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Abstract

For a simple, undirected graph Gn, let ki�Gn� be the ith largest eigenvalue of Gn. This

paper presents mainly the following:

1. For n P 4, if Gn is incomplete, then

ÿ n
2
6 kn�Gn� < ÿ

1�
�����������������
1� 4 nÿ3

nÿ1

q
2

:

2. Seven su�cient and necessary conditions such that k2�Gn� � ÿ1.

3. k3�Gn� � ÿ1 implies that kj�Gn� � ÿ1; j � 3; 4; . . . ; nÿ 1.

Ó 1999 Elsevier Science Inc. All rights reserved.

1. Introduction and notation

All matrices considered here will be real.
A symmetric matrix is called elliptic if it has exactly one and simple positive

eigenvalue. An elliptic matrix with all diagonal entries equal to zero is known
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as a special elliptic matrix [1,2]. Let Gn be a simple and undirected graph with
vertices v1; v2; . . . ; vn. The adjacency matrix of a graph Gn is de®ned as a one-
zero matrix A�G� � �aij�, in which aij� 1 if and only if vertices vi and vj are
adjacent.

Let det A�Gn� stand for the determinant of A�Gn�. The characteristic
polynomial of Gn is the characteristic polynomial of its adjacency matrix,
which is denoted by P�Gn; k�: Since A�Gn� is symmetric, its eigenvalues must be
real. The kth largest eigenvalue kk�Gn� of Gn is the kth largest root of P�Gn; k�,
where 16 k6 n. Let Gc

n be the complement of Gn. Cao and Yuan showed
that the second largest eigenvalue of a incomplete multpartite graph is greater
than or equal to zero and there does not exist a graph such that the second
largest eigenvalue of Gn lies in the interval �ÿ1; 0� (see [3]). In this note, we ®rst
give

kn�Gn� < ÿ
1�

�����������������
1� 4 nÿ3

nÿ1

q
2

�n P 4� and then establish seven su�cient and necessary conditions such that
k2�Gn� � ÿ1, which yields that the second largest eigenvalue k2�Gn� is either
nonnegative or ÿ1. This is the known result mentioned above. Next, we prove
that k3�Gn� � ÿ1 which implies kj�Gn� � ÿ1, j � 3; 4; . . . ; nÿ 1. Three con-
jectures are also posed here.

2. Lemma and results

Lemma 1 [1]. Let A � �aij� be a special elliptic matrix. If A is nonsingular, then
A has all off-diagonal entries different from zero.

Lemma 2. Let A be an n� n irreducible nonnegative matrix. Let x��x1; x2; . . . ;
xn� be a positive eigenvector and let r�max�xi=xj�. Then

s6 k1�A�6 S �1�

and

�S=s�1=26 r: �2�

Moreover, equality holds in either (1) or (2) if and only if s�S, where S � max si,
s � min si, and si denotes the sum of elements of the ith row of A.

Proof. The proof of Lemma 2 can be found in [6, p. 37]. �
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Lemma 3. Let Gn be a graph with at least four vertices. Then k3�G� � ÿ1 iff Gc

has at least four points and Gc is isomorphic to a complete bipartite graph plus
some isolated vertices.

Proof. This is the second part of Theorem 5 in [4]. �

Lemma 4. Let Gn be a simply connected graph with n P 3 vertices but not
complete. Then

kn�Gn�6 kn�K1
nÿ1�

with the equality is true if and only if Gn � K1
nÿ1, where K1

nÿ1 is the graph obtained
by the coalescence of a complete graph Knÿ1 of nÿ 1 vertices with a path P2 of
length one at one of its vertices.

Proof. This is Theorem 2 of [5]. �

Lemma 5. Let K1
nÿ1�n P 4� be the graph defined in Lemma 4. Then

nÿ 2 < k1�K1
nÿ1� < nÿ 1;

k2�K1
nÿ1� �

nÿ 3ÿ k1�K1
nÿ1� �

���������������������������������������������������������������������������������
�nÿ 3ÿ k1�K1

nÿ1��2 � 4�nÿ 3�=k1�K1
nÿ1�

q
2

;

kj�K1
nÿ1� � ÿ1; j � 3; . . . ; nÿ 1;

kn�K1
nÿ1� �

nÿ 3ÿ k1�K1
nÿ1� ÿ

���������������������������������������������������������������������������������
�nÿ 3ÿ k1�K1

nÿ1��2 � 4�nÿ 3�=k1�K1
nÿ1�

q
2

<
ÿ1ÿ ������������������������������������������

1� 4�nÿ 3�=�nÿ 1�p
2

:

Proof. Since K1
nÿ1 has a complete subgraph of nÿ 1 vertices (say Knÿ1), we have

k1�Knÿ1� � nÿ 2;

kj�Knÿ1� � ÿ1; j � 2; . . . ; nÿ 1:

Thus, by Cauchy's interlacing theorem [7], and by Lemma 2, it gives

nÿ 2 < k1�K1
nÿ1� < nÿ 1; kj�K1

nÿ1� � ÿ1; j � 3; 4; . . . ; nÿ 1: �3�
Now we consider k2�K1

nÿ1� and kn�K1
nÿ1�. Since the trace of A�K1

nÿ1� is zero, we
have by (3)

k2�K1
nÿ1� � kn�K1

nÿ1� � nÿ 3ÿ k1�K1
nÿ1�: �4�
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On the other hand, it is easy to show that the determinant of A�K1
nÿ1� is

�ÿ1�n�nÿ 3�, and therefore again by (3), it yields

k2�K1
nÿ1�kn�K1

nÿ1� � ÿ
nÿ 3

k1�K1
nÿ1�

: �5�

Combining (4) and (5), it leads to the following:

k2�K1
nÿ1� �

nÿ 3ÿ k1�K1
nÿ1� �

���������������������������������������������������������������������������������
�nÿ 3ÿ k1�K1

nÿ1��2 � 4�nÿ 3�=k1�K1
nÿ1�

q
2

;

kn�K1
nÿ1� �

nÿ 3ÿ k1�K1
nÿ1� ÿ

���������������������������������������������������������������������������������
�nÿ 3ÿ k1�K1

nÿ1��2 � 4�nÿ 3�=k1�K1
nÿ1�

q
2

<
ÿ1ÿ ������������������������������������������

1� 4�nÿ 3�=�nÿ 1�p
2

:

The proof is completed. �

Theorem 6. Let Gn be a simply connected graph with n P 4 vertices but not
complete. Then

ÿ n
2
6 kn�Gn� < ÿ 1� ������������������������������������������

1� 4�nÿ 3�=�nÿ 1�p
2

:

Proof. The proof follows from Lemmas 4 and 5, and [8]. �

Remark 1. In [5], Yuan proved that

kn�K1
nÿ1� ! ÿ

1� ���
5
p

2
; n!1

But he did not establish the estimation with regard to n.

Theorem 7. Let Gn be a simple graph. Then the following seven statements are
equavilent:

(a) k2�Gn� � ÿ1
(b) Gn is complete.
(c) kj�Gn� � ÿ1; j � 2; . . . ; n:
(d) k2�Gn� < 0:
(e) kn�Gn� � ÿ1, and Gn is connected.
(f) A�Gn� is a nonsingular special elliptic matrix.
(g) k1�Gn� � nÿ 1.
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Proof. (a) , (b) is by Theorem 1 of [3].
(b) ) (c) and �c� ) �d� are trivial.
(d) ) (e). Since k1�Gn� > 0 > k2�Gn�P kj�Gn�; j � 2; . . . ; n, we know that

A�Gn� is a nonsingular special elliptic matrix. Theorefore by Lemma 1, Gn is
complete. This implies that kn�Gn� � ÿ1.

(e)) (f). We need only to consider the case n P 4. By Theorem 6, kn�Gn� �
ÿ1 implies that Gn is complete. This yields k1�Gn� � nÿ 1; kj�Gn� � ÿ1;
j � 2; . . . ; n: i.e. A�Gn� is a nonsingular special elliptic matrix.

(f) ) (g) is by Lemmas 1 and 2.
(g) ) (a) follows from Lemma 2. �

Related to Theorem 7, we now pose two conjectures. They are true for n6 8.
Both ``only if'' parts of them follow from Theorem 7.

Conjecture 1. Let Gn be a simple graph. Then Gn is complete if and only if

det A�Gn� � �ÿ1�nÿ1�nÿ 1�:

Conjecture 2. Let Gn be a simple graph. Then Gn is complete if and only if

j det A�Gn� j� k1�Gn� � nÿ 1:

Theorem 8. Let Gn be a graph with at least four vertices. Then k3�Gn� � ÿ1
implies that kj�Gn� � ÿ1; j � 3; . . . ; nÿ 1.

Proof. By Lemma 3, it is easy to check that there exists a permutation matrix P
such that

P TA�Gn�P �
C1 0 J13

0 C2 J23

J T
13 J T

23 C3

0B@
1CA;

where Ci are the ki � ki matrices with all diagonal entries zero and all o�-
diagonal entries equal to one, i � 1; 2; 3;

P3
i�1 ki � n; 06 ki6 n, and Jij are the

ki � kj; i; j � 1; 2; 3; matrices with all entries equal to one.
We now consider the rank of matrix P TA�Gn�P � I . Let r�Q� denote the rank

of matrix Q. Then
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r�P TA�Gn�P � I� � r

J11 0 J13

0 J22 J23

J T
13 J T

23 J33

0B@
1CA

� r

J11 0 J13

0 J22 J23

0 J T
23 0

0B@
1CA

� r

J11 0 J13

0 J22 J23

0 0 ÿJ33

0B@
1CA

6 3;

which states that k3�Gn� � ÿ1 is a multiple root of matrix A�Gn�, whose mul-
tiplicity is at least nÿ 3. For k2�Gn� we have two cases:

(i) If k2�Gn� � ÿ1, then by Theorem 7 it yields kj�Gn� � ÿ1; j � 2; 3; . . . ; n:
(ii) k2�Gn� 6� ÿ1 implies that k2�Gn�P 0 (by Theorem 7 again). Theorefore

we have

kj�Gn� � ÿ1; j � 3; . . . ; nÿ 1:

The proof is now completed. �

Conjecture 3. Let Gn be a graph with at least four vertices. Then
kk � ÿ1 �26 k6 �n=2�� implies that

kj�Gn� � ÿ1; j � k; k � 1; . . . ; nÿ k � 2:

For Conjecture 3, the cases k� 2, 3 are true (Theorems 7 and 8).

Example. Let

A�G� �

0 1 1 1 0 0 0 0
1 0 1 1 1 1 0 0
1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 1
0 1 1 1 0 1 1 1
0 1 1 1 1 0 1 1
0 0 0 1 1 1 0 1
0 0 0 1 1 1 1 0

0BBBBBBBBBB@

1CCCCCCCCCCA
be the adjacency matrix of a graph with eight vertices. Then by MATHE-
MATICA we obtain
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k1�G� � 5:24384;

k2�G� � 1:60317;

k3�G� � ÿ 0:182062;

k4�G� � ÿ 0:9999;

k5�G� � ÿ 1;

k6�G� � ÿ 1;

k7�G� � ÿ 1:53035;

k8�G� � ÿ 2:1346:

On the other hand, since it is easy to verify that r�I � A�G�� � 5 (the rank of
matrix I � A�G�), we infer that

k4�G� � k5�G� � k6�G� � ÿ1:

Compared with Conjecture 3, this is the special case that k � 4; n � 8:

Remark 2. Let Gn be the graph de®ned in Theorem 8 and have l edges. If
k3 � ÿ1, then k1; k2; kn are given by:

k1 � k2 � kn � nÿ 3;

k2
1 � k2

2 � k2
n � 2lÿ �nÿ 3�;

k1k2kn �
C1 0 J1

0 C2 J2

J T
1 J T

2 C3

�������
������� � �ÿ1�n det A�Gn�:

It is not di�cult to obtain the expression of det A�Gn�.
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