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Abstract

For the Hadamard product 4 o 4 ! of an M-matrix 4 and it inverse A~', Fiedler and
Markham conjectured that g(4 o 4~') > 2/n (see M. Fiedler and T.L. Markham, Linear
Algebra Appl. 101(1988) 1-8), where g(4 o 4 ') is the smallest eigenvalue (in modulus)
of Ao A~'. The present paper studies this conjecture (an incorrect proof is given in Li
Ching and Chen Ji-cheng, Linear Aigebra Appl. 144 (1991) 171-178), and establishes
gAod ') > (2/n)((n—1)/n). For some special matrices, the conjecture is
proved. © 1999 Elsevier Science Inc. All rights reserved.

1. Introduction

The Hadamard product of two matrices 4 = (a,,;) and B = (b,;) of the same
size is defined as the matrix C = 4 o B = (a;b;,).

All M-matrices considered here are nonsingular M-matrices. If 4 is an M-
matrix, there exists a positive eigenvalue of 4 equal to (p(47 ")) ', in which
p(47") is the Perron eigenvalue of the nonnegative matrix 4~'. We denote this
eigenvalue by ¢q(4). By Johnson [1] and Fiedler and Markham [2] we know that
the Hadamard product 4 o B™! of an #n x n M-matrix 4 and the inverse of an
n x n M-matrix B is again an M-matrix. For B = A, Fiedler and Markham [2]
posed the following conjecture,

qdod )32,

n
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We note that this conjecture was considered in Ref. [3], and the authors
stated that they gave a proof for this conjecture. But, we have found a mistake
in their proof. Indeed, the following inequality

ajpj, + @501, /by, , Bojr g
Yy = Y3
aj,;, +(ap, — 1) 7 a1
does not hold for a;,;, < 0, a;,;, + (aj,;, — 1) > 0,b;;, > b,;;, > . For details, see

the proof of Theorem 1 in Ref. [3]. The aim of this paper is to consider this
conjecture. We shall show the following inequality

grz—l

nn

g(Aoda™') >
and in some cases we provide that
2
gAoAa™ Y= =, n>3.

n

We need some basic results to prove the above two inequalities.

2. Some lemmas

Lemma 2.1. If P is an irreducible M-matrix and Pz > kz for a nonnegative
nonzero vector =, then k < g(P).

Proof. This is the Proposition | of Ref. [2]. O

Lemma 2.2. Let A = (ay;) be a strictly diagonally dominant matrix by row and
column, i.e.,

la,| > Zlaili‘ la,| > Zia/i!*

IFd J£
for all i. Then for 47" = (b,;). we have:
Zu’ il
¢ bz < = bi: .
(d) l ,I‘ la//" l |
(b) Ihlll S M ll’lll‘
' lazil

Proof. Let

po= Z!:’l l(l,,‘ + €
‘ ‘('u'i
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where ¢ is sufficientl: small such that 0 <r <1 for all i, and let
D; = diag(r.....ri.;.1,r.y....,r,). Then it is easy to see that the matrix 4D,
is again strictly diagonaily dominant by row. Therefore, by virtue of the
Proposition 2 of Ref. [2], we can deduce readily that

1
;j bl < |bil-

for all j, j # i. This gives the following when ¢ — 07,
Z:;,e_/ |a|
la,|

for all j, j # i. Now when / 1s varying from 1 to #, it yields the assertion (a).
Analogically, letiing

Zl:i la“" + €

laiil . '

bji| < |bil -

¢ =

and considering the matrix F;4, where F, = diagc, ... ciots e, ), We
may conclude that

Z,.,J,‘ la;|
la|

foralli.j.i#j. O

lbijl < Ibn|~

Lemma 2.3. Let A = (a;;) be an n x n M-matrix, and let A Y= (b)) be doubly
stochastic, then

Ae = A'e = e,

Proof. This lemma is obvious, see Ref. [3]. O

Lemma 2.4. Let A = (a;) he an n x n M-matrix, and let the inverse A = (b;;)
be doubly stochastic, then

(¢c) bya,; =1,

(d) b, 2

Proof. (c) Let

h'l’
4= ((Iu \’/
C Al /:
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Then by (Berman and Plemmons [4], Ch. 6), we have 4;' = 0. b7 <0. ¢<0.
Hence,

_Ay]an S |4i|(an — bT47'c)

buan = ] = A = 1.

The rest follows similarly. This completes the proof of (c).
Now, we consider (d). In the light of Lemmas 2.2 and 2.3, we may infer

for all i, /, i # j. Therefore,

l = b,’,‘ +ij,<b,‘, +Z<l "‘%)b,‘,’ = (.’1 - Zai)b,‘,‘,
g

J#i JH i#i
1.e.,
1
biz oy U
J#ia,
Lemma 2.5. Let
a dn Ain
ay)

A =

\anl

be either strictly diagonally dominant (b columns) or irreducibly diagonally
dominant matrix (by columns), then

(laa].. .. law))d, ' <e,
where A, is the comparison matrix of A, [5), e" = (1. 1,....1).
Proof. By Hou%‘eholder (6] A, is an M-matrix. Let (laa]..... Ial,,i)fi‘l" —
.VT = (.v?,- cen -_Vn) . and Vi = max v, then we have

lal:i
Ajv=

ialnl



X. Yong, Z Wang | Linear Algebra and its Applications 288 (1999) 259-267 263
This gives
w -
law| = laily, — Z|a./i|)’j 2 (lanl - Llﬂ/il)}’n
Vil JFi
ie.,

a
i < lau] <l
|ai| — Zj;éi |ajil

This yields y <e. O

3. The main results

Theorem 3.1. Let A = (a;;) be an irreducible n x n M-matrix and A~ = B = (b;)
be a doubly stochastic matrix. Then
2n—1

gdod™)>=
n n

Proof. By Lemma 2.3, we have for all i that
(l) @€ > l-
) a; = Zla,,l -1
j#i

For the vector z = ((1||/(a|| —1 ).ag_g/(azg - l). P ¢ ((I,,,, - l))r, let f, be the
ith component of the vector z' (404 '), then by Lemma 2.2

f aubu - 2 |a[l|b/l —

d,;
1

>au u'—"—_" E Ia/I - bii T l

J#i 1 @
a;
= b, “u‘"“"—l‘ E la,| ]
Qu = i

If b, = 2/n, it is casy to see that

au 2 da;;
> - | .
— - na;, —

Then by (c¢) of Lemma 2.4, we have

f, 2 bl a;

P

Now, let b; <

S ge
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.
YT b T2
Therefore, using (d) of Lemma 2.4, we have that
Jizb ’/a-- L (g — 1)} i
i = u\ ii } ii /} a; — i

ki
1 (a; — 1) aji
2 —=—71|qi~— ]
n-— qu a, ai;

/7

_ ] 2 l a;; > 2" e l a“'
- n—.-‘- Z L1 a; ] d; — 1 n n a;— 1 '

J#ie,
Consequently, combining the above two cases, we get

Tdod ) > 22;11,:1‘,

which, when considering (4 o4 )"z and using Lemma 2.1, implies

2n -1
gAdoAd™") > !
non

O

Theorem 3.2. Let A be an n x n M-matrix, n > 2. then

2n -
gdoatys="1
‘ H H

Proof. For the case that A is irreducible, we infer that 4 ! is positive, and
Ao A" is again irreducible. By Sinkhorn [7), there exist two positive diagonal
matrices Dy and D. such that D4 'D, is dcubly stochastic. Since the matrix
B = Dy'AD;" is again an M-matrix, and

qdod™) = ¢(D:D'(BoB ) (DD ") ') = g(Bok™).

we conclude thii g(4od4 ') > (2/n)(n — 1)/n in terms of Theorem 3.1.

Now let 4 be reducible, then, without foss of generality, ‘ve may assume that
A4 has a block upper triangular form (4,,) with irreducibie diagonal blocks 4,
where 4, are n, x #1. matrices, i, j = 1.2,....t. This implies that the inverse 4"
is again block upper triangular with diagonal positive blocks A;' > 0,
i=1,2.....¢t. Then since we have

gldoA™") =min (4,04, "),
and

0 2n -1
gdiod') > =———_, n <n,
n,n
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it produces

In—
gAod ™) > :’—1———]—,
n o n

which completes the proof of Theorem 3.2. [

Theorem 3.3. Let the n x n M-matrix A = (ay;) be either diagonally dominant by
column, or irreducibly diagonally dominant by column. Further, if A is also a
sum-symnetric meirix [8) (e, Y i ai; = Y., aji, for all j), and for all i. j i # j

la;;| 2 xla,,

then q(40A™") = o, where 0 < 2 < 1.

Proof. For the vector e = (I, l.....l)T. we consider (4o 4 ')e. Let
(AdoA Ve =(fi.fo.... j;,)T. then f; is the ith main diagonal entry of the
matrix .i4~7. Given C = A4 T = {c,;), we consider min J;. Without loss of
generality, we mayv assume that f; = min . Then since ACT = AT, we have the
following from Cramer’s rule:

ay ap - dyy
ap> (all\
1 . i
: Al dy — (a]g ..... a.,,)A, :
Cry o= din - \all. ,}
n = .
an ap oAy ((l:[\
da an = (@ eeoa)d, '
Al \anl /
an

where 4, is the last (n — 1) x (n — 1) principal submatrix of matrix 4. If x = I,
then 4 is symmetric due to the sum-symmetricity, and we have that ¢, = f, = |
for all i. This gives (404 ')e =e, and g(A4o A ") = 1. This is a resuit of Ref.
[91.

For 0 < x < 1 since |a,,| = #|a;| and by Lemma 2.5, we have

ay» — Ad»
i o 4
ap — (a|3,....a|,,)A{| =an — ZI(I,|| = 0.

N £1
ay, — %yt ’

-

On the other hand, the above inequality is equivalent to
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on)

ayy — (al?f ... saln)Ai—‘

. )
()
)

A\
R

ay, — (@, ... a4y

Yherefore, we get
(Ao A e = ze.
which gives the following (by Lenima 2.1;

> O
Koo

\\,’

gldod™)
Theorem 3.4. Let 4= (a;) be an irreducitle nxn M-matrix with
ay=an=--=au n>2, and for e' =(1.1,....1), we hace Ade=
ATe = ke, k > 0. Then

2
gdod ') = =,
n

Proof. Without loss of generality, we may assume that k=1. Then 4! is
doubly stochastic, and*4 satisfies the conditions of Theorem 3.1. By the proof
of that thecorem. sve have

[ J

'!

\
: i 1
i (2 1),

n- Z”";—; a,
where ef(d oA ') = (fi, fo.....f,). Now, since ay) = an = --- = a,,, it implies
that
2
fiz-. i=12...,n -
n
that s,
| 2
(Aod e = -e.
n

Therefore, by Lemma 2.1 we conclude that

o

‘I(AOA")?;;- O
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Remark 3.1. A special case of Theorem 3.4 yie'ds both the examples in Ref. [2,
I11] and in Ref. 3]

Remark 3.2. For Lemma 2.2, when we repeat the procedure of its proving, we
may achieve better inequalities than (a) and (b). This leads to an improvement
of (d) in Lemma 2.4, and therefore, the lower bound for g(4 0 47!) could be
more precise.

Remark 3.3. The conjecture is still open.
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