

Linear Algebra and its Applications 295 (1999) 73-80

LINEAR ALGEBRA AND ITS APPLICATIONS

www.elsevier.com/locate/laa

On the distribution of eigenvalues of a simple undirected graph \overrightarrow{r}

Xuerong Yong $a,b,*$

^a Department of Mathematics, Xinjiang University, Urumqi 830046, People's Republic of China b Department of Computer Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Received 7 November 1995; accepted 4 March 1999

Submitted by M. Fiedler

Abstract

For a simple, undirected graph G_n , let $\lambda_i(G_n)$ be the *i*th largest eigenvalue of G_n . This paper presents mainly the following:

1. For $n \geq 4$, if G_n is incomplete, then

$$
-\frac{n}{2} \leqslant \lambda_n(G_n) < -\frac{1+\sqrt{1+4\frac{n-3}{n-1}}}{2}.
$$

- 2. Seven sufficient and necessary conditions such that $\lambda_2(G_n) = -1$.
- 3. $\lambda_3(G_n) = -1$ implies that $\lambda_i(G_n) = -1, \quad j = 3, 4, \dots, n 1$.
- Ó 1999 Elsevier Science Inc. All rights reserved.

1. Introduction and notation

All matrices considered here will be real.

A symmetric matrix is called elliptic if it has exactly one and simple positive eigenvalue. An elliptic matrix with all diagonal entries equal to zero is known

 $*$ Research supported in part by XJEC grant of China and RGC CERG grant 652/95E of Hong Kong.

^{*} Correspondence address: DIMACS, Rutgers University, Core Building 4th Floor, Piscataway, NJ 08854-8018, USA. Fax: +1-732-445-5932; e-mail: xryong@cs.ust.hk

as a special elliptic matrix [1,2]. Let G_n be a simple and undirected graph with vertices v_1, v_2, \ldots, v_n . The adjacency matrix of a graph G_n is defined as a onezero matrix $A(G) = (a_{ij})$, in which $a_{ij} = 1$ if and only if vertices v_i and v_j are adjacent.

Let det $A(G_n)$ stand for the determinant of $A(G_n)$. The characteristic polynomial of G_n is the characteristic polynomial of its adjacency matrix, which is denoted by $P(G_n, \lambda)$. Since $A(G_n)$ is symmetric, its eigenvalues must be real. The kth largest eigenvalue $\lambda_k(G_n)$ of G_n is the kth largest root of $P(G_n, \lambda)$, where $1 \le k \le n$. Let G_n^c be the complement of G_n . Cao and Yuan showed that the second largest eigenvalue of a incomplete multpartite graph is greater than or equal to zero and there does not exist a graph such that the second largest eigenvalue of G_n lies in the interval $(-1, 0)$ (see [3]). In this note, we first give

$$
\lambda_n(G_n)<-\frac{1+\sqrt{1+4\frac{n-3}{n-1}}}{2}
$$

 $(n \geq 4)$ and then establish seven sufficient and necessary conditions such that $\lambda_2(G_n) = -1$, which yields that the second largest eigenvalue $\lambda_2(G_n)$ is either nonnegative or -1 . This is the known result mentioned above. Next, we prove that $\lambda_3(G_n) = -1$ which implies $\lambda_i(G_n) = -1$, $i = 3, 4, \dots, n - 1$. Three conjectures are also posed here.

2. Lemma and results

Lemma 1 [1]. Let $A = (a_{ij})$ be a special elliptic matrix. If A is nonsingular, then A has all off-diagonal entries different from zero.

Lemma 2. Let A be an $n \times n$ irreducible nonnegative matrix. Let $x = (x_1, x_2, \ldots, x_n)$ x_n) be a positive eigenvector and let $r = max(x_i/x_i)$. Then

$$
s \leq \lambda_1(A) \leqslant S \tag{1}
$$

and

$$
(S/s)^{1/2} \leq r.
$$

Moreover, equality holds in either (1) or (2) if and only if $s = S$, where $S = \max s_i$, $s = \min s_i$, and s_i denotes the sum of elements of the ith row of A.

Proof. The proof of Lemma 2 can be found in [6, p. 37]. \Box

Lemma 3. Let G_n be a graph with at least four vertices. Then $\lambda_3(G) = -1$ iff G^c has at least four points and G^c is isomorphic to a complete bipartite graph plus some isolated vertices.

Proof. This is the second part of Theorem 5 in [4]. \Box

Lemma 4. Let G_n be a simply connected graph with $n \geq 3$ vertices but not complete. Then

$$
\lambda_n(G_n)\leqslant \lambda_n(K^1_{n-1})
$$

with the equality is true if and only if $G_n \cong K_{n-1}^1$, where K_{n-1}^1 is the graph obtained by the coalescence of a complete graph K_{n-1} of $n-1$ vertices with a path P_2 of length one at one of its vertices.

Proof. This is Theorem 2 of [5]. \Box

Lemma 5. Let K^1_{n-1} ($n \geq 4$) be the graph defined in Lemma 4. Then

$$
n-2 < \lambda_1(K_{n-1}^1) < n-1,
$$

$$
\lambda_2(K_{n-1}^1) = \frac{n-3 - \lambda_1(K_{n-1}^1) + \sqrt{(n-3 - \lambda_1(K_{n-1}^1))^2 + 4(n-3)/\lambda_1(K_{n-1}^1)}}{2},
$$

\n
$$
\lambda_j(K_{n-1}^1) = -1, \quad j = 3, ..., n-1,
$$

\n
$$
\lambda_n(K_{n-1}^1) = \frac{n-3 - \lambda_1(K_{n-1}^1) - \sqrt{(n-3 - \lambda_1(K_{n-1}^1))^2 + 4(n-3)/\lambda_1(K_{n-1}^1)}}{2}
$$

\n
$$
< \frac{-1 - \sqrt{1 + 4(n-3)/(n-1)}}{2}.
$$

Proof. Since K_{n-1}^1 has a complete subgraph of $n-1$ vertices (say K_{n-1}), we have

$$
\lambda_1(K_{n-1}) = n-2, \n\lambda_j(K_{n-1}) = -1, \quad j = 2, ..., n-1.
$$

Thus, by Cauchy's interlacing theorem [7], and by Lemma 2, it gives

$$
n-2 < \lambda_1(K_{n-1}^1) < n-1, \quad \lambda_j(K_{n-1}^1) = -1, \quad j = 3, 4, \dots, n-1.
$$
 (3)

Now we consider $\lambda_2(K_{n-1}^1)$ and $\lambda_n(K_{n-1}^1)$. Since the trace of $A(K_{n-1}^1)$ is zero, we have by (3)

$$
\lambda_2(K_{n-1}^1) + \lambda_n(K_{n-1}^1) = n - 3 - \lambda_1(K_{n-1}^1).
$$
\n(4)

On the other hand, it is easy to show that the determinant of $A(K_{n-1}^1)$ is $(-1)^n(n-3)$, and therefore again by (3), it yields

$$
\lambda_2(K_{n-1}^1)\lambda_n(K_{n-1}^1) = -\frac{n-3}{\lambda_1(K_{n-1}^1)}.
$$
\n(5)

Combining (4) and (5), it leads to the following:

$$
\lambda_2(K_{n-1}^1) = \frac{n-3 - \lambda_1(K_{n-1}^1) + \sqrt{(n-3 - \lambda_1(K_{n-1}^1))^2 + 4(n-3)/\lambda_1(K_{n-1}^1)} }{2},
$$

$$
\lambda_n(K_{n-1}^1) = \frac{n-3 - \lambda_1(K_{n-1}^1) - \sqrt{(n-3 - \lambda_1(K_{n-1}^1))^2 + 4(n-3)/\lambda_1(K_{n-1}^1)} }{2}
$$

$$
< \frac{-1 - \sqrt{1 + 4(n-3)/(n-1)}}{2}.
$$

The proof is completed. \square

Theorem 6. Let G_n be a simply connected graph with $n \geq 4$ vertices but not complete. Then

$$
-\frac{n}{2} \leq \lambda_n(G_n) < -\frac{1+\sqrt{1+4(n-3)/(n-1)}}{2}.
$$

Proof. The proof follows from Lemmas 4 and 5, and [8]. \Box

Remark 1. In [5], Yuan proved that

$$
\lambda_n(K_{n-1}^1) \to -\frac{1+\sqrt{5}}{2}, \quad n \to \infty
$$

But he did not establish the estimation with regard to n .

Theorem 7. Let G_n be a simple graph. Then the following seven statements are equavilent:

\n- (a)
$$
\lambda_2(G_n) = -1
$$
\n- (b) G_n is complete.
\n- (c) $\lambda_j(G_n) = -1$, $j = 2, \ldots, n$.
\n- (d) $\lambda_2(G_n) < 0$.
\n- (e) $\lambda_n(G_n) = -1$, and G_n is connected.
\n- (f) $A(G_n)$ is a nonsingular special elliptic matrix.
\n- (g) $\lambda_1(G_n) = n - 1$.
\n

Proof. (a) \Leftrightarrow (b) is by Theorem 1 of [3].

(b) \Rightarrow (c) and (c) \Rightarrow (d) are trivial.

(d) \Rightarrow (e). Since $\lambda_1(G_n) > 0 > \lambda_2(G_n) \geq \lambda_i(G_n)$, $j = 2, \ldots, n$, we know that $A(G_n)$ is a nonsingular special elliptic matrix. Theorefore by Lemma 1, G_n is complete. This implies that $\lambda_n(G_n) = -1$.

(e) \Rightarrow (f). We need only to consider the case $n \ge 4$. By Theorem 6, $\lambda_n(G_n)$ = -1 implies that G_n is complete. This yields $\lambda_1(G_n) = n - 1$, $\lambda_i(G_n) = -1$, $j = 2, \ldots, n$. i.e. $A(G_n)$ is a nonsingular special elliptic matrix.

(f) \Rightarrow (g) is by Lemmas 1 and 2.

 $(g) \Rightarrow$ (a) follows from Lemma 2. \square

Related to Theorem 7, we now pose two conjectures. They are true for $n \le 8$. Both "only if" parts of them follow from Theorem 7.

Conjecture 1. Let G_n be a simple graph. Then G_n is complete if and only if

$$
\det A(G_n) = (-1)^{n-1}(n-1).
$$

Conjecture 2. Let G_n be a simple graph. Then G_n is complete if and only if

$$
|\det A(G_n)| = \lambda_1(G_n) = n-1.
$$

Theorem 8. Let G_n be a graph with at least four vertices. Then $\lambda_3(G_n) = -1$ implies that $\lambda_i(G_n) = -1, \ j = 3, \ldots, n - 1.$

Proof. By Lemma 3, it is easy to check that there exists a permutation matrix P such that

$$
P^{T}A(G_n)P=\begin{pmatrix}C_1 & 0 & J_{13}\\ 0 & C_2 & J_{23}\\ J_{13}^{T} & J_{23}^{T} & C_3\end{pmatrix},
$$

where C_i are the $k_i \times k_i$ matrices with all diagonal entries zero and all offdiagonal entries equal to one, $i = 1, 2, 3, \sum_{i=1}^{3} k_i = n, 0 \le k_i \le n$, and J_{ij} are the $k_i \times k_j, i, j = 1, 2, 3$, matrices with all entries equal to one.

We now consider the rank of matrix $P^{T}A(G_n)P + I$. Let $r(Q)$ denote the rank of matrix Q. Then

$$
r(P^{T}A(G_{n})P + I) = r \begin{pmatrix} J_{11} & 0 & J_{13} \\ 0 & J_{22} & J_{23} \\ J_{13}^{T} & J_{23}^{T} & J_{33} \end{pmatrix}
$$

$$
= r \begin{pmatrix} J_{11} & 0 & J_{13} \\ 0 & J_{22} & J_{23} \\ 0 & J_{23}^{T} & 0 \end{pmatrix}
$$

$$
= r \begin{pmatrix} J_{11} & 0 & J_{13} \\ 0 & J_{22} & J_{23} \\ 0 & 0 & -J_{33} \end{pmatrix}
$$

$$
\leq 3,
$$

which states that $\lambda_3(G_n) = -1$ is a multiple root of matrix $A(G_n)$, whose multiplicity is at least $n - 3$. For $\lambda_2(G_n)$ we have two cases:

(i) If $\lambda_2(G_n) = -1$, then by Theorem 7 it yields $\lambda_i(G_n) = -1, j = 2, 3, \ldots, n$. (ii) $\lambda_2(G_n) \neq -1$ implies that $\lambda_2(G_n) \geq 0$ (by Theorem 7 again). Theorefore we have

$$
\lambda_j(G_n)=-1, \quad j=3,\ldots,n-1.
$$

The proof is now completed. \square

Conjecture 3. Let G_n be a graph with at least four vertices. Then $\lambda_k = -1$ $(2 \le k \le [n/2])$ implies that

$$
\lambda_j(G_n) = -1, \quad j = k, k + 1, \dots, n - k + 2.
$$

For Conjecture 3, the cases $k = 2$, 3 are true (Theorems 7 and 8).

Example. Let

$$
A(G) = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}
$$

be the adjacency matrix of a graph with eight vertices. Then by MATHE-MATICA we obtain

 $\lambda_1(G) = 5.24384,$ $\lambda_2(G) = 1.60317,$ $\lambda_3(G) = -0.182062$ $\lambda_4(G) = -0.9999,$ $\lambda_5(G) = -1$, $\lambda_6(G) = -1,$ $\lambda_7(G) = -1.53035$; $\lambda_8(G) = -2.1346.$

On the other hand, since it is easy to verify that $r(I + A(G)) = 5$ (the rank of matrix $I + A(G)$, we infer that

$$
\lambda_4(G)=\lambda_5(G)=\lambda_6(G)=-1.
$$

Compared with Conjecture 3, this is the special case that $k = 4$, $n = 8$.

Remark 2. Let G_n be the graph defined in Theorem 8 and have *l* edges. If $\lambda_3 = -1$, then $\lambda_1, \lambda_2, \lambda_n$ are given by:

$$
\lambda_1 + \lambda_2 + \lambda_n = n - 3,
$$

\n
$$
\lambda_1^2 + \lambda_2^2 + \lambda_n^2 = 2l - (n - 3),
$$

\n
$$
\lambda_1 \lambda_2 \lambda_n = \begin{vmatrix} C_1 & 0 & J_1 \\ 0 & C_2 & J_2 \\ J_1^T & J_2^T & C_3 \end{vmatrix} = (-1)^n \det A(G_n).
$$

It is not difficult to obtain the expression of $\det A(G_n)$.

Acknowledgements

I am very grateful to the anonymous referee for giving valuable suggestions towards improving the proofs and pointing out some errors in the original version of this paper.

References

- [1] M. Fiedler, Elliptic matrices with zero diagonal, Linear Algebra Appl. 197/198 (1994) 337–347.
- [2] Xuerong Yong, Zheng Wang, Elliptic matrices and their eigenpolynomials, Linear Algebra Appl. 259 (1997) 347-356.
- [3] Dasong Cao, Hong Yuan, Graphs characterized by the second eigenvalue, J. Graph Theory 17 (3) (1993) 325-331.
- [4] Dasong Cao, Hong Yuan, The distribution of eigenvalues of graphs, Linear Algebra Appl. 216 (1995) 211-224.
- [5] Hong Yuan, On the least eigenvalue of a graph, Systems Sci. Math. Sci. 6 (3) (1993) $269-272$.
- [6] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic, New York, 1979.
- [7] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs, Academic, New York, 1980.
- [8] G. Constantine, Lower bounds on the spectra of symmetric matrices with non negative entries, Linear Algebra Appl. 65 (1985) 171-178.