
Theoretical Computer Science 412 (2011) 6316–6326

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

A volume first maxima-finding algorithm✩

Xiangquan Gui a,b,∗, Xiaohong Hao b, Yuanping Zhang c, Xuerong Yong d

a College of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, PR China
b College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, PR China
c College of Computer and Educational Software, Guangzhou University, Guangzhou, 510006, PR China
d Department of Mathematical Sciences, University of Puerto Rico at Mayaguez, P.O. Box 9018, PR 00681, USA

a r t i c l e i n f o

Article history:
Received 7 February 2010
Received in revised form 5 May 2011
Accepted 5 August 2011
Communicated by S. Sen

Keywords:
Maxima
Skyline point
Computational geometry
Probabilistic analysis

a b s t r a c t

The maxima-finding is a fundamental problem in computational geometry with many
applications. In this paper, a volume first maxima-finding algorithm is proposed. It is
proved that the expected running time of the algorithm is N + o(N) when choosing
points from CI distribution, which is a new theoretical result when the points belong to
d(>2) dimensional space. Experimental results and theoretical analysis indicate that the
algorithm runs faster than the Move-To-Front maxima-finding algorithm.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The maxima-finding, a fundamental problem in computational geometry, is closely related to the convex hull problem
and arises in many applications such as Pareto-optimality in bargaining games or multi-criteria optimization, linear
programming, unbounded knapsack problem and statistical decision theory [1]. Given a set S of N points in the d-
dimensional Euclidean space Ed (d ≥ 2) with coordinates x1, x2, . . . , xd. A point p1 dominates a point p2 if and only if
xi(p2) ≤ xi(p1) for i = 1, 2, . . . , d. A point p in S is a maximal element of S if there does not exist any point q in S such that
q dominates p and q ≠ p [2]. The set of all maximal elements of S is the set of maxima of S. The maxima-finding problem is
to find such a set — the maxima of S.

Kung et al. showed that any algorithm that solves themaxima problem in two and three dimensions requiresΩ(N logN)
time in the comparison-tree model. By the divide-and-conquer approach, they presented an algorithm to find all maxima
for a set of N points in Ed, whose running time is O(N logd−2 N)+O(N logN) [3]. When each point of the set has component
independence (CI) distribution, Bentley et al. presented the FLET (Fast Linear Expected-Time) algorithm for computing
the maxima set with a linear expected running time O(N) [4]. A set of points has CI distribution if and only if all the d
components of each point are chosen independently from continuous distributions. Although the FLET algorithm does have
linear expected time, it may fail with probability 1/N . So Bentley et al. presented another algorithm named MTF (Move-To-
Front) and the empirical evidence of which implies that it runs faster than every other algorithm presented in the literature
[4] and they conjectured that the MTF algorithm runs in N + o(N) expected time. Subsequently, Golin proved that choosing

✩ The research was partially supported by Gansu Technology Support Project (No. 0804GKCA052), DIMACS and University of Puerto Rico at Mayaguez.
∗ Corresponding author at: College of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, PR China. Tel.: +86

13919056904.
E-mail addresses: xqgui@lut.cn (X. Gui), haoxh@lut.cn (X. Hao), ypzhang@lut.cn (Y. Zhang), xryong@math.uprm.edu (X. Yong).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.08.013

http://dx.doi.org/10.1016/j.tcs.2011.08.013
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:xqgui@lut.cn
mailto:haoxh@lut.cn
mailto:ypzhang@lut.cn
mailto:xryong@math.uprm.edu
http://dx.doi.org/10.1016/j.tcs.2011.08.013

X. Gui et al. / Theoretical Computer Science 412 (2011) 6316–6326 6317

N points from a 2-dimensional CI distribution, then with probability 1 − N−Ω(logN), the MTF algorithm can find the maxima
using only N + O(N6/7 log4 N) expected time [5]. For the cases that the input points are chosen from higher dimensional
spaces or from some other distributions, the conjecture is still open.

The maxima-finding problem has recently been studied in many areas. For example, as the skylines in data queries are
just the set ofminima in a given set of points, a number ofmaxima-finding algorithmshave been proposed alonewith studies
of skyline queries, some of which are the BNL (Block Nested Loops) algorithm [6], the SFS (Sort Filter Skyline) algorithm [7],
and the LESS (Linear Elimination Sort for Skyline) [8]. The SFS and LESS algorithms both can be considered as improved
versions of the BNL algorithm. But they require the data to be topologically sorted in the beginning where just the sorting
phase of the data set will cost Ω(N logN) expected time.

In this paper we propose a new heuristic maxima-finding algorithm using the volume first (VF) heuristic instead of the
Move-To-Front. Our experimental results show that it runs faster than the MTF algorithm. It can also be proven that the VF
algorithm runs in N + o(N) expected time when choosing points from CI distribution. More specifically we will prove that
the expected running time of the VF algorithm is only N + O(N2/3 log4 N) in the 2-dimensional space, which is better than
the existing theoretical result of the MTF algorithm, and N +O(Nd/(d+1) logd+1 N) in d(>2) dimensional space. This is a new
theoretical result.

The rest of the paper is organized as follows. In Section 2we introduce and discuss the VF algorithm and then in Section 3
we analyze the experiment results and show that the VF algorithm runs faster than theMTF algorithm. The expected running
time of the algorithm is derived in Section 4.We address in the last section that for the non-CI distribution points the problem
is still open.

2. A volume first maxima-finding algorithm

Given a set S of N points in a d-dimensional space, many of the points in S are in general not the maximal points when
N is large, while some particular points may quickly dominate many of those points. This insight has been used in the MTF
algorithm. Inspired by the MTF algorithm, in this note we propose a new maxima-finding algorithm, which is called the
VF algorithm, by using a volume first heuristic. The algorithm is easy to implement, very efficient for CI distributions and
somewhat robust for points sets from other distributions.

The VF algorithm introduced is an on-line algorithm that maintains a temporary maxima sequence with a volume first
heuristic. Its primary data structure is the sequence T of (indexes of) current maxima. The sequence T is originally empty,
and at the conclusion of the algorithm it contains the maxima of S. The algorithm examines all input points in a random
order. As the algorithm examines the input point Q , it compares Q with every point R in T . If R dominates Q , then the next of
the input points is examined, as Q cannot bemaximal. If Q dominates R, then R is removed from T . If Q is dominated by no R
in T , then Q is inserted to a suitable position of T according to the volume of Q . In this paper we define the volume of a point
to be the product of its coordinates’ distribution functions in every dimension. Formally, given a point pwith coordinates x1,
x2 , . . . , xd, and let Fi(xi) = Pr(X ≤ xi) be coordinates’ distribution functions in every dimension, where i = 1, 2, . . . , d and
the volume of p is equal to

∏d
i=1 Fi(xi). Distribution functions Fi(x) normalize coordinates in every dimension to the [0, 1]

region. This makes the product look like the volume of a cube that is determined by the point and the origin. Intuitively the
bigger the volume of a point is, the more dominant power it owns. Therefore Q is inserted to T according to the descending
order of the point volumes. In this way the maxima near the front of the sequence T tend to be more powerful to dominate
the other points. They can quickly dominate most of input points which are not in the final output. If we do not know what
the coordinate distribution function is, in some dimension of input points, we can simply set Fi(x) = x for these dimensions.
Although such a volume of a point is not good as the original one, it canmake powerful points near the front of the sequence
T . The pseudocode of the algorithm is described as follows:

VF Algorithm. the Volume First Maxima-Finding Algorithm.

TopMax:=1
Max[TopMax]=Point 1
for I:=2 to N do

J:=1
while (J ≤ TopMax) do

if (point Max[J] dominates point I) then
break //break while loop and exam next I//

else if (point I dominates point Max[J]) then
shift Max[J+1..TopMax] to Max[J..TopMax-1]
TopMax:=TopMax-1

else //point I and Max[J] are incomparable//
J:=J+1

if (J=TopMax+1) then
K:=1
while (volume of Max[K]≥ volume of Point I and K≤ TopMax) do

K:=K+1

6318 X. Gui et al. / Theoretical Computer Science 412 (2011) 6316–6326

Fig. 1. A worked example in 2-dimensional space.

if (K=TopMax+1) then
Max[K]:=Point I

else
shift Max[K..TopMax] to Max[K+1..TopMax+1]
Max[K]:=Point I

TopMax:=TopMax+1
In the pseudocode, T is maintained in the array Max[]. We present a full worked example with the point set chosen

randomly in 2-dimensional area of coordinates X ∈ [0, 1], Y ∈ [0, 1]. The points are shown in Fig. 1. The table illustrates
how the contents of T is changed in the VF algorithm.

3. Experimental data

An interesting question is how fast the VF algorithm is. Obviously the algorithm runs in O(N2) time since T can contain at
most i−1 points when pi is examined. This is the same upper bound as theMTF algorithm has. However we believe that the
VF algorithm has a better performance and moreover we will see that it is better than MTF from two aspects: experiment
and theoretical analysis.

In experiment, we generate 10 input point sets, S1, S2, . . . , S10 with the same size N = 100000. Every coordinate of
points is a double floating number in [0, 1] created randomly and the points are of dimension 5. Denote Si = {pi1, . . . , piN},
pik = (xik1, xik2, xik3, xik4, xik5), where i = 1, . . . , 10 and k = 1, . . . ,N , and let Si,d,n be a subset of Si, such that Si,d,n =

{qi1, . . . , qin : qik = (xik1, . . . , xikd), k = 1, . . . , n}, where d = 2, . . . , 5 and 1 ≤ n ≤ N denote the point dimensionality of
subsets and the point number of subsets, respectively. Thenwe run both VF andMTF algorithms on Si,d,n, with i = 1, . . . , 10,
d = 2, . . . , 5, n = 10, . . . ,N . The total numbers of point comparisons used in every input set Si,d,n are recorded as CVFi,d,n
and CMTFi,d,n for two algorithms. Let CVFd,n =

∑10
i=1 (CVFi,d,n/n)

10 denote the average number of point comparisons used for VF

algorithm and, correspondingly, let CMTFd,n =

∑10
i=1 (CMTFi,d,n/n)

10 for MTF algorithm. Fig. 2 shows the experimental results by
CVFd,n and CMTFd,n. It can be concluded from the figure that the VF algorithm has a better running performance than the
MTF algorithm, if the point number n is small. And the average number of point comparisons of both algorithms tends to be
the same constant as n increases. Bentley et al. [4] conjectured that the MTF algorithm runs in N + o(N) expected time. This
inspired us to give the following conjecture:

Conjecture 1. The VF algorithm finds the maxima of N points chosen from a d-dimensional CI distribution in O(N) time and it
uses N + o(N) point comparisons for any fixed dimensionality d.

Weprove this conjecture in the following section. It can be seen from the proof that the VF algorithm has a better theoretical
result than the MTF algorithm does.

X. Gui et al. / Theoretical Computer Science 412 (2011) 6316–6326 6319

(a) 2-dimensional space. (b) 3-dimensional space.

(c) 4-dimensional space. (d) 5-dimensional space.

Fig. 2. Comparisons per point in 2, 3, 4 and 5-dimensional spaces.

4. Theoretical proof of the expected running time complexity

We introduce amethod similar to the one presented in the literature [5] to prove Conjecture 1, where the idea is to adopt
the probabilistic and amortized techniques. More specifically we prove the following:
Theorem 1. Choose N points, p1, p2, . . . , pN , from a d-dimensional CI distribution. Then, with probability 1− N−Ω(logN), the VF
algorithm finds their maxima in only N + O(N2/3 log4 N) point comparisons when fixed d = 2; and N + O(Nd/(d+1) logd+1 N)
point comparisons when d > 2.

The N−Ω(logN) term can be thought of as being a super-polynomially small probability since it is smaller than N−k for any
constant k. It is the same probability as in Golin’s proof of the Bentley’s conjecture given in [5]. Like the discussion made
in [5], we assume that each coordinate of the input points is uniformly distributed in [0, 1]. Under the same probability
and input point condition, the VF algorithm uses only N + O(N2/3 log4 N) point comparisons which is better than the MTF
algorithmwhich usesN+O(N6/7 log4 N) point comparisons. Note that there is no proved result for theMTF algorithmwhen
the dimension is greater than 2. When the points are chosen from any CI distribution, it is not difficult to prove the same
result by modifying the techniques through a mapping from CI distribution to [0, 1] uniform distribution. The approach to
construct such a mapping is described as follows:

Suppose that p1, p2, . . . , pN are chosen from some d-dimensional CI distribution. Let Fi(xi) = Pr(X ≤ xi) be the distri-
bution function of the i-th component of points, where i = 1, 2, . . . , d. For any given point p = (x1, x2, . . . , xd), we define
N , the natural mapping from the support of the CI distribution to the [0, 1] uniform distribution:

N(p) = N((x1, x2, . . . , xd)) = (F1(x1), F2(x2), . . . , Fd(xd)).

If p1, p2, . . . , pN are chosen from any CI distribution, then N(p1),N(p2), . . . ,N(pN) have the same distribution as the points
chosen from the [0, 1] uniform distribution. Because the volume of a point is based on the same mapping, the VF algorithm
performs exactly the same sequence of operations on input N(p1),N(p2), . . . ,N(pN) as on input p1, p2, . . . , pN .

Our main result is Theorem 1. To give a formal proof of its validity we need to make a careful preparation, starting from
the 2-dimensional case.

6320 X. Gui et al. / Theoretical Computer Science 412 (2011) 6316–6326

Fig. 3. The partition of the area of input points.

4.1. Proof of the theorem in 2-dimensional space

4.1.1. Random regions and variables
Let p1, p2, . . . , pN be the input points listed in the order inwhich they are examined in 2-dimensional space.We partition

the area of input points into three regions, A, B, C , dependent upon the parameter α as shown in Fig. 3, where α > 0.
Formally

A = [0, 1 − N−α
] × [0, 1 − N−α

],

C = {(x, y) : xy ≥ 1 − N−α, 1 − N−α
≤ x ≤ 1, 1 − N−α

≤ y ≤ 1},
B = [0, 1] × [0, 1] − A − C .

We also need some random variables which are functions of the input points and the regions. Set

FC = min
1≤i≤N

{i : pi ∈ C or i = N},

NB C = |{ pi : pi ∈ B ∪ C }|,

Mi = |{ j : j ≤ i ≤ N, pj is maximal in p1, . . . , pi}|,
M = max

i≤N
Mi.

In the above FC is the index of the first point in C (if there is no such point, then FC = N); NB C is the number of points
found in the region B ∪ C;Mi is the number of maxima in the point set {p1, . . . , pi};M is the largest of theMi, it is an upper
bound on the number of point comparisons that can be performed while examining any point to see if it is a maximal point.

4.1.2. Proofs of Lemmas 1–3
Lemma 1. The number of point comparisons performed by VF algorithm, when running on a sequence of N d-dimensional points,
p1, p2, . . . , pN , is at most N + M · Fc + M · NB C .

Proof. We partition the input sequence p1, p2, . . . , pN into two subsequences {p1, p2, . . . , pFC } and {pFC+1, pFC+2, . . . , pN}.
We will show that the number of point comparisons performed while examining each subsequence can be expressed by

functions of random variables FC , NB C andM . These random variables are defined in Sections 4.1.1, 4.2.1 and 4.3.1 based on
their dimensions d = 2, d = 3 and d > 2 respectively.

Claim 1. The total number of point comparisons needed to examine p1, p2, . . . , pFC is at mostM · FC .
Claim 2. The total number of point comparisons needed to examine pFC+1, pFC+2, . . . , pN is at most N + M · NB C .
Since the number of points in subsequence p1, p2, . . . , pFC is FC , the total number of point comparisons needed to examine

this subsequence is at mostM · FC . After examining this subsequence the point pFC will be inserted into T and be located in
the frontmost position of T , because the volume of point PFC is the largest one currently. After that, the frontmost position
of T can only be replaced by other points in C , since the points in T are listed according to the descending order of points’
volume and only the points in C can have larger volumes. Thus the frontmost point of T will always be in C . When examining
pi ∈ {pFC+1, pFC+2, . . . , pN}, there are only two cases: first, if pi ∈ A, the number of point comparisons needed to examine pi
is 1, because the frontmost point of T is in C and it can dominate pi. The number of such pi is at most N; second, if pi ∈ B∪C ,
the number of point comparisons needed to examine pi is at most M . The number of such pi is NB C . So the total number of
point comparisons needed to examine pFC+1, pFC+2, . . . , pN is at most N +M ·NB C . The above discussion implies that Claims
1 and 2 are correct. Combining Claims 1 and 2, Lemma 1 is proved. �

X. Gui et al. / Theoretical Computer Science 412 (2011) 6316–6326 6321

Lemma 2. Let X1, X2, . . . , Xn be 0 − 1 random variables, and let Pr(Xi = 1) = pri, X =
∑n

i=1 Xi. Denote

µ = E(X) = E

n−

i=1

Xi

=

n−
i=1

E(Xi) =

n−
i=1

pri.

If E(
∏n

i=1 Xi) ≤
∏n

i=1 E(Xi), then for any ε ≥ e2, Pr(X ≥ εµ) < e−εµ.

Proof. According to the Markov’s inequality, for any t > 0, we have

Pr(X ≥ εµ) = Pr(etX ≥ etεµ) ≤
E(etX)
etεµ

≤

n∏
i=1

E(etXi)

etεµ
=

n∏
i=1

(priet + 1 − pri)

etεµ
=

n∏
i=1

(1 + pri(et − 1))

etεµ
.

For any y, 1 + y ≤ ey, the above inequality

≤

n∏
i=1

epri(e
t
−1)

etεµ
=

exp

n∑
i=1

pri(et − 1)

etεµ
=

eµ(et−1)

etεµ

= eµ(et−1)−tεµ
= (ee

t
−1−tε)µ = (etε−et+1)−µ

= (et−et/ε+1/ε)−εµ.

Let t = log(ε) > 0, and because ε ≥ e2, the above inequality

= (elog(ε)−1+1/ε)−εµ
≤ (e2−1+1/ε)−εµ

= (e1+1/ε)−εµ < e−εµ. �

Lemma 3. Let α > 0, p1, p2, . . . , pN be a sequence of N 2-dimensional points chosen from the uniform distribution over the unit
square. Then

Pr(FC > 2N2α log2 N) < N−Ω(logN),

Pr(NB C > 2e2N1−α) < N−Ω(logN),

Pr(M > log2 N) < N−Ω(logN).

Proof. We first prove

Pr(FC > 2N2α log2 N) < N−Ω(logN).

Suppose that q is a point chosen from the uniform distribution over the unit square. Then we see that

Pr(q ∈ C) = Area(C) =

∫ N−α

0

∫ 1−(1−N−α)/(1−x)

0
dydx >

∫ N−α

0

∫ N−α
−x

0
dydx =

1
2
N−2α.

Then

Pr(FC > j) = Pr(pi /∈ C, 1 ≤ i ≤ j) = (1 − Pr(q ∈ C))j <

1 −

1
2
N−2α

j

,

so

Pr(FC > 2N2α log2 N) <

1 −

1
2
N−2α

2N2α log2 N

= N−Ω(logN).

Continuing the above proof, the probability q ∈ B ∪ C is

p = Area(B ∪ C) = 1 − (1 − N−α)2 = 2N−α
− N−2α.

NB C is a binomially distributed random variable with parameters N and p, and

Pr(NB C = i) =

N
i

pi(1 − p)N−i,

the expectation of NB C is 2N1−α
− N1−2α .

By Lemma 2, setting ε = e2 implies that

Pr(NB C > 2e2N1−α) = Pr(NB C > e2(2N1−α
− N1−2α) + e2N1−2α)

< Pr(NB C > e2(2N1−α
− N1−2α)) < exp{−e2(2N1−α

− N1−2α)} = N−Ω(logN).

6322 X. Gui et al. / Theoretical Computer Science 412 (2011) 6316–6326

(a) If pk is not a maximal point. (b) If pk is a maximal point.
Fig. 4. An example of the point set in 2-dimensional space. Black points denote currently maximal points.

The second inequality is thus proved. Now we turn to the last one: we first show that Lemma 2 can be applied in our
discussion. Let p1, p2, . . . , pN be the input points listed in the order in which they are examined. For a fixed i ≤ N , let

Xj =

1 pj is a maximal point in p1, p2, . . . , pi ;
0 Otherwise

be 0 − 1 random variables. Then
∑i

j=1 Xj is the number of maximal points in the point set p1, p2, . . . , pi, i.e.,Mi =
∑i

j=1 Xj.
For any 1 < (k + 1 = l) ≤ i,

E(XkXl) − E(Xk)E(Xl) = Pr(Xk = 1 ∩ Xl = 1) − Pr(Xk = 1)Pr(Xl = 1)

= Pr(Xk = 1)Pr(Xl = 1|Xk = 1) − Pr(Xk = 1)[Pr(Xk = 1)Pr(Xl = 1|Xk = 1) + Pr(Xk = 0)Pr(Xl = 1|Xk = 0)]

= Pr(Xk = 1)[Pr(Xl = 1|Xk = 1) − Pr(Xk = 1)Pr(Xl = 1|Xk = 1) − Pr(Xk = 0)Pr(Xl = 1|Xk = 0)]

= Pr(Xk = 1)[(1 − Pr(Xk = 1))Pr(Xl = 1|Xk = 1) − Pr(Xk = 0)Pr(Xl = 1|Xk = 0)]

= Pr(Xk = 1)Pr(Xk = 0)[Pr(Xl = 1|Xk = 1) − Pr(Xl = 1|Xk = 0)].

Since k + 1 = l, it is seen that the VF algorithm examines the point pk and then examines the point pl. If pk is a maximal
point then the probability of pl is a maximal point is less than the case that pk is not a maximal point. An example of the
point set in 2-dimensional space is seen from Fig. 4, where the black points denote the current maximal points, U denotes
the area of input points, V and V ′ denote the shadow regions in Fig. 4(a) and (b), respectively, and Area(V ′) ≤ Area(V). It
can be seen from the figure that

Pr(Xl = 1|Xk = 0) = Pr(pl is a maximal point |pk is not a maximal point) =
Area(V)

Area(U)
,

Pr(Xl = 1|Xk = 1) = Pr(pl is a maximal point |pk is a maximal point) =
Area(V ′)

Area(U)
≤

Area(V)

Area(U)
.

So Pr(Xl = 1|Xk = 1) − Pr(Xl = 1|Xk = 0) ≤ 0, E(XkXl) − E(Xk)E(Xl) ≤ 0. Then E(
∏i

j=1 Xj) ≤
∏i

j=1 E(Xj). This explain that
we can use Lemma 2 to prove the final inequality of Lemma 3.

It is known that the expectation of Mi is E(Mi) = Θ(logd−1 i) for i ≤ N points chosen from any d-dimensional CI
distribution [9]. We do not know what constant implicit in the Θ() notation is, but we can set this constant to δ, then
µ = E(Mi) = δ logd−1 i. Setting ε =

1
δlogi log

2 N for dimension d = 2, if N is large enough, ε will ≥ e2. Substituting µ and ε

into Lemma 2, we get

Pr(Mi > log2 N) < e− log2 N
= N−Ω(logN).

SinceM = maxi≤N Mi,

Pr(M > log2 N) < e− log2 N
= N−Ω(logN). �

4.1.3. Proof of Theorem 1 when d = 2 using Lemmas 1 and 3
Proof. In Lemmas 1 and 3, the constants implicit in theΩ()notation are dependent only uponα. These two lemmas separate
the deterministic part of the analysis from the probabilistic part. Inserting the probabilistic bounds of Lemma 3 into the
deterministic one of Lemma 1 yields that the VF algorithm performs

N + O(max(N2α log4 N,N1−α log2 N)) (1)

X. Gui et al. / Theoretical Computer Science 412 (2011) 6316–6326 6323

Fig. 5. Area partitions of input points in 3-dimensional space.

point comparisons with probability 1 − N−Ω(logN). To get a simpler bound we choose α = 1/3. Then the expression (1)
becomes N + O(N2/3 log4 N). So with probability 1 − N−Ω(logN), the VF algorithm finds their maxima of N 2-dimensional
points using only N + O(N2/3 log4 N) point comparisons and so Theorem 1 is proved when the dimension d = 2. �

In the next subsection, we will use the same methods to prove Theorem 1 when the dimension d = 3.

4.2. Proof of Theorem 1 in 3-dimensional space

4.2.1. Random regions and variables
Let p1, p2, . . . , pN be the input points listed in the order in which they are examined in 3-dimensional space. We also

partition the area of input points into three regions, A, B, C , dependent upon the parameter α as shown in Fig. 5. The area of
input points is [0, 1] × [0, 1] × [0, 1]. Formally

A = [0, 1 − N−α
] × [0, 1 − N−α

] × [0, 1 − N−α
],

C = {(x, y, z) : xyz ≥ 1 − N−α, 1 − N−α
≤ x ≤ 1, 1 − N−α

≤ y ≤ 1, 1 − N−α
≤ z ≤ 1},

B = [0, 1] × [0, 1] × [0, 1] − A − C .

In the above the random variables FC ,NB C ,Mi,M are defined in the same manner as in Section 4.1.1.

4.2.2. Proof of Lemma 4
Lemma 4. Let α > 0, p1, p2, . . . , pN be a sequence of N 3-dimensional points chosen from the uniform distribution over the unit
cube. Then

Pr(FC > 6N3α log2 N) < N−Ω(logN),

Pr(NB C > 3e2N1−α) < N−Ω(logN),

Pr(M > e2 log2 N) < N−Ω(logN).

Proof. First we prove

Pr(FC > 6N3α log2 N) < N−Ω(logN).

Suppose that q is a point chosen from the uniform distribution over the unit cube. To bound FC = min1≤i≤N{i : pi ∈ C or i =

N } we set

p = Pr(q ∈ C) = Area(C) =

∫ N−α

0

∫ 1−(1−N−α)/(1−x)

0

∫ 1−(1−N−α)/((1−x)(1−y))

0
dzdydx

>

∫ N−α

0

∫ N−α
−x

0

∫ N−α
−x−y

0
dzdydx =

1
6
N−3α.

Then

Pr(FC > j) = Pr(pi /∈ C, 1 ≤ i ≤ j) = (1 − p)j <

1 −

1
6
N−3α

j

,

6324 X. Gui et al. / Theoretical Computer Science 412 (2011) 6316–6326

so

Pr(FC > 6N3α log2 N) <

1 −

1
6
N−3α

6N3α log2 N

= N−Ω(logN).

Second, we prove

Pr(NB C > 3e2N1−α) < N−Ω(logN).

The expectation of NB C is 3N1−α
− 3N1−2α

+ N1−3α . Setting ε = e2 in Lemma 2, then

Pr(NB C > 3e2N1−α) = Pr(NB C) > e2(3N1−α
− 3N1−2α

+ N1−3α) + e2(3N1−2α
− N1−3α)

< Pr(NB C > e2(3N1−α
− 3N1−2α

+ N1−3α)) < exp{−e2(3N1−α
− 3N1−2α

+ N1−3α)} = N−Ω(logN).

Next we prove the final inequality given in Lemma 4,

Pr(M > e2 log2 N) < N−Ω(logN).

The expectation Mi is E(Mi) = Θ(log2 i) = δ log2 i for i ≤ N points chosen from any 3-dimensional CI distribution. Setting
µ = E(Mi) = δ log2 i and ε = e2 1

δ

log2 N
log2 i

, if N is large enough, ε will ≥e2. Substituting µ and ε into Lemma 2, we get

Pr(Mi > e2 log2 N) < e−e2 log2 N
= N−Ω(logN).

SinceM = maxi≤N Mi,

Pr(M > e2 log2 N) < e−e2 log2 N
= N−Ω(logN). �

4.2.3. Proof of Theorem 1 when d = 3 using Lemmas 1 and 4
Proof. The proof is similar to the 2-dimensional case. Lemmas 1 and 4 separate the deterministic part of the analysis from
the probabilistic part. Inserting the probabilistic bounds of Lemma 4 into the deterministic one of Lemma 1 yields that the
VF algorithm performs

N + O(max(N3α log4 N,N1−α log2 N)) (2)

point comparisons with probability 1 − N−Ω(logN). To get a simpler bound we choose α = 1/4. Then the expression (2)
becomes N + O(N3/4 log4 N). So with probability 1 − N−Ω(logN), the VF algorithm finds their maxima of N 3-dimensional
points using only N + O(N3/4 log4 N) point comparisons. �

We now have proven Theorem 1 when the dimensions are d = 2 and d = 3, and found a general method to prove those
inequations. In the following subsection, we will prove Theorem 1 for any dimension d (>2) to finish the theoretical proof
of the expected running time.

4.3. Proof of Theorem 1 in d-dimensional Space (d > 2)

4.3.1. Random regions and variables
Let p1, p2, . . . , pN be the input points listed in the order in which they are examined in d-dimensional space and d > 2.

We again partition the area of input points into three regions, A, B, C , dependent upon the value of parameter α. The area of
input points is [0, 1]d. Let the coordinates be x1, x2, . . . , xd. Formally

A = [0, 1 − N−α
]
d,

C = {(x1, x2, . . . , xd) : x1x2 · · · xd ≥ 1 − N−α, 1 − N−α
≤ x1 ≤ 1, 1 − N−α

≤ x2 ≤ 1, . . . , 1 − N−α
≤ xd ≤ 1},

B = [0, 1]d − A − C .

In the above the random variables FC ,NB C ,Mi,M are defined in the same manner as in Section 4.1.1.

4.3.2. Proof of Lemma 5
Lemma 5. Let α > 0, d > 2, p1, p2, . . . , pN be a sequence of N d-dimensional points chosen from the uniform distribution over
the unit hypercube. Then

Pr(FC > d!Ndα log2 N) < N−Ω(logN),

Pr(NB C > e2dN1−α) < N−Ω(logN),

Pr(M > e2 logd−1 N) < N−Ω(logN).

Proof. First we prove

Pr(FC > d!Ndα log2 N) < N−Ω(logN).

X. Gui et al. / Theoretical Computer Science 412 (2011) 6316–6326 6325

Suppose that q is a point chosen from the uniform distribution over the unit hypercube. To bound FC = min1≤i≤N{i : pi ∈

C or i = N } we set

p = Pr(q ∈ C) = Area(C)

=

∫ N−α

0

∫ 1−(1−N−α)/(1−x1)

0

∫ 1−(1−N−α)/((1−x1)(1−x2))

0
· · ·

∫ 1−(1−N−α)/((1−x1)(1−x2)···(1−xd))

0
dxd · · · dx2dx1

>

∫ N−α

0

∫ N−α
−x1

0

∫ N−α
−x1−x2

0
· · ·

∫ N−α
−x1−x2···−xd

0
dxd · · · dx2dx1

=
1
d!

N−dα.

Then

Pr(FC > j) = Pr(pi /∈ C, 1 ≤ i ≤ j) = (1 − p)j <

1 −

1
d!

N−dα
j

,

so

Pr(FC > d!Ndα log2 N) <

1 −

1
d!

N−dα
d!Ndα log2 N

= N−Ω(logN).

Second, we prove

Pr(NB C > e2dN1−α) < N−Ω(logN).

Expectation of NB C is
∑

i≥1(−1)i−1
d
i

N1−iα , setting ε = e2 in Lemma 2, then

Pr(NB C > e2dN1−α) = Pr

NB C > e2

dN1−α

−

−
i≥2

(−1)i

d
i

N1−iα

+ e2

−
i≥2

(−1)i

d
i

N1−iα

< Pr

NB C > e2

dN1−α

−

−
i≥2

(−1)i

d
i

N1−iα

= Pr

NB C > e2

−
i≥1

(−1)i−1

d
i

N1−iα

< exp

−e2

−
i≥1

(−1)i−1

d
i

N1−iα

= N−Ω(logN).

Next we prove the final inequality given in Lemma 5,

Pr(M > e2 logd−1 N) < N−Ω(logN).

The expectation Mi is E(Mi) = Θ(logd−1 i) = δ logd−1 i for i ≤ N points chosen from any d-dimensional CI distribution.
Setting µ = E(Mi) = δ logd−1 i and ε = e2 1

δ

logd−1 N
logd−1 i

, if N is large enough, ε will ≥ e2. Substituting µ and ε into Lemma 2, we
get

Pr(Mi > e2 logd−1 N) < e−e2 logd−1 N
= N−Ω(logN).

SinceM = maxi≤N Mi,

Pr(M > e2 logd−1 N) < e−e2 logd−1 N
= N−Ω(logN). �

4.3.3. Proof of Theorem 1 when d > 2 using Lemmas 1 and 5
Proof. Inserting the probabilistic bounds of Lemma 5 into the deterministic one of Lemma 1 yields that the VF algorithm
performs at most

N + e2 logd−1 Nd!Ndα log2 N + e2 logd−1 Ne2dN1−α
= N + e2d!Ndα logd+1 N + e4dN1−α logd−1 N (3)

point comparisons with probability 1 − N−Ω(logN). For a fixed d, the expression (3) is equivalent to

N + O(max(Ndα logd+1 N,N1−α logd−1 N)). (4)

To get a simpler bound we choose α = 1/(d + 1), then the expression (4) becomes N + O(Nd/(d+1) logd+1 N). So with
probability 1−N−Ω(logN), the VF algorithm can find the maxima of N d-dimensional points in only N +O(Nd/(d+1) logd+1 N)
point comparisons and Theorem 1 is therefore proven for d > 2. �

Combining all the above discussion a complete theoretical proof of Theorem 1 is thus done.

6326 X. Gui et al. / Theoretical Computer Science 412 (2011) 6316–6326

5. Conclusion

In this paper we presented a volume first maxima-finding algorithm. Experimental data and theoretical analysis show
that it runs faster than the MTF algorithm, if the points are chosen from CI distribution. Under such distribution, we also
proved that with probability 1 − N−Ω(logN), the expected running time of this algorithm is only N + O(N2/3 log4 N) in the
2-dimensional space, and N + O(Nd/(d+1) logd+1 N) in d (>2) dimensional space.

In the paper random inputs are chosen from CI distribution. How well does the VF algorithm work when the points are
chosen from a non-CI distribution would be an interesting question. We tried to consider the problem, but we could not
make it. We therefore leave it as an open question in this note.

Acknowledgement

The authors would like to thank the referees for their several insightful comments and invaluable suggestions toward
improving the presentation of this paper.

References

[1] W.M. Chen, H.K. Hwang, T.H. Tsai, Efficient Maxima-finding algorithms for random planar samples, Discrete Mathematics and Theoretical Computer 6
(2003) 107–122.

[2] F.P. Preparata, M.I. Shamos, Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.
[3] H.T. Kung, F. Luccio, F.P. Preparata, On finding the maxima of a set of vectors, Journal of the ACM 22 (1975) 469–476.
[4] J.L. Bentley, K.L. Clarkson, D.B. Levine, Fast linear expected-time algorithms for computing maxima and convex Hulls, in: SODA, 1990, pp. 179–187.
[5] M.J. Golin, A provably fast linear-expected-time maxima-finding algorithm, Algorithmica 11 (1994) 501–524.
[6] S. Börzsönyi, D. Kossmann, K. Stocker, The skyline operator, in: Proceedings of the ICDE, 2001, pp. 421–430.
[7] J. Chomicki, P. Godfrey, J. Gryz, D. Liang, Skyline with presorting, in: Proceedings of the ICDE, 2003, pp. 717–719.
[8] P. Godfrey, R. Shipley, J. Gryz, Maximal vector computation in large data sets, in: Proceedings of the 31st VLDB Conference, Trondheim, Norway, 2005,

pp. 229–240.
[9] J.L. Bentley, H.T. Kung, M. Schkolnick, C.D. Thompson, On the average number of maxima in a set of vectors and applications, Journal of the Association

for Computing Machinery 25 (1978) 536–543.

	A volume first maxima-finding algorithm
	Introduction
	A volume first maxima-finding algorithm
	Experimental data
	Theoretical proof of the expected running time complexity
	Proof of the theorem in 2-dimensional space
	Random regions and variables
	Proofs of lem1,lem2,lem3
	Proof of thm1 when d=2 using lem1,lem3

	Proof of thm1 in 3-dimensional space
	Random regions and variables
	Proof of lem4
	Proof of thm1 when d=3 using lem1,lem4

	Proof of thm1 in d-dimensional Space (d>2)
	Random regions and variables
	Proof of lem5
	Proof of thm1 when d>2 using lem1,lem5

	Conclusion
	Acknowledgement
	References

