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Abstract

We consider the only remaining unsolved casen ≡ 0 (modk) for the largestkth eigen-
value of trees withn vertices. In 1995, Jia-yu Shao gave complete solutions for the cases
k = 2, 3, 4, 5, 6 and provided some necessary conditions for extremal trees in general cases
(cf. [Linear Algebra Appl. 221 (1995) 131]). We further improve Shao’s necessary condition
in this paper, which can be seen as the continuation of [Linear Algebra Appl. 221 (1995) 131].
© 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let G be a graph of ordern. The eigenvalues ofG are defined as those of its adja-
cent matrixA(G). Now,A(G) is a symmetric(0, 1) matrix, and so, the eigenvalues
of A(G) (or of G) are all real and can be ordered as

λ1(G) > λ2(G) > · · · > λn(G).

We callλk(G) thekth eigenvalueof G.
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If T is a tree of ordern, thenT is bipartite, and its eigenvalues satisfy the relation
λi(T ) = −λn−i+1(T ) (i = 1, 2, . . . , n). So, it suffices to study those eigenvalues
λk(T ) for 1 6 k 6 [n/2]. In this paper we always assume that 16 k 6 [n/2].

An interesting unsolved problem in the study of the spectra of trees is to find “the
best possible upper bound” for thekth eigenvalues of trees of ordern. In other words,
let

Cn = {T | T is a tree of ordern},

and let

λ̄k(n) = max{λk(T ) | T ∈ Cn} (1 6 k 6 [n/2]).

Then, the above problem asks to determine the functionλ̄k(n) and (if possible) find
a treeT ∈ Cn with λk(T ) = λ̄k(n).

There have been considerable attempts in studying this problem, and the remain-
ing unsolved case for̄λk(n) is the casen ≡ 0 (modk), 7 6 k 6 [n/2]. For this case,
we writen = kt (t > 2) and let

C̄k,t = {T ∈ Ckt | λk(T ) = λ̄k(kt)}.

The trees in̄Ck,t are called the extremal trees.
To be clear, we give the same definitions as those in [1] below.

Definition 1. Let Xk,t be the subset of trees inCkt which consists ofk disjoint
starsS1, . . . , Sk of the ordert (S1 ∼= S2 ∼= · · ·∼= Sk

∼= K1,t−1) together with another
k − 1 edgese1, e2, . . . , ek−1 such that the two end vertices of each edgeei (i =
1, 2, . . . , k − 1) are noncentral vertices of different stars. We callS1, . . . , Sk thestars
of this treeT ∈ Xk,t , call the edgese1, . . . , ek−1 thenonstar edgesof T, and call the
other edges thestar edgesof T.

Definition 2. We define the condensed treêT of T asV (T̂ ) = (S1, S2, . . . , Sk), and
there is an edge [Si, Sj ] (i /= j) in T̂ if and only if there exists some nonstar edge of
T with one end inSi and the other end inSj .

Definition 3. DefineX′
k,t as the subset ofXk,t which consists of those treesT in

Xk,t such that for any starSi of T, there is only one vertex inSi incident to some
nonstar edges ofT.

A considerable necessary condition for extremal trees obtained in [1] is that ifT ∈
C̄k,t (k > 2, t > 5), thenT ∈ Xk,t andD(T̂ ) 6 3, whereD(T̂ ) is the maximal degree
of the condensed treêT . In this paper, we establish a further necessary condition for
extremal trees.
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2. Some preliminary results

For a graphG, let q(G) be the number of edges in a maximal matching ofG, and
let aj (G) be the number ofj-matchings (the matchings withj-edges) ofG. (We agree
thataj (G) = 0 for j < 0 andj > q(G).) We also write

mG(x) =
q(G)∑
j=0

(−1)jaj (G)xq(G)−j (2.1)

and

hG(y) = mG(y + a). (2.2)

We callhG(y) thekey polynomial of G. Then the characteristic polynomial of a
treeT ∈ Cn is

P(T , λ) = λn−2q(T )mT (λ2) = λn−2q(T )hT (λ2 − a), (2.3)

and thus,

λk(T ) = √
λk(mT ) = √

a + λk(hT ) (k 6 q(T )), (2.4)

whereλk(mT ) andλk(hT ) are thekth largest real roots of the polynomialsmT (x)

andhT (y), respectively.
From now on, we always write

a = t − 1 (2.5)

and let

fu(y) = (y + a)y2 − u(y + 1)2, (2.6)

g1(y) = (y + a)y + 2(y + 2), (2.7)

g2(y) = 2(y + 1)2 + (y + 2)y, (2.8)

g3(y) = (y + a)(y + 1)2 − (y + 2)2, (2.9)

g4(y) = 2(y + a)(y + 1) − 3(y + 3), (2.10)

g5(y) = (y + 1)2 + (y + 2)y, (2.11)

g6(y) = (y + a)(y + 1)2 − 4(y + 2)2, (2.12)

g7(y) = (y + a)(y + 1) − 2(y + 3). (2.13)

These polynomials will play an important role in our studies.

Lemma 1 (Cauchy interlacing theorem).LetV ′ be a vertex subset with k vertices of
the graph G. LetG − V ′ be the subgraph of G obtained by deleting all the vertices
in V ′ together with their incident edges. Then
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λi(G) > λi(G − V ′) > λi+k(G).

Lemma 2 [1]. For u > 0, the cubic polynomialfu(y) has three real roots, which we
can write asλ1(fu) > λ2(fu) > λ3(fu). Furthermore, we have

λ3(fu) 6 −1 < λ2(fu) < 0 < λ1(fu) (2.14)

and

λ2(fξ ) < λ2(fu) (for 0 < u < ξ). (2.15)

Lemma 3 [1]. Let T ∈ X′
k,t (t > 2), and letu1 = λ1(T̂ ) be the largest eigenvalue

of the condensed treêT . Then

λk(T ) = √
t − 1 + λ2(fu1). (2.16)

The following lemma will be crucial for the results of this paper.

Lemma 4. Letf2(y) = (y + a)y2 − 4(y + 1)2. Then forn > 8, we have

−1 + 1√
3

< λ2(f2) < 0 (2.17)

and

gi(λ2(f2)) > 0, i = 2, 3, 4, (2.18)

g1(λ2(f2)) < 0. (2.19)

Furthermore, for a > 24, we have

−1 + 1√
2

< λ2(f2) < 0 (2.20)

and

gi(λ2(f2)) > 0, i = 2, 3, 4, 5, 6, 7, (2.21)

g1(λ2(f2)) < 0. (2.22)

Proof. We need to prove only (2.17), (2.18) (fori = 2) and (2.19) here. The rest
can be obtained in the same way.

Fora > 8, we have

f2(0) = −4 < 0 and f2

(
−1 + 1√

3

)
> 0.

From (2.14), we haveλ3(f2) < −1λ2(f2) < 0 < λ1(f2). So (2.17) holds.
Now, when−1 + 1/

√
3 < y < 0, we have

g′
2(y) = 6(y + 1) > 0 and g2

(
−1 + 1√

3

)
> 0.
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So

g2(λ2(f2)) > 0.

Let λ1(y) be the larger root ofg1(g) = 0. Then the direct computations give

f2(λ1(g1)) < 0.

Noticing the quality of the curvef2(y), we have

λ2(f2) < λ1(g1).

Thus, we can easily obtain (2.19).�

The seven trees shown in Fig. 1 will be important for our main results:
Now, letW1 ∈ C6, W2,W6 ∈ C7, W3,W5 ∈ C8, W4,W7 ∈ C9 as in Fig. 1,

W = {W1,W2,W3,W4,W5,W6,W7},
F1 = {T ∈ X6,t | T̂ = W1}, F ∗

1 ∈ F1 ∩ X′
6,t ,

F2 = {T ∈ X7,t | T̂ = W2}, F ∗
2 ∈ F2 ∩ X′

7,t ,

F3 = {T ∈ X8,t | T̂ = W3}, F ∗
3 ∈ F3 ∩ X′

8,t ,

F4 = {T ∈ X9,t | T̂ = W4}, F ∗
4 ∈ F4 ∩ X′

9,t ,

Fig. 1.
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F5 = {T ∈ X8,t | T̂ = W5}, F ∗
5 ∈ F5 ∩ X′

8,t ,

F6 = {T ∈ X7,t | T̂ = W6}, F ∗
6 ∈ F6 ∩ X′

7,t ,

F7 = {T ∈ X9,t | T̂ = W7}, F ∗
7 ∈ F7 ∩ X′

9,t ,

and

F = F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5 ∪ F6 ∪ F7.

From [2, Table 2], we know that the largest eigenvalue of eachWi(i = 1, 2, . . . , 7)

is 2. Then by Lemma 3

λ6(F
∗
1 ) = λ7(F

∗
2 ) = λ8(F

∗
3 ) = λ9(F

∗
4 )

= λ8(F
∗
5 ) = λ7(F

∗
6 ) = λ9(F

∗
7 )

= √
t − 1 + λ2(f2), (2.23)

wheret > 2.

Theorem 5. For t > 4, we have

λ6(T ) < λ6(F
∗
1 ), T ∈ F1\{F ∗

1 }, (2.24)

λ7(T ) < λ7(F
∗
2 ), T ∈ F2\{F ∗

2 }, (2.25)

λ8(T ) < λ8(F
∗
3 ), T ∈ F3\{F ∗

3 }, (2.26)

λ9(T ) < λ9(F
∗
4 ), T ∈ F4\{F ∗

4 }, (2.27)

λ8(T ) < λ8(F
∗
5 ), T ∈ F5\{F ∗

5 }, (2.28)

λ7(T ) < λ8(F
∗
6 ), T ∈ F6\{F ∗

6 }, (2.29)

λ9(T ) < λ9(F
∗
7 ), T ∈ F7\{F ∗

7 }. (2.30)

Proof. The proofs follow from extensive calculations (available from the authors on
request), and Lemmas 4 and 5.1 in [1].�

3. A further necessary condition for extremal trees

Let Pk, Jk andLk ∈ Ck as in Fig. 2,

M9 = {T ∈ C9 | D(T ) = 3}\{J9}, (3.1)

and

M9,t = {T ∈ X9,t | T̂ ∈ M9}. (3.2)
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Fig. 2.

Theorem 6. LetM9, M9,t as(3.1), (3.2). Then fort > 4, we have

λ9(T ) 6
√

t − 1 + λ2(f2), T ∈ M9,t . (3.3)

Proof. For T ∈ M9,t , it is obvious that̂T has an induced subgraph isomorphic to
someWi ∈ W, 1 6 i 6 7, and thus, there exists a vertex setV ∗ ⊂ V (T ) such that

T − V ∗=W∗∪̇
︷ ︸︸ ︷
K1,t−2∪̇ · · · ∪̇K1,t−2 ∪̇

︷ ︸︸ ︷
K1,t−3∪̇ · · · ∪̇K1,t−3

∪̇
︷ ︸︸ ︷
K1,t−4∪̇ · · · ∪̇K1,t−4, (3.4)

whereW∗ ∈ F , Ŵ∗ = Wi andn1, n2, n3 are the three finite integers. By Theorem
5 and from (2.23)λk(W

∗) 6
√

t − 1 + λ2(f2) for somek (6 6 k 6 9). So, by the
Cauchy interlacing theorem, we have

λ9(T )6λk(T − V ∗)
6max{λ(W∗),

√
t − 2,

√
t − 3,

√
t − 4}

6
√

t − 1 + λ2(f2). � (3.5)

Lemma 7. Let

Mk = {T ∈ Ck | D(T ) = 3}\{Jk, Lk} (k > 10).

Then, for T ∈ Mk, T has an induced subgraph isomorphic to someT 0
9 ∈ M9.

Proof. The proof is trivial. �

Theorem 8. For t > 4, k > 10, let Mk,t = {T ∈ Xk,t | T̂ ∈ Mk}. Then

C̄k,t ∩ Mk,t = ∅. (3.6)

Proof. For T ∈ Mk,t , by Lemma 7, we have that̂T has an induced subgraph iso-
morphic to someT 0

9 ∈ M9.Thus, as the proof of Theorem 6, we have

λk(T ) 6
√

t − 1 + λ2(f2). (3.7)

On the other hand, by [1]

λ̄k(kt) >
√

t − 1 + λ2(fλ1(Pk)) =
√

t − 1 + λ2

(
f2 cos π

k+1

)
(3.8)
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and from (2.15)√
t − 1 + λ2

(
f2 cos π

k+1

)
>

√
t − 1 + λ2(f2). (3.9)

Combining (3.6)–(3.8), we obtain (3.5).�

Remark 1. We have also verified that (3.5) holds fork = 7, 8, 9. So, fork > 7 and
t > 4, if we denote by

Pk,t = {T ∈ Xk,t | T̂ = Pk},
Jk,t = {T ∈ Xk,t | T̂ = Jk},

and

Lk,t = {T ∈ Xk,t | T̂ = Lk},
then, from the previous results and Theorem 8, it suffices to find the extremal trees
in Pk,t ∪ Jk,t ∪ Lk,t .

4. Some further discussions

In this section, we establish some further results about the left problem of finding
the extremal trees inJk,t .

Lemma 9. LetPk, Jk k > 4 as in Fig.2. We have

λi(Jk) = 2 cos
(2i − 1)π

2k − 2
, i = 1, 2, . . . , k, (4.1)

i.e.

λi(Jk) = λ2i−1(P2k−3). (4.2)

Proof. From Fig. 2, we can write

A(Jk) =
(

A α

αT 0

)
,

whereA is the adjacent matrix ofPk−1, α = (0, 1, 0, . . . , 0)T.
Let Jk(λ) = det(λI − A(Jk)). Then, we have the recursive relation as follows:

Jk(λ) = λJk−1(λ) − Jk−2(λ),

sincex1,2 = λ ± √
λ2 − 4/2 are the two roots ofx2 − λx + 1 = 0, we have

Jk(λ) = c1x
k
1 + c2x

k
2. (4.3)

On the other hand,

J4(λ) = λ3 − 3λ2 = c1x
4
1 + c2x

4
2, (4.4)
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J5(λ) = λ5 − 4λ3 + 2λ = c1x
5
1 + c2x

5
2. (4.5)

Combining (4.4) and (4.5), we have

c1 = J5(λ) − J4(λ)x2

x5
1 − x4

1x2
, c2 = J5(λ) − J4(λ)x1

x5
2 − x4

2x1
. (4.6)

From (4.3) and (4.6), we have

Jk(λ) = J5(λ) − J4(λ)x2

x1 − x2
xk−4

1 + J5(λ) − J4(λ)x1

x2 − x1
xk−4

2 .

Let

λi = 2 cos
(2i − 1)π

2k − 2
.

Then the direct computations give

Jk(λi) = 0, i = 1, 2, . . . , k.

Thus we obtain (4.1). Noticing

λi(Pk) = 2 cos
iπ

k + 1
,

we have (4.2). �

Theorem 10. If there is no extremal tree inJk,t , then there is no extremal tree in
Js,t for k + 1 6 s 6 2k − 2.

Proof. By Lemma 9, we have

λ1(Jk) = λ1(P2k−3), λ1(Js) > λ1(Jk),

and

λ1(Ps) > λ1(Pk), k + 1 6 s 6 2k − 2.

So, from (2.15), we have√
t − 1 + λ2(fλ1(Jk)) <

√
t − 1 + λ2(fλ1(P2k−3)) <

√
t − 1 + λ2(fλ1(Ps)).

On the other hand, obviouslyJs(k + 1 6 s 6 2k − 2) hasJk as its induced sub-
graph. Thus, by the same reasoning as Theorem 8, we conclude that there is no
extremal tree inJs,t (k + 1 6 s 6 2k − 2). �
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