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In this article, we develop a method to count the number
of spanning trees in certain classes of double fixed-step
loop networks with nonconstant steps. More specifically
our technique finds the number of spanning trees in �Cp,q

n ,
the double fixed-step loop network with n vertices and
jumps of size p and q , when n = d1m, and q = d2m + p
where d1, d2, and p are arbitrary parameters and m is a
variable. © 2008 Wiley Periodicals, Inc. NETWORKS, Vol. 52(2),
69–77 2008
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1. INTRODUCTION

A directed circulant graph �Cs1,s2,...,sk
n is a digraph on n ver-

tices 0, 1, 2, . . ., n−1; for each vertex i(0 ≤ i ≤ n−1), there
are k arcs from i to vertices i + s1, i + s2, . . . , i + sk(modn).(
Figure 1 illustrates �C4,5

6 .
)

A double fixed-step loop network
is a directed circulant graph �Cp,q

n in which each vertex has
exactly two arcs leaving it. This kind of network appears in
the design and analysis of local area networks, multimodule
memory organizations, and parallel processing architectures
[1, 6, 9]. Parameters of these graphs such as diameter and
average distance, which are closely related to the network
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bandwidth, have been considered recently. For example, the
case �C1,n−1

n and the case �C1,n−2
n , the so called daisy-chain

loop, were investigated by Liu [12]. Some generalizations to
infinite classes of double fixed-step loop networks with min-
imum diameter were explored by Erdös and Hsu [5]. More
recent results can be found in [1, 6, 9] and their references.

In this article we address the question of counting the num-
ber of spanning trees in such digraphs. A spanning tree in a
digraph is a rooted tree with directed paths from the root to all
vertices. The number of spanning trees in a digraph or graph is
an important, well studied quantity [4]. This parameter char-
acterizes the reliability of networks. There is a classic result
known as the Matrix Tree Theorem [11], which expresses the
number of spanning trees T(G) of a graph G as a function
of the determinant of a matrix that can be easily constructed
from G’s incidence matrix. However, in practice, counting
the spanning trees by calculating the determinant is infeasi-
ble for large graphs. For this reason, researchers have paid
much attention to developing techniques or deriving formulas
for analyzing the number of spanning trees. For some spe-
cial classes of graphs, it is possible to give explicit, simple
formulae for the number of trees. For example, if G is the
complete graph Kn, then Cayley’s tree formula [8] states that
T(Kn) = nn−2. Other special cases can be found in [3,14,17].

The asymptotic behavior of T
(�C1,q

n
)

has been derived in
[15]. A closed formula for T

(�C1,2
n

)
was proved in [13] where

it was also proved that T
(�C1,2

n

) ≥ T
(�Ck,l

n

)
for any different

positive integers k, l.
For fixed integers s1, s2, . . . , sk , 1 ≤ s1 < s2 < · · · < sk ,

it was proved in [14] and [17] that T
(�Cs1,s2,...,sk

n
) = nan, where

an satisfies a linear recurrence relation of order 2sk−1. This
recurrence relation can be exactly derived by using the Matrix
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Tree Theorem to calculate an = T(�Cs1,s2,...,sk
n )/n for n =

1, 2, 3, . . . , 2sk which gives the initial conditions and enough
information to solve for the coefficients of the recurrence
relation.

The technique is not applicable, though, when the jumps
si vary with n. To the best of our knowledge, only a few
very special cases of such graphs, e.g., the Möbius ladder
[3], have been studied. Recently, Golin et al. [7] proved
that when the jumps are linear in the graph size, the num-
ber of spanning trees (as a function of the graph size) also
satisfies a linear recurrence relation. Their proof was an
existence one, though. Constructing the recurrence relation

based on their existence proof would require calculating
a very large number of initial values and is thus infeasi-
ble except for a few simple cases. In this article, we will
consider the number of spanning trees in a class of dou-
ble fixed-step loop networks with jumps linear in the graph
size. More specifically, we will develop a method for cal-
culating T

(�Cp,q
n

)
when n = d1m, and q = d2m + p where

d1, d2, and p are arbitrary parameters and m is a variable.
In the next section we introduce our technique by develop-
ing all the necessary mathematical tools; in Section 3 we
illustrate the technique by deriving the following series of
formulas:

T
(�C1,m+1

2m

) = m22m−1,

T
(�C2,m+2

2m

) =
{

m22m−1 if 2 � m,
0 otherwise,

T
(�C1,m+1

4m

) = m

(
24m−1 + 23m−1 + 2

7m
2 cos

m − 2

4
π

)
,

T
(�C1,m+1

3m

) = m

(
23m−1 + 2m−1 − 22m cos

m − 2

3
π

)
,

T
(�C1,2m+1

3m

) = m

(
23m−1 + 2m−1 + 22m cos

m − 1

3
π

)
,

T
(�C2,m+2

3m

) =
{

m
(
23m−1 + 2m−1 + 22m cos m−1

3 π
)

if 2 � m,
0 otherwise.

T
(�C2,2m+2

3m

) =
{

m
(
23m−1 + 2m−1 − 22m cos m−2

3 π
)

if 2 � m,
0 otherwise.

T
(�C3,m+3

3m

) = T
(�C3,2m+3

3m

) =
{

m
(
23m−1 + 2m−1 − 22m cos m

3 π
)

if 3 � m,
0 otherwise.

We point out that the basis of our method is not the fact
that our digraphs are circulants but two consequences of the
fact that they are circulants: (i) they are regular digraphs and
(ii) the jth eigenvalue of the digraph can be expressed as
f (εj), j = 1, 2, . . . n, where f (x) is a polynomial and ε = e

2π i
n

[2]. Our technique could be extended to other graph classes

FIG. 1. The directed circulant graph �C4,5
6 .

with these properties as well. We also point out that our tech-
nique is restricted to counting the number of labeled spanning
trees and cannot count the number of nonisomorphic span-
ning trees. This is because the Matrix Tree Theorem counts
the number of labeled spanning trees and our technique is
an application of the Matrix Tree Theorem. An interesting
open question would be to develop a method for counting
the number of nonisomorphic spanning trees for these graph
classes.

2. THE BASIC IDEA

Our approach is based on the following result:

Lemma 1 (Zhang and Yong [16]). For any positive integers
n, p and q

T
(�Cp,q

n

) =
n−1∏
j=1

(2 − εpj − εqj), (1)

where ε = e
2π i
n .
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This lemma and similar ones are at the basis of most analy-
ses of the number of spanning trees of circulant graphs. They
come from combining the Matrix Tree Theorem with obser-
vations concerning the eigenvalues of the adjacency matrices
of circulant graphs; see e.g., [17] for more details. While the
lemma does provide a formula for T(�Cp,q

n ) it is not a partic-
ularly useful one. The rest of this paper will be devoted to
transforming (1) into something more interesting.

Lemma 2. Let n, p and q be any positive integers and ε =
e

2π i
n . Define δ1, δ2, . . ., δn so that

f (x) =
n∏

j=1

(x − εpj − εjq)

= xn − δ1xn−1 + δ2xn−2 − · · · + (−1)nδn.

Then

T
(�Cp,q

n

) = f ′(2) = n2n−1 +
n−1∑
j=1

(−1) jδj(n − j)2n−j−1. (2)

Proof. Note that f (2) = 0, and from Lemma 1 we know

T
(�Cp,q

n

) =
n−1∏
j=1

(2 − εpj − εq j)

= lim
x→2

n−1∏
j=1

(x − εpj − εq j)

= lim
x→2

f (x)

x − 2
= lim

x→2

f (x) − f (2)

x − 2
= f ′(2).

■

To find T
(�Cp,q

n
)

our approach will therefore be to find
δ1, δ2, . . . , δn−1 and substitute them into (2). Our main tool
in calculating the δi will be Newton’s formulae [10] which
states the following:

• Let x1, x2, . . . , xn be arbitrary values.
• Let δ1, δ2, . . . , δn be the coefficients of

f (x) = (x − x1)(x − x2) · · · (x − xn) = xn − δ1xn−1

+ · · · + (−1)nδn.

• For i = 1, 2, . . . , n, define Si = xi
1 + xi

2 + · · · + xi
n.

• Then Newton’s formulae are, for i = 1, 2, . . . , n:

Si − δ1Si−1 + δ2Si−2 + · · · + (−1)i−1δi−1S1 + (−1)iiδi = 0.
(3)

More specifically, Newton’s formulae permit us to derive
the δi through knowledge of the Si. Note that the roots of f (x)
in Lemma 2 are (εkp + εkq), k = 1, 2, . . . , n. In the following

lemma and the sequel we use Cj
n to denote

(
n
j

)
.

Lemma 3. Let

Si =
n∑

k=1

(εkp + εkq)i, i = 1, 2, . . . , n,

where ε = e
2π i
n . Then, for 1 ≤ i ≤ n :

Si = n
∑
0≤j≤i

pi+(q−p)j=0( mod n)

C j
i .

Proof. For 1 ≤ i ≤ n

Si =
n∑

k=1

(εkp + εkq)i

=
n∑

k=1

i∑
j=0

C j
i εkpi+k(q−p)j

=
i∑

j=0

C j
i

(
1 + εpi+(q−p)j + ε2(pi+(q−p)j) + · · ·

+ ε(n−1)(pi+(q−p)j))
= n

∑
0≤j≤i

pi+(q−p)j=0( mod n)

C j
i .

■

In the most general case of arbitrary n, p, q this lemma
does not help us much since the sums involved are quite
complicated. However, in the particular cases in which q =
d2m + p, n = d1m where p and d2 < d1 are fixed and m
grows, we can greatly simplify this sum, as shown in the next
corollary:

Corollary 1. Let p, d1 and d2 with d2 < d1 be fixed, n =
d1m, and q = d2m + p. Set

Si =
n∑

k=1

(εkp + εkq)i, i = 1, 2, . . . , n,

where ε = e
2π i
n . Further define

α = gcd(p, m), p′ = p/α,
β = gcd(d1, d2),
γ = gcd(β, p′), p′′ = p′/γ ,
d′

1 = d1/β,
d′

2 = d2/β

and let d̄′
2 be such that d′

2d̄′
2 ≡ 1 (mod d′

1). Then

Si =
{

0 if β
γα

m � i,

n
∑�(i−x)/d ′

1�
t=0 C

x+td ′
1

i if i = �
β
γα

m, � = 1, 2, . . . , d1αγ
β

,
(4)

where x = (−�p′′d̄′
2) mod d′

1.
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Proof. Recall from Lemma 3 that Si = n∑
0≤j≤i

pi+(q−p)j=0( mod n)
C j

i . In what follows we examine, for

fixed i, which j satisfy the condition

pi + (q − p)j ≡ 0 (mod n). (5)

Relation (5)is equivalent to

pi + d2mj ≡ 0 (mod d1m)

which can only be satisfied if m|pi or, since α = gcd(m, p), if
m
α
|i. We may therefore assume that i = �m

α
, � = 1, 2, . . . , αd1.

Then

(5) is satisfied ⇐⇒ �
m

α
p + d2mj ≡ 0 (mod md1)

⇐⇒ �p′ + d2j ≡ 0 (mod d1)

⇐⇒ d2j ≡ (−�p′) (mod d1).

Since β = gcd(d1, d2), if β � �p′ this last condition cannot
be satisfied so, if Si �= 0, then β|�p′ or β

γ
|� p′

γ
. Since γ =

gcd(β, p′), we may assume that � = β
γ
�′ for some integer �′.

This in turn implies that

i = �
m

α
= �′ β

γ

m

α

and

(5) is satisfied ⇐⇒ d2 j ≡ (−�p′) (mod d1)

⇐⇒ d2 j ≡
(

−�′β
p′

γ

)
(mod d1)

⇐⇒ d′
2 j ≡ (−�′p′′) (mod d′

1)

⇐⇒ j ≡ (−�′p′′)d̄′
2 (mod d′

1)

from which (4) follows. ■

We now note that even though we proved the corollary
in full generality, in our spanning tree application we will
not need this full generality. More specifically, we have the
following result:

Lemma 4. If gcd(p, q, n) > 1 then

T
(�Cp,q

n

) = 0. (6)

In particular, given p, d1, d2, let α = gcd(p, m) and δ =
gcd(d1, d2, p). Then, if either α > 1 or δ > 1,

T
(�Cp,d2m+p

d1m

) = 0.

Proof. To prove (6) note that if gcd(n, p, q) > 1 and
(u, v) is an arc in �Cp,q

n then u ≡ v (mod gcd(n, p, q)). This
implies that if u′, v′ are any two vertices in �Cp,q

n and there is
a path from u′ to v′ then u′ ≡ v′ (mod gcd(n, p, q)). This in

turn implies that there is no one vertex in �Cp,q
n from which it

is possible to reach all of the vertices so �Cp,q
n does not contain

any spanning tree.
(An alternative proof would be to note that, setting j =
n

gcd(n,p,q)
would give εjp = εjq = 1 so (2 − εjp − εjq) = 0

and, from (1), T(�Cp,q
n ) = ∏n−1

j=1 (2 − εpj − εqj) = 0.)
To prove the second part of the lemma simply note that if

either α > 1 or δ > 1 then gcd(p, d2m + p, d1m) > 1. ■

In the sequel we may therefore assume that (i) α =
gcd(p, m) = 1 so p′ = p/α = p and therefore (ii) γ =
gcd(β, p′) = gcd(d1, d2, p) = 1 as well. This then implies
p′′ = p′/γ = pγ = p. We will use this fact later in Section 3.

Returning to the corollary we observe from (4) that all
of the Si are 0 except for those that are some multiple of
β
α

m = βm. We make a further observation.

Lemma 5. Given x1, x2, . . . , xn, let δ1, δ2, . . . , δn be defined
by

f (x) = (x − x1)(x − x2) · · · (x − xn) = xn − δ1xn−1

+ · · · + (−1)nδn.

For i = 1, 2, . . . , n, set Si = xi
1 + xi

2 +· · ·+ xi
n. If there exists

an integer v such that

∀i, 1 ≤ i ≤ n, if v � i then Si = 0,

then

∀i, 1 ≤ i ≤ n, if v � i then δi = 0.

Proof. We assume that v > 1 since otherwise the lemma
is trivially correct. Now assume that if v � i then Si = 0. We
prove by induction on i that if v � i then δi = 0.

Note that we can rewrite Newton’s formulae (3) as

δi = (−1)i+1

i

(
Si +

i−1∑
t=1

(−1)tδtSi−t

)
. (7)

For i = 1, δ1 = S1 = 0. Suppose now that δj = 0 for all
j < i such that v � j. If v � i then, ∀t < i, at least one of v � t
or v � (i − t) is true so δtSi−t = 0 and, since Si = 0 we have
from (7) that δi = 0. ■

Now (recalling from the comment following Lemma 4 that

α = 1) set v = β
γ

m = βm. From Corollary 1 we know that
if v � i then Si = 0. Lemma 5 then implies that if v � i then
δi = 0. To solve for δi when v|i we can rewrite Newton’s
formulae, simplifying by discarding all zero terms to get

0 = Sv + (−1)vvδv

0 = S2v + (−1)vδvSv + (−1)2v2vδ2v
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0 = S3v + (−1)vδvS2v + (−1)2vδ2vSv + (−1)3v3vδ3v

...
...

...

0 = S(d−1)v + (−1)vδvS(d−2)v + · · · + (−1)(d−2)vδ(d−2)vSv

+ (−1)(d−1)v(d − 1)vδ(d−1)v

0 = Sdv + (−1)vδvS(d−1)v + · · · + (−1)(d−1)vδ(d−1)vSv

+ (−1)dvdvδdv,

where d = d1α
β

= d1
β

= d′
1. Now for i = 1, 2, . . . , d set

Yi(v) = Siv to be the known functions and Xi(v) = δiv to be
the functions for which we want to solve. The system above
then becomes

−Y1(v) = (−1)vvX1(v)

−Y2(v) = (−1)vX1(v)Y1(v) + (−1)2v2vX2(v)

−Y3(v) = (−1)vX1(v)Y2(v) + (−1)2vX2(v)Y1(v)

+ (−1)3v3vX3(v)

...
...

... (8)

−Y(d−1)(v) = (−1)vX1(v)Y(d−2)(v) + · · ·
+ (−1)(d−1)v(d − 1)vX(d−1)(v)

−Yd(v) = (−1)vX1(v)Y(d−1)(v) + · · ·
+ (−1)(d−1)vX(d−1)vY1(v) + (−1)dvdvXd(v),

which is nonsingular and can therefore be solved for Xi(v)
in terms of the Yi(v). In the next section we see examples of
this technique.

As pointed out in the comments after Lemma 2, we do
not need to know δn = Xd(v) to calculate T(�Cp,q

n ). So we
actually only need to solve for the d−1 functions Xi(v) = δiv,
i = 1, 2, . . . , d − 1 and not all the d functions.

Before proceeding to calculate T(�Cp,q
n ), we note that the

expression for Yi(v) = Siv given in Equation (4) of Corol-
lary 1 is in the form of a sum of binomial coefficients of an
arithmetic series. While this looks unwieldy, we will actually
be able to use the following useful lemma to derive a closed
form for the sums.

Lemma 6. Let n ≥ 0 and let j, d satisfy 0 ≤ j ≤ d − 1.
Then

Cj
n + Cd+j

n + C2d+j
n + · · · + C

� n−j
d �d+j

n

= 2n

d

d−1∑
k=0

cosn k

d
π cos

k(n − 2j)

d
π .

Proof. Let ω = e
2π i
d . So ω is the dth root of unity and

d−1∑
j=0

(ωk)j =
{

d k = 0(mod d),
0 otherwise.

For each k, 0 ≤ k ≤ d−1, multiply both sides of the following
identity by ωk(d−j):

n∑
l=0

Cl
n(ω

k)l = (1 + ωk)n.

Summing up the d identities for k = 0, 1, . . . , d − 1 yields

d
(
Cj

n + Cd+j
n + C2d+j

n + · · · + C
� n−j

d �d+j
n

)
=

d−1∑
k=0

ωk(d−j)(1 + ωk)n. (9)

Since

d−1∑
k=0

ωk(d−j)(1 + ωk)n =
d−1∑
k=0

e
2k(d−j)π i

d (1 + e
2kπ i

d )n

=
d−1∑
k=0

e
2k(d−j)π i

d

(
2 cos

k

d
πe

kπ i
d

)n

= 2n
d−1∑
k=0

cosn k

d
πe

k(n−2j)π i
d ,

taking the real part of (9) proves the lemma. ■

3. THE TECHNIQUE AND EXAMPLES

In this section we use the facts developed in the previ-
ous section to derive formulas for T(�Cp,q

n ) as a function of
m when n = d1m and q = d2m + p. Recall that from
Lemma 4, we may assume that both α = gcd(p, m) = 1
and γ = gcd(d1, d2, p) = 1 since, if not, T(�Cp,d2m+p

d1m ) = 0.
Furthermore, from the comments following the lemma, we
may also assume that p′′ = p′/γ = (p/α)/γ = p.

3.1. The Technique

Gathering together all of the facts from the previous
section yields the following four step technique.

1. Calculate β = gcd(d1, d2), d′
1 = d1/β, d′

2 = d2/β and d̄′
2

such that d′
2d̄′

2 ≡ 1 (mod d′
1).

2. Set v = mβ. For � = 1, 2, . . . , d′
1 − 1 use Corollary 1 and

Lemma 6 to calculate

Y�(v) = S�v

= n

�(�v−x�)/d′
1�∑

t=0

C
x�+td′

1
�v (10)

= n
2�v

d′
1

d′
1−1∑

k=0

(
cos� k

d′
1

π

)v

cos
k(�v − 2x�)

d′
1

π

= v2�v

d′
1−1∑

k=0

(
cos

k

d′
1

π

)�v

cos
k(�v − 2x�)

d′
1

π ,

where x� = (−�p′′d̄′
2) mod d′

1 = (−�pd̄′
2) mod d′

1.

NETWORKS—2008—DOI 10.1002/net 73



3. Use (8) to solve for δ�v = X�(v), � = 1, 2, . . . , d′
1 − 1.

4. Substitute the derived δ�v values into (2) and use the fact
that if v � i then δi = 0 to derive

T
(�Cp,q

n

) = f ′(2) = n2n−1

+
d′

1−1∑
�=1

(−1)�βm(n − �βm)δ�βm2n−�βm−1. (11)

We also make two observations that can reduce the number
of cases that need to be examined. The first is simply that if
β = gcd(d1, d2), d′

1 = d1/β, and d′
2 = d2/β, then setting

g(m) = T(�Cp,d ′
2m+p

d ′
1m ) and h(m) = T(�Cp,d2m+p

d1m ) gives h(m) =
g(βm). Since, in our technique, solving for both g(m) and
h(m) involve the ‘same amount of work’, i.e., solving for
d′−1 unknowns from d′−1 equations, we might as well solve
for g(m). For example, instead of solving for T(�C1,4m+1

6m ) we

can solve for T(�C1,2m+1
3m ).

The second more interesting observation is stated next.

Lemma 7. Letβ = gcd(d1, d2), d′
1 = d1/β and d′

2 = d2/β.
If p1 ≡ p2 (mod d′

1), gcd(p1, m) = gcd(p2, m) = 1, and
gcd(β, p1) = gcd(β, p2) = 1, then

T
(�Cp1,d2m+p1

d1m

) = T
(�Cp2,d2m+p2

d1m

)
.

Proof. Examining our technique for deriving T(�Cp,d2m+p
d1m ),

we note that the only place in which p is used is in the def-
inition of x� = (−�pd̄′

2) (mod d′
1) in Step 2. This value

is the same for all � if p1 ≡ p2 (mod d′
1) so the proof

follows. The reason for the requirement that gcd(p1, m) =
gcd(p2, m) = 1 is that in Step 2 we were explicitly using the
fact that gcd(p, m) = 1 to force p′′ = p. As seen before, if
gcd(p, m) �= 1 then the graph has no spanning trees, and so
this is not an interesting case. ■

As an example, this lemma would imply that

if 2 � m then T
(�C1,2m+1

3m

) = T
(�C4,2m+4

3m

)
,

if 2 � m and 5 � m then T
(�C2,2m+2

3m

) = T
(�C5,2m+5

3m

)
,

for all m T
(�C3,2m+3

3m

) = T
(�C6,2m+6

3m

)
.

Note that if 2|m then T(�C4,2m+4
3m ) = 0, T(�C2,2m+2

3m ) = 0

and T(�C6,2m+6
3m ) = 0; if 5|m then T(�C5,2m+5

3m ) = 0; while if

3|m then T(�C3,2m+3
3m ) = T(�C6,2m+6

3m ) = 0.

3.2. Examples

We illustrate this technique by first evaluating the simplest
case.

Example 1. T(�C1,m+1
2m ).

In this case p = d2 = 1, d1 = 2 so β = 1, v = m
and d′

1 = d1/β = 2. Since d′
1 = 2 we only need to find

δv = X1(v). Note that d̄′
2 = d′

2 = 1 so x1 = (−1) mod 2 = 1.
Substituting into (10) gives

Y1(v) = Sm = 2m

� m−1
2 �∑

t=0

C2t+1
m = 2m2m−1. (12)

The system of Equations (8) in this case is only the one
equation

−Y1(v) = (−1)vvX1(v)

or

−2m2m−1 = −Y1(v) = (−1)vvX1(v) = (−1)mmδm,

so

δm = (−1)m+12m.

Substituting into (11) yields

T
(�C1,m+1

2m

) = (2m)22m−1 + (−1)mmδm2m−1 = m22m−1.
(13)

Example 2. T(�C2,m+2
2m ).

In this case p = d1 = 2, d2 = 1, β = 1 so v = m,
d′

1 = d1/β = 2.
The major difference in this case is that we must note that

if α = gcd(m, p) �= 1, i.e., m is even, then T(�C2,m+2
2m ) = 0.

So, for the rest of the derivation we assume that m is odd.
Since d′

1 = 2 we only need to find δv = X1(v). Note that

d̄′
2 = d′

2 = 1 so x1 = (−1 · 2) mod 2 = 0. Substituting into
(10) gives

Y1(v) = Sm = 2m

� m
2 �∑

t=0

C2t
m = 2m2m−1.

Y1(v) = 2m2m−1 is exactly the same as (12) so following
the same derivation as in (12)-(13) we find, that if m is odd
then

T
(�C2,m+2

2m

) = (2m)22m−1 + (−1)mmδm2m−1 = m22m−1.

Thus,

T
(�C2,m+2

2m

) =
{

m22m−1 if m is odd,
0 if m is even.

Example 3. T(�C1,m+1
4m ).

In this case p = d2 = 1, d1 = 4, β = 1 so v = m,
d′

1 = d1/β = 4. We therefore only need to derive the three

functions δ�v = X�(v), � = 1, 2, 3. As before d̄′
2 = d′

2 = 1.

74 NETWORKS—2008—DOI 10.1002/net



We therefore find x1 = 3, x2 = 2, x3 = 1. Substituting
into (10) yields

Y1(v) = v

(
2v + 2

v
2 +1 cos

v − 6

4
π

)
,

Y2(v) = v

(
22v + 2v+1 cos

v − 2

2
π

)
,

Y3(v) = v

(
23v + 2

3v
2 +1 cos

3v − 2

4
π

)
.

The system of Equations (8) in this case is

−Y1(v) = (−1)vvX1(v)

−Y2(v) = (−1)vX1(v)Y1(v) + (−1)2v2vX2(v)

−Y3(v) = (−1)vX1(v)Y2(v) + (−1)2vX2(v)Y1(v)

+ (−1)3v3vX3(v),

and solving for X�(v) yields

X1(v) = (−1)v
(

−2v + 2
v
2 +1 cos

v − 2

4
π

)
,

X2(v) = (−1)2v
(

2v − 2
3v
2 +1 cos

v − 2

4
π

)
,

X3(v) = (−1)3v(−22v).

Equation (11) states

T
(�C1,m+1

4m

) = 4m24m−1 + (−1)m3mδm23m−1

+ (−1)2m2mδ2m22m−1 + (−1)3mmδ3m2m−1.

Substituting in the values δ�m = X�(m) and simplifying yields

T
(�C1,m+1

4m

) = m

(
24m−1 + 23m−1 + 2

7m
2 cos

m − 2

4
π

)
.

Example 4. T
(�Cp,d2m+p

3m

)
where 1 ≤ p ≤ 3, 1 ≤ d2 ≤ 2.

We will first work through the six different (p, d) cases,
stating our results and showing that there are actually only
three distinct cases (with the remaining three being isomor-
phic to the others except, possibly, when they are equal to 0).
We will then derive the formulas for the three distinct cases
at the end of the section.

(i) T(�C1,m+1
3m ).

T
(�C1,m+1

3m

) = m

(
23m−1 + 2m−1 − 22m cos

m − 2

3
π

)
.

(ii) T(�C1,2m+1
3m ).

T
(�C1,2m+1

3m

) = m

(
23m−1 + 2m−1 + 22m cos

m − 1

3
π

)
.

(iii) T(�C3,2m+3
3m ).

T
(�C3,2m+3

3m

) =
{

m
(
23m−1 + 2m−1 − 22m cos m

3 π
)

if 3 � m,
0 otherwise.

(iv) T(�C2,m+2
3m ).

When m is even T(�C2,m+2
3m ) = 0.

When m is odd �C2,m+2
3m is isomorphic to �C1,2m+1

3m . More
explicitly,

�C1,2m+1
3m ⇐⇒ �C2,m+2

3m

with the trivial vertex mapping i ←→ 2i. Therefore,

T
(�C2,m+2

3m

) =
{

m
(

23m−1 + 2m−1 + 22m cos m−1
3 π

)
if 2 � m,

0 otherwise.

(v) T(�C2,2m+2
3m ).

When m is even T(�C2,2m+2
3m ) = 0.

When m is odd �C2,2m+2
3m is isomorphic to �C1,m+1

3m using the
mapping

�C1,m+1
3m ⇐⇒ �C2,2m+2

3m

with the same trivial vertex mapping i ←→ 2i.
Therefore,

T
(�C2,2m+2

3m

) =
{

m
(
23m−1 + 2m−1 − 22m cos m−2

3 π
)

if 2 � m,
0 otherwise.

(vi) T(�C3,m+3
3m ).

If 3|m then T(�C3,m+3
3m ) = 0. If 3 � m then �C3,m+3

3m

is isomorphic to �C3,2m+3
3m . To see this note that if 3 � m

then gcd(3m, m + 3) = 1 so there exists x < 3m such
that x(m + 3) ≡ 1 (mod 3m). We can then define the
isomorphism

�C3,m+3
3m ⇐⇒ �C3,2m+3

3m

using the vertex mapping i ←→ ix(2m + 3). To see this is
an isomorphism let

f (i) = ix(2m + 3) (mod 3m)

= ix(m + 3 + m) (mod 3m)

= i(1 + xm) (mod 3m).

Then

f (i + 3) = (i + 3)(1 + xm) (mod 3m)

= f (i) + 3 (mod 3m)

and

f (i + m + 3) = (i + m + 3)x(2m + 3) (mod 3m)

= ix(2m + 3) + (m + 3)x(2m + 3) (mod 3m)

= f (i) + 2m + 3 (mod 3m).

So, if (i, i + 3) ∈ �C3,m+3
3m then (f (i), f (i + 3)) ∈ �C3,2m+3

3m and

if (i, i+m+3) ∈ �C3,m+3
3m , then (f (i), f (i+m+3)) ∈ �C3,2m+3

3m .
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Since f (i) is a one-one function from [0, 3m − 1] into itself
we have exhibited an isomorphism.

Note that if 3|m, then T
(�C3,2m+3

3m

) = 0. We have thus
proved

T
(�C3,m+3

3m

) = T
(�C3,2m+3

3m

)
=

{
m

(
23m−1 + 2m−1 − 22m cos m

3 π
)

if 3 � m,
0 otherwise.

Derivations of (i), (ii), (iii), (iv), (v), (vi). In (a), (b), and
(c) below we derive the formulas for the numbers of spanning
trees in the above six graphs to verify the validity of our claim.

(a) T
(�C2,2m+2

3m

)
and T

(�C1,m+1
3m

)
. ((i) and (v))

We already saw that when m is even T
(�C2,2m+2

3m

) = 0. We

also saw that when m is odd �C2,2m+2
3m is isomorphic to �C1,m+1

3m .
We therefore only have to evaluate the number of spanning
trees for �C1,m+1

3m .
In this case p = 1, d1 = 3, d2 = 1, β = 1 so v = m,

d′
1 = d1/β = 3. We only need to derive the two functions

δ�v = X�(v), � = 1, 2. Now d′
2 = d2/β = 1, d̄′

2 = 2. We
therefore find x1 = 1, x2 = 2. Substituting into (10) yields

Y1(v) = v

(
2v + 2 cos

v − 2

3
π

)
,

Y2(v) = v

(
22v + 2(−1)v cos

v − 2

3
π

)
.

The system of Equations (8) in this case is

−Y1(v) = (−1)vvX1(v),

−Y2(v) = (−1)vX1(v)Y1(v) + (−1)2v2vX2(v)

and solving for X�(v) yields

X1(v) = −(−1)v
(

2v + 2 cos
v − 2

3
π

)
,

X2(v) = (2v+1 − (−1)v) cos
v − 2

3
π + 2 cos2 v − 2

3
π .

Equation (11) states

T
(�C1,m+1

3m

) = 3m23m−1 + (−1)m2mδm22m−1

+ (−1)2mmδ2m2m−1.

Substituting in the values δ�m = X�(m) and simplifying yields

T
(�C1,m+1

3m

) = m

(
23m−1 + 2m−1 − 22m cos

m − 2

3
π

)
,

proving (i) and (v).

(b) T
(�C1,2m+1

3m

)
and T

(�C2,m+2
3m

)
((ii) and (iv))

We already saw that when m is even T(�C2,m+2
3m ) = 0 and,

when m is odd, �C2,m+2
3m is isomorphic to �C1,2m+1

3m . We there-
fore only have to calculate the number of spanning trees in

�C1,2m+1
3m . In this case p = 1, d1 = 3, d2 = 2, β = 1 so

v = m, d′
1 = d1/β = 3. We therefore only need to derive the

two functions δ�v = X�(v), � = 1, 2. Now d′
2 = d2/β = 2,

d̄′
2 = d′

2 = 2. We find x1 = 2, x2 = 1. Substituting into
(10) yields

Y1(v) = v

(
2v + 2 cos

v − 4

3
π

)
,

Y2(v) = v

(
22v + 2(−1)v cos

v − 4

3
π

)
.

The system of Equations (8) in this case is again

−Y1(v) = (−1)vvX1(v),

−Y2(v) = (−1)vX1(v)Y1(v) + (−1)2v2vX2(v)

and solving for X�(v) yields

X1(v) = −(−1)v
(

2v + 2 cos
v − 4

3
π

)
,

X2(v) = (2v+1 − (−1)v) cos
v − 4

3
π + 2 cos2 v − 4

3
π .

Equation (11) states

T
(�C1,2m+1

3m

) = 3m23m−1 + (−1)m2mδm22m−1

+ (−1)2mmδ2m2m−1.

Substituting in the values δ�m = X�(m) and simplifying yields

T
(�C1,2m+1

3m

) = m

(
23m−1 + 2m−1 − 22m cos

m − 4

3
π

)

= m

(
23m−1 + 2m−1 + 22m cos

m − 1

3
π

)

where the last equality comes from the fact cos(x − π) =
− cos x. This proves (ii) and (iv).

(c) T
(�C3,2m+3

3m

)
and T

(�C3,m+3
3m

)
((iii) and (vi))

We already saw that when 3|m both graphs have no span-
ning trees and when 3 � m the two graphs are isomorphic.
We therefore only consider T(�C3,2m+3

3m ). In this case p = 3,
d1 = 3, d2 = 2, β = 1 so v = m, d′

1 = d1/β = 3.
We therefore only need to derive the two functions δ�v =
X�(v), � = 1, 2. Now d′

2 = d2/β = 2, d̄′
2 = d′

2 = 2. We find
x1 = 0, x2 = 0. Substituting into (10) yields

Y1(v) = v
(

2v + 2 cos
v

3
π

)
,

Y2(v) = v
(

22v + 2(−1)v cos
v

3
π

)
The system of Equations (8) in this case is yet again

−Y1(v) = (−1)vvX1(v),

−Y2(v) = (−1)vX1(v)Y1(v) + (−1)2v2vX2(v)
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and solving for X�(v) yields

X1(v) = −(−1)v
(

2v + 2 cos
v

3
π

)
,

X2(v) = (2v+1 − (−1)v) cos
v

3
π + 2 cos2 v

3
π .

Equation (11) states

T
(�C3,2m+3

3m

) = 3m23m−1 + (−1)m2mδm22m−1

+ (−1)2mmδ2m2m−1.

Substituting in the values δ�m = X�(m) and simplifying yields
(if 3 � m)

T
(�C3,2m+3

3m

) = m
(

23m−1 + 2m−1 − 22m cos
m

3
π

)
,

proving (iii) and (vi).
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