

Linear Algebra and its Applications 288 (1999) 259-267

LINEAR ALGEBRA AND ITS APPLICATIONS

On a conjecture of Fiedler and Markham

Xuerong Yong *, Zheng Wang

Department of Mathematics. Xinjiang University. Urumqi 830046. People's Republic of China Received 7 July 1995; accepted 29 September 1998

Submitted by R.A. Brualdi

Abstract

For the Hadamard product $A \circ A^{-1}$ of an M-matrix A and its inverse A^{-1} , Fiedler and Markham conjectured that $q(A \circ A^{-1}) \geq 2/n$ (see M. Fiedler and T.L. Markham, Linear Algebra Appl. 101(1988) 1-8), where $q(A \circ A^{-1})$ is the smallest eigenvalue (in modulus) of $A \circ A^{-1}$. The present paper studies this conjecture (an incorrect proof is given in Li Ching and Chen Ji-cheng, Linear Algebra Appl. 144 (1991) 171-178), and establishes $q(A \circ A^{-1}) > (2/n)((n-1)/n)$. For some special matrices, the conjecture is proved. © 1999 Elsevier Science Inc. All rights reserved.

1. Introduction

The Hadamard product of two matrices $A = (a_{ij})$ and $B = (b_{ij})$ of the same size is defined as the matrix $C = A \circ B = (a_{ij}b_{ij}).$

All *M*-matrices considered here are nonsingular *M*-matrices. If *A* is an *M*matrix, there exists a positive eigenvalue of A equal to $(\rho(A^{-1}))^{-1}$, in which $p(A^{-1})$ is the Perron eigenvalue of the nonnegative matrix A^{-1} . We denote this eigenvalue by $q(A)$. By Johnson [1] and Fiedler and Markham [2] we know that the Hadamard product $A \circ B^{-1}$ of an $n \times n$ M-matrix A and the inverse of an $n \times n$ *M*-matrix *B* is again an *M*-matrix. For $B = A$, Fiedler and Markham [2] posed the following conjecture.

$$
q(A\circ A^{-1})\geqslant \frac{2}{n}.
$$

^{*} Correspondence address: Rutgers University, DIMACS, Core Bldg. 4th Floor, 96 Frelinghuysen Road, Piscataway, NJ 08854-8018, USA. E-mail: $xryong(\omega)$ av.rutgers.edu.

^{0024-3795/99/\$ -} see front matter © 1999 Elsevier Science Inc. All rights reserved. PII: $50024 - 3795(98) 10221 - 5$

We note that this conjecture was considered in Ref. [3], and the authors stated that they gave a proof for this conjecture. But, we have found a mistake in their proof. Indeed, the following inequality

$$
\frac{a_{j_1j_2}+a_{j_2j_2}b_{ij_2}/b_{ij_1}}{a_{j_1j_2}+(a_{j_2j_2}-1)}b_{ij_1}\leqslant \frac{a_{j_2j_2}}{a_{j_2j_2}-1}b_{ij_2}
$$

 \mathbf{L}

does not hold for $a_{j_1j_2} < 0$, $a_{j_1j_2} + (a_{j_2j_2} - 1) > 0$, $b_{ij_2} > b_{ij_1} > 0$. For details, see the proof of Theorem 1 in Ref. [3]. The aim of this paper is to consider this conjecture. We shall show the following inequality

$$
q(A \circ A^{-1}) > \frac{2n-1}{n}
$$

and in some cases we provide that

$$
q(A \circ A^{-1}) \geqslant \frac{2}{n}, \quad n > 3.
$$

We need some basic results to prove the above two inequalities.

2. Some lemmas

Lemma 2.1. *If P is an irreducible M-matrix and Pz* $\geq kz$ *for a nonnegative nonzero vector z, then* $k \leq q(P)$ *.*

Proof. This is the Proposition 1 of Ref. $[2]$. \Box

Lemma 2.2. Let $A = (a_{ij})$ be a strictly diagonally dominant matrix by row and *column, i.e.,*

$$
|a_{ii}| > \sum_{j \neq i} |a_{ij}|, \qquad |a_{ii}| > \sum_{j \neq i} |a_{ji}|,
$$

for all i. Then for $A^{-1} = (b_{ij})$, we have:

(a)
$$
|b_{ji}| \leq \frac{\sum_{i \neq j} |a_{ji}|}{|a_{jj}|} |b_{ii}|
$$
,

(b)
$$
|b_{ij}| \leq \frac{\sum_{i \neq j} |a_{ij}|}{|a_{jj}|} |b_{ii}|.
$$

Proof. Let

$$
r_i = \frac{\sum_{t \neq i} |a_{it}| + \epsilon}{|c_{it}|},
$$

where ϵ is sufficiently small such that $0 < r_i < 1$ for all i, and let $D_i = \text{diag}(r_1, \ldots, r_{i-1}, 1, r_{+1}, \ldots, r_n)$. Then it is easy to see that the matrix AD, is again strictly diagonally dominant by row. Therefore, by virtue of the Proposition 2 of Ref. [2], we can deduce readily that

$$
\frac{1}{r_j}|b_{ji}|<|b_{ii}|.
$$

for all *j*, $j \neq i$. This gives the following when $\epsilon \rightarrow 0^+$,

$$
|b_{ji}|\leqslant \frac{\sum_{t\neq j}|a_{jt}|}{|a_{jj}|}|b_{ii}|,
$$

for all *j*, $j \neq i$. Now when *i* is varying from 1 to *n*, it yields the assertion (a). Analogically, letting

$$
c_i = \frac{\sum_{t \neq i} |a_{ii}| + \epsilon}{|a_{ii}|},
$$

and considering the matrix F_iA , where $F_i = \text{diag}(c_1, \ldots, c_{i-1}, 1, c_{i+1}, \ldots, c_n)$, we may conclude that

$$
|b_{ij}| \leqslant \frac{\sum_{i \neq j} |a_{ij}|}{|a_{jj}|} |b_{ii}|,
$$

for all *i*, j , $i \neq j$. \Box

Lemma 2.3. Let $A = (a_{ii})$ be an $n \times n$ M-matrix, and let $A^{-1} = (b_{ii})$ be doubly stochastic, then

$$
Ae = A^{\mathrm{T}}e = e,
$$

where $e = (1, 1, ..., 1)^T$.

Proof. This lemma is obvious, see Ref. [3]. \Box

Lemma 2.4. Let $A = (a_{ij})$ be an $n \times n$ M-matrix, and let the inverse $A^{-1} = (b_{ij})$ be doubly stochastic, then

÷,

(c)
$$
b_{ii}a_{ii} \ge 1
$$
,
(d) $b_{ii} \ge \frac{1}{n - \sum_{j \ne i} \frac{1}{a_{ij}}}$

Proof. (c) Let

$$
A = \begin{pmatrix} a_{11} & b^{\mathrm{T}} \\ c & A_1 \end{pmatrix}.
$$

Then by (Berman and Plemmons [4], Ch. 6), we have $A_1^{-1} \ge 0$, $b^T \le 0$, $c \le 0$. Hence,

$$
b_{11}a_{11}=\frac{|A_1|a_{11}}{|A|}\geqslant \frac{|A_1|(a_{11}-b^TA_1^{-1}c)}{|A|}=1.
$$

The rest follows similarly. This completes the proof of (c).

Now, we consider (d). In the light of Lemmas 2.2 and 2.3, we may infer

$$
b_{ji} \leqslant \frac{a_{jj}-1}{a_{jj}}b_{ii},
$$

for all *i*, *j*, $i \neq j$. Therefore,

$$
1=b_{ii}+\sum_{j\neq i}b_{ji}\leq b_{ii}+\sum_{j\neq i}\left(1-\frac{1}{a_{jj}}\right)b_{ii}=\left(n-\sum_{j\neq i}\frac{1}{a_{jj}}\right)b_{ii},
$$

i.e.,

$$
b_{ii} \geqslant \frac{1}{n - \sum_{j \neq i} \frac{1}{a_{ij}}}.
$$

Lemma 2.5. Let

$$
A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & & & \\ \vdots & & & \\ a_{n1} & & & \end{pmatrix}
$$

be either strictly diagonally dominant (by columns) or irreducibly diagonally dominant matrix (by columns), then

$$
(|a_{12}|,\ldots,|a_{1n}|)\tilde{A}_1^{-1}\leq e,
$$

where \tilde{A}_1 is the comparison matrix of A_1 [5], $e^T = (1, 1, ..., 1)$.

Proof. By Householder [6] \tilde{A}_1 is an *M*-matrix. Let $(|a_{12}|, \ldots, |a_{1n}|) \tilde{A}_1^{-1} =$
 $y^T = (y_2, \ldots, y_n)^T$, and $y_i = \max y_i$, then we have

$$
\overrightarrow{A_1}y = \begin{pmatrix} |a_{12}| \\ \vdots \\ |a_{1n}| \end{pmatrix}.
$$

This gives

$$
|a_{1i}| = |a_{ii}|y_i - \sum_{j \neq i} |a_{ji}|y_j \geq (|a_{ii}| - \sum_{j \neq i} |a_{ji}|)y_i,
$$

i.e.,

$$
y_i \leqslant \frac{|a_{1i}|}{|a_{ii}| - \sum_{j \neq i} |a_{ji}|} \leqslant 1.
$$

This yields $y \le e$. \Box

3. The main results

Theorem 3.1. Let $A = (a_{ij})$ be an irreducible $n \times n$ M-matrix and $A^{-1} = B = (b_{ij})$ *be a doubly stochastic matrix. Then*

$$
q(A\circ A^{-1})>\frac{2n-1}{n}.
$$

Proof. By Lemma 2.3, we have for all i that

(1)
$$
a_{ii} > 1
$$
,
(2) $a_{ii} = \sum_{j \neq i} |a_{ji}| + 1$,

For the vector $z = (a_{11}/(a_{11} - 1), a_{22}/(a_{22} - 1), \ldots, a_{nn}/(a_{nn} - 1))$, let f_i be the ith component of the vector $z^{T}(A \circ A^{-1})$, then by Lemma 2.2

$$
f_i = a_{ii}b_{ii} \frac{a_{ii}}{a_{ii} - 1} - \sum_{j \neq i} |a_{ji}|b_{ji} \frac{a_{jj}}{a_{jj} - 1}
$$

\n
$$
\geq a_{ii}b_{ii} \frac{a_{ii}}{a_{ii} - 1} - \sum_{j \neq i} |a_{ji}| \frac{a_{jj} - 1}{a_{jj}} b_{ii} \frac{a_{jj}}{a_{jj} - 1}
$$

\n
$$
= b_{ii} \left(a_{ii} \frac{a_{ii}}{a_{ii} - 1} - \sum_{j \neq i} |a_{ji}| \right).
$$

If $b_{ii} \geq 2/n$, it is easy to see that

$$
f_i \ge b_{ii} \left(a_{ii} - \frac{a_{ii} - 1}{a_{ii}} \sum_{j \ne i} |a_{ji}| \right) \frac{a_{ii}}{a_{ii} - 1} > \frac{2}{n} \frac{a_{ii}}{a_{ii} - 1}.
$$

Now, let $b_{ii} < \frac{2}{n}$. Then by (c) of Lemma 2.4, we have

j.

 \mathbf{v}

$$
a_{ii} \geqslant \frac{1}{b_{ii}} > \frac{n}{2}.
$$

Therefore, using (d) of Lemma 2.4, we have that

$$
f_i \geq b_n \left(a_{ii} - \frac{1}{a_{ii}} (a_{ii} - 1)^2 \right) \frac{a_{ii}}{a_{ii} - 1}
$$

\n
$$
\geq \frac{1}{n - \sum_{j \neq i} \frac{1}{a_{ij}}} \left(a_{ii} - \frac{(a_{ii} - 1)^2}{a_{ii}} \right) \frac{a_{ii}}{a_{ii} - 1}
$$

\n
$$
= \frac{1}{n - \sum_{j \neq i} \frac{1}{a_{ij}}} \left(2 - \frac{1}{a_{ii}} \right) \frac{a_{ii}}{a_{ii} - 1} > \frac{2}{n} \frac{n - 1}{n} \frac{a_{ii}}{a_{ii} - 1}.
$$

Consequently, combining the above two cases, we get

$$
z^{\mathrm{T}}(A \circ A^{-1}) > \frac{2n-1}{n}z^{\mathrm{T}},
$$

which, when considering $(A \circ A^{-1})^T z$ and using Lemma 2.1, implies

$$
q(A \circ A^{-1}) > \frac{2n-1}{n}.
$$

Theorem 3.2. Let A be an $n \times n$ M-matrix, $n > 2$, then

$$
q(A \circ A^{-1}) > \frac{2n-1}{n}
$$

Proof. For the case that A is irreducible, we infer that A^{-1} is positive, and $A \circ A^{-1}$ is again irreducible. By Sinkhorn [7], there exist two positive diagonal matrices D_1 and D_2 such that $D_1A^{-1}D_2$ is doubly stochastic. Since the matrix $B = D_2^{-1}AD_1^{-1}$ is again an *M*-matrix, and

$$
q(A \circ A^{-1}) = q(D_2D_1^{-1}(B \circ B^{-1})(D_2D_1^{-1})^{-1}) = q(B \circ B^{-1}),
$$

we conclude that $q(A \circ A^{-1}) > (2/n)(n-1)/n$ in terms of Theorem 3.1.

Now let A be reducible, then, without loss of generality, we may assume that A has a block upper triangular form (A_{ij}) with irreducible diagonal blocks A_{ii} , where A_{ij} are $n_i \times n_j$ matrices, $i, j = 1, 2, \ldots, t$. This implies that the inverse A^{-1} is again block upper triangular with diagonal positive blocks $A_n^{-1} > 0$, $i = 1, 2, \ldots, t$. Then since we have

$$
q(A \circ A^{-1}) = \min \ q(A_{ii} \circ A_{ii}^{-1}),
$$

and

$$
q(A_{ii} \circ A_{ii}^{-1}) > \frac{2}{n_i} \frac{n_i - 1}{n_i}, \quad n_i < n,
$$

264

it produces

$$
q(A\circ A^{-1})>\frac{2n-1}{n}\,,
$$

which completes the proof of Theorem 3.2. \Box

Theorem 3.3. Let the $n \times n$ *M*-matrix $A = (a_{ij})$ be either diagonally dominant by *column, or irreducibly diagonally dominant by column. Further, if A is also a sum-symmetric matrix* [8] (*i.e.*, $\sum_{i=1}^{n} a_{ij} = \sum_{i=1}^{n} a_{ji}$, *for all j*), and *for all i. j, i + j*

$$
|a_{ij}| \geqslant \alpha |a_{ji}|
$$

then $q(A \circ A^{-1}) \geq \alpha$, *where* $0 < \alpha \leq 1$.

Proof. For the vector $e=(1,1,\ldots,1)^T$, we consider $(A\circ A^{-1})e$. Let $(A \circ A^{-1})e = (f_1, f_2, \ldots, f_n)^+$, then f_i is the *i*th main diagonal entry of the matrix AA^{-1} . Given $C = AA^{-1} = (c_{ij})$, we consider min f_i . Without loss of generality, we may assume that $f_1 = \min f_i$. Then since $AC^T = A^T$, we have the following from Cramer's rule:

$$
c_{11} = \frac{\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & & & \\ \vdots & & A_1 & \\ a_{1n} & & & \\ a_{21} & & \\ \vdots & & A_1 & \\ a_{n1} & & & \end{vmatrix}}{a_{11} - a_{12} - \cdots - a_{1n}} = \frac{a_{11} - (a_{12}, \ldots, a_{1n}) A_1^{-1} \begin{pmatrix} a_{12} \\ \vdots \\ a_{1k} \end{pmatrix}}{\begin{pmatrix} a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}},
$$

where A_1 is the last $(n - 1) \times (n - 1)$ principal submatrix of matrix A. If $x = 1$, then A is symmetric due to the sum-symmetricity, and we have that $c_{ii} = f_{ii} = 1$ for all *i*. This gives $(A \circ A^{-1})e = e$, and $q(A \circ A^{-1}) = 1$. This is a result of Ref. [9].

For $0 < x < 1$ since $|a_{ij}| \ge x |a_{ji}|$ and by Lemma 2.5, we have

$$
a_{11} - (a_{12}, \ldots, a_{1n})A_1^{-1}\begin{pmatrix} \frac{a_{12} - x a_{21}}{1 - x} \\ \vdots \\ \frac{a_{1n} - x a_{n1}}{1 - x} \end{pmatrix} \geq a_{11} - \sum_{j \neq 1} |a_{j1}| \geq 0.
$$

On the other hand, the above inequality is equivalent to

X. Yong, Z. Wang / Linear Algebra and its Applications 288 (1999) 259-267

$$
c_{11} = \frac{a_{11} - (a_{12}, \ldots, a_{1n}) A_1^{-1} \begin{pmatrix} a_{12} \\ \vdots \\ a_{1n} \end{pmatrix}}{a_{11} - (a_{12}, \ldots, a_{1n}) A_1^{-1} \begin{pmatrix} a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}} \ge \alpha.
$$

Therefore, we get

 $(A \circ A^{-1})e \geq \alpha e$

which gives the following (by Lemma 2.1)

$$
q(A \circ A^{-1}) \geq \alpha. \qquad \Box
$$

Theorem 3.4. Let $A = (a_{ij})$ be an irreducible $n \times n$ M-matrix with $a_{11} = a_{22} = \cdots = a_{nn}$, $n > 2$, and for $e^{T} = (1, 1, \ldots, 1)$, we have $Ae =$ $A^Te = ke, k > 0$. Then

$$
q(A\circ A^{-1})\geqslant \frac{2}{n}.
$$

Proof. Without loss of generality, we may assume that $k = 1$. Then A^{-1} is doubly stochastic, and A satisfies the conditions of Theorem 3.1. By the proof of that theorem, we have

$$
f_i \geqslant \frac{\zeta_1}{n - \sum_{j \neq i} \frac{1}{a_{ii}}} \left(2 - \frac{1}{a_{ii}}\right),
$$

where $e^{T}(A \circ A^{-1}) = (f_1, f_2, ..., f_n)$. Now, since $a_{11} = a_{22} = ... = a_{nn}$, it implies that

$$
f_i \geqslant \frac{2}{n}, \quad i = 1, 2, \ldots, n, \qquad \ldots
$$

that is,

$$
(A \circ A^{-1})e \geq \frac{2}{n}e
$$

Therefore, by Lemma 2.1 we conclude that

$$
q(A\circ A^{-1})\geqslant \frac{2}{n}.\qquad \Box
$$

266

Remark 3.1. A special case of Theorem 3.4 yie!ds both the examples in Ref. [2, III] and in Rcf. i3].

Remark 3.2. For Lemma 2.2, when we repeat the procedure of its proving, we may achieve better inequalities than (a) and (b). This leads to an improvement of (d) in Lemma 2.4, and therefore, the lower bound for $q(A \circ A^{-1})$ could be **more precise.**

Remark 3.3. The conjecture is still open.

Acknowledgements

The authors wish to thank the referee for careful reading of the manuscript and for suggestions towards improving the presentation of the paper.

References

- [1] C.R. Johnson, A Hadamard product involving *M*-matrices, Linear and Multilinear Algebra 4 (1977) 261 - 264.
- [2] M. Fiedler, T.L. Markham, An inequality for the Hadamard product of an M -matrix and inverse M-matrix, Linear Algebra Appl. 101 (1988) I-8.
- [3] L. Ching, Chen Ji-cheng, On a bound for the Hadamard product of an *M*-matrix and its inverse, Linear Algebra Appl. 144 (1991) 171-178.
- [4] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic press, New York, 1979.
- 15] R.J. Plemmons, *M-matrices characterization I: Nonsingular M-matrices, Linear Algebra Appl.* 18 (1977) 175-188.
- [6] A.S. Householder, The Theory of Matrices in Numerical Analysis, Ginn (Blaisdell), Waltham, Massachusetts, 1964.
- [7] R. Sinkhorn, A relationship between arbitrary positive matrices and double stochastic matrices, Ann. Math. Statist. 35 (1964) 876-879.
- [8] S.N. Afriat, On sum-symmetric matrices, Linear Algebra Appl. 8 (1974) 129 141).
- [9] M. Fiedler, C.R. Johnson, T.L. Markham, M. Neumman, A trace inequality for M-matrices and the symmetrizability of a real matrix by a positive diagonal matrix, Linear Algebra Appl. 71 (1985) 31-94.