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Abstract

We consider the only remaining unsolved case 0 (modKk) for the largeskth eigen-
value of trees witn vertices. In 1995, Jia-yu Shao gave complete solutions for the cases
k=2,3,4,5,6 and provided some necessary conditions for extremal trees in general cases
(cf. [Linear Algebra Appl. 221 (1995) 131]). We further improve Shao’s necessary condition
in this paper, which can be seen as the continuation of [Linear Algebra Appl. 221 (1995) 131].
© 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let G be a graph of order. The eigenvalues @& are defined as those of its adja-
cent matrixA(G). Now, A(G) is a symmetriq0, 1) matrix, and so, the eigenvalues
of A(G) (or of G) are all real and can be ordered as

21(G) = 22(G) = -+ = 2 (G).
We call1x (G) thekth eigenvalueof G.
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If Tis atree of orden, thenT is bipartite, and its eigenvalues satisfy the relation
Ai(T) = —dp—iv1(T) (i =1,2,...,n). So, it suffices to study those eigenvalues
A(T) for 1 < k < [n/2]. In this paper we always assume that k& < [n/2].

An interesting unsolved problem in the study of the spectra of trees is to find “the
best possible upper bound” for thilh eigenvalues of trees of orderlin other words,
let

I, ={T|T is atree of orden},
and let
M(n) =maXa(T) | T € T} (1< k< [n/2)).

Then, the above problem asks to determine the funaétiom) and (if possible) find
atreeT e I', with A (T) = Ar(n).

There have been considerable attempts in studying this problem, and the remain-
ing unsolved case for, (n) is the case = 0 (modKk), 7 < k < [n/2]. For this case,
we writen = kt (t > 2) and let

Tk ={T € 'ty | M(T) = ke (k).

The trees i ; are called the extremal trees.
To be clear, we give the same definitions as those in [1] below.

Definition 1. Let X, , be the subset of trees ifi; which consists ok disjoint
starsSi, ..., S, of the ordert(S1 =S, =--- = S, = K1,-1) together with another
k — 1 edgeses, ez, ..., ex—1 such that the two end vertices of each edgéi =
1,2,...,k — 1) are noncentral vertices of different stars. We 6all. . ., S, thestars
of this treeT € Xy, call the edges;, ..., ex_1 thenonstar edgesf T, and call the
other edges thstar edge®f T.

Definition 2. We define the condensed trfef T asV (T) = (S1. S2. ..., S), and
there is an edgest, S;] (i # j) in T if and only if there exists some nonstar edge of
T with one end inS; and the other end if;.

Definition 3. DefmeX/ as the subset ok, , which consists of those tredsin
Xk, such that for any staﬁ of T, there is only one vertex ify; incident to some
nonstar edges of.

A considerable necessary condition for extremal trees obtained in [1] is that if
I't: (k=21 >5),thenT € X;; andA(T) < 3, whered(T) is the maximal degree
of the condensed treg. In this paper, we establish a further necessary condition for
extremal trees.



Y. Zou et al. / Linear Algebra and its Applications 320 (2000) 173-182 175

2. Some preliminary results

For a graplG, let ¢ (G) be the number of edges in a maximal matchingpand
leta;(G) be the number gfmatchings (the matchings wifredges) of. (We agree
thata;(G) =0for j < 0andj > ¢(G).) We also write

4(G) _ ‘
mg(0) = ) (=1Ja;(G)x D (2.1)
j=0
and
h(y) =mg(y + a). (2.2)

We callkg (y) thekey polynomial of GThen the characteristic polynomial of a
treeT € I', is

P(T,A) = A4 D 32 = 224D pr (32 — a), (2.3)
and thus,
Mm(T) = Va(mr) = Va+ rc(hr)  (k < q(T)), (2.4)

wherei; (m7) andig(hr) are thekth largest real roots of the polynomialsy (x)
andhr (y), respectively.
From now on, we always write

a=1t—-1 (2.5)
and let
fu®) = +a)y? —uly + 1?2, (2.6)
g1 =0 +ay+20y+2), (2.7)
g2(y) =20y + D*+ (y + 2)y, (2.8)
g3 = +a)(y+D?— (y+272 (2.9)
ga(y) =2y +a)(y+1) —3(y + 3, (2.10)
gs(y) = (v + D%+ (y +2)y, (2.11)
g6(y) = (v +a)(y + 1% — 4(y + 2)%, (2.12)
g =0+a)y+1—20y+3). (2.13)

These polynomials will play an important role in our studies.

Lemma 1 (Cauchy interlacing theoreml)et V' be a vertex subset with k vertices of
the graph G. LeG — V' be the subgraph of G obtained by deleting all the vertices
in V' together with their incident edges. Then
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2i(G) = 4i(G = V') = %iwk (G).
Lemma 2[1]. For u > 0, the cubic polynomiaf, (y) has three real rootsvhich we
can write ash1(fy) > A2(fy) > A3(f,). Furthermore we have

23(fu) < =1 < Aa(fu) <0< r1(fi) (2.14)
and

Aa(fe) < A2(fu) (for0 <u < &). (2.15)

Lemma 3[1]. LetT € X,’{’, (t > 2), and letu; = Al(f) be the largest eigenvalue
of the condensed tréB. Then

M(T) =/t — L+ 22(fuy)- (2.16)

The following lemma will be crucial for the results of this paper.

Lemma 4. Let f2(y) = (y +a)y? — 4(y + 1)2. Then for > 8, we have

—1+% <2(f2) <0 (2.17)
and

gi(h2(f2)) >0, =234, (2.18)

g1(A2(f2)) <O. (2.19)
Furthermore for a > 24, we have

-1+ % <X2(f2) <O (2.20)
and

gih2(f2)) >0, i=2,3,4,56,7, (2.21)

g1(A2(f2)) <O. (2.22)

Proof. We need to prove only (2.17), (2.18) (fbe= 2) and (2.19) here. The rest
can be obtained in the same way.
Fora > 8, we have

70 =—4<0 and f <—1+ %3) 0.

From (2.14), we haves(f2) < —1x2(f2) < 0 < A1(f2). So (2.17) holds.
Now, when—1+ 1/4/3 < y < 0, we have

g (y)=6(y+1) >0 and g (—1~|— %) > 0.
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So

g2(22(f2)) > 0.
Let A1(y) be the larger root 01(g) = 0. Then the direct computations give

f2(r1(g1)) < 0.
Noticing the quality of the curvea(y), we have

22(f2) < r1(g1)-
Thus, we can easily obtain (2.19)0

The seven trees shown in Fig. 1 will be important for our main results:
Now, letWy € I's, W2, Wg € I'7, W3, W5 € I's, Wq, W7 € I'gasin Fig. 1,

W = (W1, Wa, W3, Wa, Ws, We, W7},

FL=(T €Xe,|T =W}, FfeFiNXg,
Fo=(T € X7,|T =W2}, FjeFnXy,
F3={T € Xg,|T = W3}, Fje F3NXg,

Fa={T € Xo,|T = Wa}, F; e FsnXg,

I | ) B
l § I |

Fig. 1.
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Fs={T € Xg,|T =Ws}, FieFsNXg,
Fo=(T € X7,|T =We}), F; e FsnXy,

Fr={T € Xo,|T =Wz}, FjeFrNXp,
and
F=FUF,UF3UF,UFs5UFgU F7.

From [2, Table 2], we know that the largest eigenvalue of dcgh = 1, 2, ..., 7)
is 2. Then by Lemma 3

re(F{) = A7(F3) = Ag(F3) = Ao(Fy)
= Ag(F2) = A7(F§) = Ao(F7)

=t —1+22(f2), (2.23)

wherer > 2.

Theorem 5. Forr > 4, we have

re(T) < re(Fy), T e Fi\{F7}, (2.24)
A (T) < A7(F2’k), T € F2\{F2*}, (2.25)
rg(T) < Ag(Fg‘), T € F3\{F§‘}, (2.26)
r(T) < rg(Fy), T € Fa\{Fj), (2.27)
rg(T) < Ag(Fé“), T € F5\{F§“}, (2.28)
A (T) < Ag(Fg), T € Fe\{Fg‘}, (2.29)
r(T) < rg(F7), T € Fr\{F7). (2.30)

Proof. The proofs follow from extensive calculations (available from the authors on
request), and Lemmas 4 and 5.1 in [1]]

3. Afurther necessary condition for extremal trees

Let Py, Jy andLy € I'y asin Fig. 2,
Mg ={T € I'g| A(T) = 3}\{Jo}, (3.1)
and
Mg, ={T € Xo,|T € Mg)}. (3.2)
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Jk I _ = = —o—o

“ ] |

Fig. 2.
Theorem 6. Let Mo, Mg, as(3.1), (3.2). Then forr > 4, we have

r(T) <Vt —1+4212(f2), T € Mo,. (3.3)

Proof. ForT € My,, it is obvious thatl’ has an induced subgraph isomorphic to
someW; € W, 1< i < 7, and thus, there exists a vertex &t V(7T') such that

T —V*=W*U Kl’t,zo s L.JKLI,Q U Kl,,,go cee L.JKl’t,g

UK1,-4U---UK1,—a, (3.4)

whereW* € F, W* = W; andn1, n2, n3 are the three finite integers. By Theorem
5 and from (2.23 (W*) < 4/t — 1+ X2(f2) for somek (6 < k < 9). So, by the
Cauchy interlacing theorem, we have
(T <M(T — V)
<maxA(W*), v/t —2,+/t —3,+/t — 4}

<Vi—1+4a(f). O (3.5)

Lemma7. Let
My ={T € I't | A(T) = 3}\{Jk, Lk} (k > 10).
Thenfor T € My, T has an induced subgraph isomorphic to sdlﬁee Mao.

Proof. The proofis trivial. O

Theorem 8. Fort > 4, k > 10, let My, = {T € X3, | T € My}. Then
fk,l‘ N Mk,l‘ = @ (36)

Proof. ForT € My, by Lemma 7, we have thdt has an induced subgraph iso-
morphic to somqg0 € Mg.Thus, as the proof of Theorem 6, we have

m(T) <Vt — 1+ 22(f2). (3.7)

On the other hand, by [1]

Aalh) > 1= T4 00 Frym) = \/t — 1422 facosez, ) (38)
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and from (2.15)

\/1—14‘)»2 (fZCOSﬁ) =t =14+ x2(/2). (3.9)

Combining (3.6)—(3.8), we obtain (3.5)[]

Remark 1. We have also verified that (3.5) holds foe 7, 8, 9. So, fork > 7 and
t > 4, if we denote by

Py =1{T € X, | T = P4},
Joi =A{T € X, | T = Ji),
and
Ly =1{T € X, | T = Ly},
then, from the previous results and Theorem 8, it suffices to find the extremal trees

in Pk,l U Jk,l U Lk’t.
4. Some further discussions

In this section, we establish some further results about the left problem of finding
the extremal trees it ;.

Lemma9. Let P, J; k > 4asin Fig.2. We have

(2i — L .
Ai =2 —— =12, ... 4.1
i) =200s————, i=12...k (4.1)
i.e.
Li (Jk) = Aoi—1(Px—3). 4.2)

Proof. From Fig. 2, we can write

A = (fT ‘5‘) ,

whereA is the adjacent matrix af_1, « = (0, 1,0,...,0)T.
Let Ji(A) = det(AI — A(Jy)). Then, we have the recursive relation as follows:

JkA) = AJg—1(A) — Jr—2(),
sincexy 2 = A + /A2 — 4/2 are the two roots of2 — Ax + 1 = 0, we have

Jr(L) = clx]{ + czx]2‘. (4.3)
On the other hand,

Ja() = 23 — 32 = coxf 4 cand, (4.4)
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Js(h) = A% — 43 4+ 2% = c1xP 4 cox3. (4.5)
Combining (4.4) and (4.5), we have
J5(A) — Ja(A)x2 J5(A) — Ja(A)x1
aA=—% 1 = Q275 5
X1 — Xqx2 Xy — XpX1
From (4.3) and (4.6), we have
Js5(A) — Ja(h J5(A) — Ja(h
5(2) — Ja( )X2xk,4 n 5(2) — Ja( )X1xk,4.

(4.6)

Jor)y=——~
K@ x1—x2 O * xp—x1 2
Let
2i—Dr
Ai =2C0S———.
: 2k — 2
Then the direct computations give
Je(ui) =0, i=12,... k.

Thus we obtain (4.1). Noticing

i
Li(Py) = 2cos——,
1( k) k+1

we have (4.2). O

Theorem 10. If there is no extremal tree idy ;, then there is no extremal tree in
Jop fork+1<s <2k -2
Proof. By Lemma 9, we have
M(Jk) = A1(Pa-3),  A1(Js) > A1(Ji),
and
M(Po) > (P, k+1<s<2k-2

So, from (2.15), we have

Vim0 ) <\t = L+ Ao o) < V1= L+ 22(fagn).

On the other hand, obviously,(k + 1 < s < 2k — 2) has J; as its induced sub-
graph. Thus, by the same reasoning as Theorem 8, we conclude that there is no
extremaltreein/,, (k+1<s<2k—2). O
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