I - A(J_k))$. Then, we have the recursive relation as follows:

$$
J_k(\lambda) = \lambda J_{k-1}(\lambda) - J_{k-2}(\lambda),
$$

since $x_{1,2} = \lambda \pm \sqrt{\lambda^2 - 4}/2$ are the two roots of $x^2 - \lambda x + 1 = 0$, we have

$$
J_k(\lambda) = c_1 x_1^k + c_2 x_2^k.
$$
\n(4.3)

On the other hand,

$$
J_4(\lambda) = \lambda^3 - 3\lambda^2 = c_1 x_1^4 + c_2 x_2^4,
$$
\n(4.4)

Y. Zou et al. / Linear Algebra and its Applications 320 (2000) 173–182 181

$$
J_5(\lambda) = \lambda^5 - 4\lambda^3 + 2\lambda = c_1 x_1^5 + c_2 x_2^5.
$$
 (4.5)

Combining (4.4) and (4.5), we have

$$
c_1 = \frac{J_5(\lambda) - J_4(\lambda)x_2}{x_1^5 - x_1^4 x_2}, \quad c_2 = \frac{J_5(\lambda) - J_4(\lambda)x_1}{x_2^5 - x_2^4 x_1}.
$$
\n(4.6)

From (4.3) and (4.6) , we have

$$
J_k(\lambda) = \frac{J_5(\lambda) - J_4(\lambda)x_2}{x_1 - x_2} x_1^{k-4} + \frac{J_5(\lambda) - J_4(\lambda)x_1}{x_2 - x_1} x_2^{k-4}.
$$

Let

$$
\lambda_i = 2\cos\frac{(2i-1)\pi}{2k-2}.
$$

 $2k - 2$
Then the direct computations give

$$
J_k(\lambda_i)=0, \quad i=1,2,\ldots,k.
$$

Thus we obtain (4.1). Noticing

$$
\lambda_i(P_k) = 2\cos\frac{i\pi}{k+1},
$$

we have (4.2) . \Box

Theorem 10. If there is no extremal tree in $J_{k,t}$, then there is no extremal tree in $J_{s,t}$ *for* $k + 1 \le s \le 2k - 2$ *.*

Proof. By Lemma 9, we have

$$
\lambda_1(J_k)=\lambda_1(P_{2k-3}), \quad \lambda_1(J_s)>\lambda_1(J_k),
$$

and

$$
\lambda_1(P_s) > \lambda_1(P_k), \quad k+1 \leqslant s \leqslant 2k-2.
$$

So, from (2.15), we have

$$
\sqrt{t-1+\lambda_2(f_{\lambda_1(J_k)})} < \sqrt{t-1+\lambda_2(f_{\lambda_1(P_{2k-3})})} < \sqrt{t-1+\lambda_2(f_{\lambda_1(P_s))}}.
$$

On the other hand, obviously $J_s(k + 1 \leq s \leq 2k - 2)$ has J_k as its induced subgraph. Thus, by the same reasoning as Theorem 8, we conclude that there is no extremal tree in $J_{s,t}$ ($k + 1 \le s \le 2k - 2$). □

Acknowledgement

We are grateful to the anonymous referee for giving valuable suggestions towards improving the proofs of the original version of this paper.

References

- [1] Jia-yu Shao, On the largest *k*th eigenvalues of trees, Linear Algebra Appl. 221 (1995) 131–157.
- [2] D.M. Cretkvoic, M. Doob, H. Sachs, Spectra of Graphs, Academic, New York, 1980 (Appendix, Table 2).