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Abstract

For a simple, undirected graph G,, let ;(G,) be the ith largest eigenvalue of G,. This
paper presents mainly the following:
1. For n >4, if G, is incomplete, then

1+,/1+423
2 <(G) < —— 1

2 2

2. Seven sufficient and necessary conditions such that 1,(G,) = —1.
3. 43(G,) = —1 implies that 4;(G,) =—1, j=3,4,....,n— 1.
© 1999 Elsevier Science Inc. All rights reserved.

1. Introduction and notation

All matrices considered here will be real.
A symmetric matrix is called elliptic if it has exactly one and simple positive
eigenvalue. An elliptic matrix with all diagonal entries equal to zero is known
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as a special elliptic matrix [1,2]. Let G, be a simple and undirected graph with
vertices vy, s, ..., 0,. The adjacency matrix of a graph G, is defined as a one-
zero matrix A(G) = (a;;), in which a;;=1 if and only if vertices v; and v; are
adjacent.

Let detA(G,) stand for the determinant of A(G,). The characteristic
polynomial of G, is the characteristic polynomial of its adjacency matrix,
which is denoted by P(G,, 1). Since 4(G,) is symmetric, its eigenvalues must be
real. The kth largest eigenvalue /. (G,) of G, is the kth largest root of P(G,, 1),
where 1<k<n. Let G be the complement of G,. Cao and Yuan showed
that the second largest eigenvalue of a incomplete multpartite graph is greater
than or equal to zero and there does not exist a graph such that the second
largest eigenvalue of G, lies in the interval (—1,0) (see [3]). In this note, we first

give
1+4/1+4%3
(G < vy~

2

(n = 4) and then establish seven sufficient and necessary conditions such that
72(G,) = —1, which yields that the second largest eigenvalue 1,(G,) is either
nonnegative or —1. This is the known result mentioned above. Next, we prove
that A3(G,) = —1 which implies 4;(G,) = -1, j=3,4,...,n— 1. Three con-
jectures are also posed here.

2. Lemma and results

Lemma 1 [1]. Let A = (a;;) be a special elliptic matrix. If A is nonsingular, then
A has all off-diagonal entries different from zero.

Lemma 2. Let A be an n X n irreducible nonnegative matrix. Let x = (x1,xa, . . .,
x,) be a positive eigenvector and let r =max(x;/x;). Then

s<A(4)<S (1)
and
(5/s)" <. 2)

Moreover, equality holds in either (1) or (2) if and only if s =S, where S = max s;,
s = mins;, and s; denotes the sum of elements of the ith row of A.

Proof. The proof of Lemma 2 can be found in [6, p. 37]. O
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Lemma 3. Let G, be a graph with at least four vertices. Then 23(G) = —1 iff G°
has at least four points and G° is isomorphic to a complete bipartite graph plus
some isolated vertices.

Proof. This is the second part of Theorem 5 in [4]. O

Lemma 4. Let G, be a simply connected graph with n = 3 vertices but not
complete. Then

2a(Ga) < 2u(K,_y)

with the equality is true if and only if G, = K! |, where K | is the graph obtained
by the coalescence of a complete graph K, | of n — 1 vertices with a path P, of

length one at one of its vertices.
Proof. This is Theorem 2 of [5]. O

Lemma 5. Let K!

n—1

(n = 4) be the graph defined in Lemma 4. Then

n—2<n(K |)<n—1,

n=3 = Ak + (=3 A(KL)) + 40— 3)/A(K))
2 b)

2 (Kr}—l) =

LK) = =1, j=3,.n—1,

n—3— (K" )= /(n—=3= (K. ) +4n—3)/ (K.,
KL= (K1) =/ ( AL 3/

<—l—\/l+4(2n73)/(n—1).

Proof. Since K! | has a complete subgraph of n — 1 vertices (say K,_1), we have
(Kyy) =n—2,
2i(Kyo)=—1, j=2,...,n—1.

Thus, by Cauchy’s interlacing theorem [7], and by Lemma 2, it gives
n—2<h(K )<n—1, LK )=-1, j=3,4....n—1. (3)

n—1

Now we consider 4,(K! ;) and 4,(K! ,). Since the trace of 4(K! ) is zero, we
have by (3)

)MZ(K,Ll) + ;”n(KrLl) =n—3- ;“1<Kr171)' 4)
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On the other hand, it is easy to show that the determinant of A(K! ) is
(—=1)"(n — 3), and therefore again by (3), it yields

n—73

Jo(K! K')=——-".
2( n—l)/ln( n—l) ;L](K,l,l)

(5)

Combining (4) and (5), it leads to the following:

n—3—=2(K )+/(n=3—= (K ) +4n—-3)/u(K
WKL) = (K1) + /1 AR =9/,

=3 = a(KL) (=3 (KL)) +4(n - 3)/ 2 (KL )
2

Jon (K;:—l) =

<—1—\/1+4(2n—3)/(n—1).

The proof is completed. [

Theorem 6. Let G, be a simply connected graph with n > 4 vertices but not
complete. Then

n 1+ /T+4(n=3)/(n—1)
< < = 5 .

Proof. The proof follows from Lemmas 4 and 5, and [§]. O

Remark 1. In [5], Yuan proved that

14++/5
2 b

}“n(KrLl) - -
But he did not establish the estimation with regard to n.

Theorem 7. Let G, be a simple graph. Then the following seven statements are
equavilent:

(a) j-Z(Gn) =-1

(b) G, is complete.

(©) 4(G,) =—1, j=2,...,n.

(d) /2(Gy) < 0.

(e) 4,(G,) = —1, and G, is connected.

(f) A(G,) is a nonsingular special elliptic matrix.
(&) 4i(Gy) =n—1.
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Proof. (a) < (b) is by Theorem 1 of [3].

(b) = (c) and (c) = (d) are trivial.

(d) = (e). Since 4,(G,) > 0> A (G,) = 4(G,), j=2,...,n, we know that
A(G,) is a nonsingular special elliptic matrix. Theorefore by Lemma 1, G, is
complete. This implies that 4,(G,) = —1.

(e) = (f). We need only to consider the case n > 4. By Theorem 6, 1,(G,) =
—1 implies that G, is complete. This yields 4(G,) =n—1, 4;(G,) = —1,
j=2,...,n. ie. A(G,) is a nonsingular special elliptic matrix.

(f) = (g) is by Lemmas 1 and 2.

(g) = (a) follows from Lemma 2. O

Related to Theorem 7, we now pose two conjectures. They are true for n < 8.
Both “only if”” parts of them follow from Theorem 7.

Conjecture 1. Let G, be a simple graph. Then G, is complete if and only if

detd(G,) = (=1)"'(n—1).
Conjecture 2. Let G, be a simple graph. Then G, is complete if and only if

| detA(G,) |= /1(G,) =n — 1.

Theorem 8. Let G, be a graph with at least four vertices. Then 13(G,) = —1
implies that 2;(G,) =—1, j=3,...,n—1.

Proof. By Lemma 3, it is easy to check that there exists a permutation matrix P
such that

Cl O J13
PTAG)P=| 0 C Jxn |,
JE JE G

where C; are the k; x k; matrices with all diagonal entries zero and all off-
diagonal entries equal to one, i = 1,2, 3, Zf:l ki =n,0<k; <n, and J;; are the
ki x k;,i,j=1,2,3, matrices with all entries equal to one.

We now consider the rank of matrix PTA(G,)P + I. Let #(Q) denote the rank
of matrix Q. Then
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Ju 0 Jis
r(PTAGI)P+1)=r| 0 Jn Jn
A AN %
Ju 0 Jis
=rl 0 Jn Jx
0 JL 0
Ju 0 Jis
=r| 0 Jpn Jxn
0 0 —Ji
<3,
which states that /;(G,) = —1 is a multiple root of matrix 4(G,), whose mul-

tiplicity is at least n — 3. For 4,(G,) we have two cases:
(i) If A,(G,) = —1, then by Theorem 7 it yields 4;(G,) = -1, j=2,3,...,n.
(i) 42(G,) # —1 implies that 7,(G,) = 0 (by Theorem 7 again). Theorefore
we have

(G =—1, j=3...n—1

The proof is now completed. O

Conjecture 3. Let G, be a graph with at least four vertices. Then
= —1(2<k<[n/2]) implies that

(G =-1, j=kk+1,...,n—k+2.
For Conjecture 3, the cases k=2, 3 are true (Theorems 7 and 8).

Example. Let

SO OO === O
SO == = =0 =
SO === O ==
— e O e
_—— e O === O
_— O e O
— O === OO0
O === —=0 OO

be the adjacency matrix of a graph with eight vertices. Then by MATHE-
MATICA we obtain
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21(G) = 5.24384,
22(G) = 1.60317,
J3(G) = —0.182062,
24(G) = —0.9999,
45(G) = — 1,

46(G) = — 1,

/7(G) = — 1.53035,
25(G) = — 2.1346.

On the other hand, since it is easy to verify that »(I + A(G)) = 5 (the rank of
matrix / + A(G)), we infer that

44(G) = 25(G) = 46(G) = —1.
Compared with Conjecture 3, this is the special case that k =4, n = 8.

Remark 2. Let G, be the graph defined in Theorem 8 and have / edges. If
A3 = —1, then Ay, 2,, 4, are given by:

M+ la+ 2, =n-=3,
B4 B4+12=20—(n-3),

C1 0 Jl
Idadn=|0 C Jy|=(=1)"detd(G,).
JTUT G

It is not difficult to obtain the expression of det 4(G,).
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