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a b s t r a c t

A double fixed-step loop network, ECp,qn , is a digraph on n vertices 0, 1, 2, . . . , n− 1 and for
each vertex i (0 < i ≤ n−1), there are exactly two arcs going from vertex i to vertices i+p,
i+ q (mod n). Let p < q < n be positive integers such that (q−p) Ďn and (q−p)|(k0n−p)
or (q − p)|n (where k0 = min{k|(q − p)|(kn − p), k = 1, 2, 3, . . .} and gcd(q, p) = 1. In
this work we derive a formula for the number of spanning trees, T (ECp,qn ), with constant or
nonconstant jumps and prove that T (ECp,qn ) can be represented asymptotically by the mth-
order ‘Fibonacci’ numbers. Some special cases give rise to the formulas obtained recently in
[Z. Lonc, K. Parol, J.M.Wojciechowski, On the number of spanning trees in directed circulant
graphs, Networks 37 (2001) 129–133; X. Yong, F.J. Zhang, An asymptotic behavior of the
complexity of double fixed step loop networks, Applied Mathematics. A Journal of Chinese
Universities. Ser. B 12 (1997) 233– 236; X. Yong, Y. Zhang,M. Golin, The number of spanning
trees in a class of double fixed-step loop networks, Networks 52 (2) (2008) 69–87].

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A directed circulant graph, EC s1,s2,...,sk , is a digraph on n vertices 0, 1, 2, . . . , n− 1 and for each vertex i (0 < i ≤ n− 1),
there are k arcs from vertex i to vertices i+ s1, i+ s2, . . . , i+ sk (mod n). A double fixed-step loop network, EC

p,q
n , is the directed

circulant graph where each vertex has exactly two arcs leaving from it. Since this class of networks arises in the fields of
design and analysis of local area networks,multi-modulememory organizations and supercomputer architectures etc., there
has been active research on their parameters such as the number of spanning trees, diameter, average distance, etc. [1–5]
(in applications these parameters are closely related to the bandwidth of a given network). And, among the parameters, the
number of spanning trees is essential and also characterizes the reliability of a network in the presence of line faults [6].
Finding the exact value or the asymptotic number of spanning trees of a graph is usually not easy and, therefore, research
into this parameter has been focusing on special classes of graphs and different techniques are being developed for different
classes of graphs [7,2,8].
Before starting, we should point out that, theoretically, Kirchhoff’s Matrix Tree Theorem [9] can be modified to calculate

the number of spanning trees in any digraph G through evaluating the determinant of any (n − 1)th-order sub-matrix of
its ‘Laplace’ matrix. However, counting the number of spanning trees by calculating the determinant is infeasible for large
graphs. Because of this, in the last few decades, researchers have developed techniques for getting around the difficulty
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and paid great attention to deriving explicit or possibly recursive formulas [10–13]. For general circulant (di-)graphs, some
recent formulas are seen in [1,4,5]. But, unfortunately, if the biggest jump sk is large, it is not easy to derive the recurrence
relations to get the number of spanning trees in a given directed circulant because the order of the recurrence relation
increases exponentially with sk. This motivated us to come up with the present work.
In Section 2 we derive some basic results which will be used to obtain our main results. Section 3 focuses on finding the

formulas for the number of spanning trees in ECp,qn , with constant or nonconstant jumps. For positive integers p, q, n with
p < q < n, some formulas for the numbers are also derived. Section 4 involves finding an approximation formula for T (ECp,qn ).
We should address that there is a formula

T
(
ECp,qn

)
=

n−1∏
j=1

(2− εpj − εqj)

where ε = e
2π i
n , i =

√
−1. But, unfortunately, direct calculation of this formula is not efficient in applications because of

the sin and cos in εj. And the computation is ill-conditioned. The aim of this work is therefore transforming the formula into
something more convenient and interesting.
In this work, for convenience, we use x Ď y to denote that x cannot be divided by y and Ckn to denote the binomial coeffi-

cients
( n
k

)
.

2. Basic lemmas

We start this section by considering the divisible properties of the positive integers involved to derive our preliminaries.
The idea is to proceed by applying some basic facts from combinatorics. We need to introduce the matrix B below whose
properties will play essential roles in establishing the formulas for the numbers of spanning trees in the double fixed-step
loop networks, ECp,qn .

Definition 1. For any positive integers p < q < n, let B = (bi,j) be the (n − 1) × (+∞)matrix satisfying that bi,j = pi +
(q− p)j, i = 1, 2, . . . , n− 1; j = 0, 1, 2, . . . .

Note that B is a positive integer matrix and with this definition we have the following Lemma 1.

Lemma 1. For any positive integers p < q < n,

(a) n|b
i,i k0n−pq−p

, if (q− p) Ď n and (q− p)|(k0n− p) i = 1, 2, . . . ,

(b) n|bi,j if (q− p)|n, gcd(q− p, p) = 1, i = k(q− p), j = k(n− p), k = 1, 2, . . . ,
(c) n Ď bi,j if (q− p)|n, gcd(q− p, p) = 1, i 6= k(q− p), j = 0, 1, 2, . . . , k = 1, 2, . . . ,

where k0 = min{k|(q− p)|(kn− p), k = 1, 2, 3, . . .}.

Proof. (a) By the definition of the elements bi,j of B, we have immediately that

b
i,i k0n−pq−p

= ip+ (q− p)
[
i
k0n− p
q− p

]
= ip+ ik0n− ip
= ik0n,

which proves (a). To show (b), repeatedly applying the same strategy as was used for proving (a) yields

bi,j = ip+ (q− p)j = k(q− p)p+ (q− p)k(n− p)
= k(q− p)p+ (q− p)kn− (q− p)kp
= (q− p)kn.

This implies that n is a divisor of bi,j when i = k(q− p), j = k(n− p), k = 1, 2, . . . and therefore (b) is proven.
Wenowprove (c) by contradiction. If bi,j could be divided byn, then therewould exist integersm1, m2 such that

bi,j
n = m1,

n
q−p = m2 and bi,j = ip+ (q− p)j = m1n, equivalent to

ip
q− p

+ j = m1
n
q− p

= m1m2.

This is a contradiction because the right side is a fraction but the left side is an integer. Putting all the above together the
proof of the lemma is completed. �

If gcd(q − p, p) = d > 1 and (q − p)|n then there exist integers k1, k2 and k3 such that q = dk1, p = dk2 and n =
(q− p)k3 = d(k1 − k2)k3. So gcd(n, q, p) = d > 1 implies that the graph is disconnected and therefore T (EC

p,q
n ) = 0. In the

future we will assume that gcd(p, q) = 1 and n is not divisible by q− p.
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We will consider the elements bi,j that are divisible by n.

Lemma 2. For any positive integers p < q < n, if the elements bi,j of B satisfy that n|bi,j then n|bi,j±k nd for k = 0, 1, 2, . . . ,
where d = gcd(n, q− p).
Proof. This lemma can be proven in the same way as the one used in the proof of Lemma 1.

bi,j±k nd = ip+ (q− p)
(
j± k

n
d

)
= ip+ (q− p)j± (q− p)k

n
d

= bi,j ±
q− p
d
kn. �

Lemma 3. For any positive integers p < q < n,

(a) b
i,i k0n−pq−p mod

n
d
, if (q− p) Ď n and (q− p)|(k0n− p), i = 1, 2, 3, . . .

(b) bk(q−p),k(n−p)mod n
q−p
, if (q− p)|n and gcd(q− p, p) = 1, k = 1, 2, 3, . . .

is the first element in the ith (k(q−p) th) row that can be divided by n, where d = gcd(n, q−p), k0 = min{k|(q−p)|(kn−p), k =
1, 2, 3, . . .}.
Proof. To prove (a), without loss of generality, we may consider themth row of B, where (q− p) Ď n and (q− p)|(k0n− p)
then, from Lemma 1 n|b

m,m k0n−pq−p
and if nd < m

k0n−p
q−p then from Lemma 2 we have that n|bm,m k0n−pq−p −

n
d
and if we still have

n
d < m

k0n−p
q−p −

n
d then from Lemma 2 again we have n|bm,m k0n−pq−p −

n
d−

n
d
. We can obtain the first divisible element by repeating

the same process until

0 ≤ m
k0n− p
q− p

−
n
d
−
n
d
− · · · ≤

n
d
.

This is equivalent to m k0n−pq−p mod
n
d , implying that bm,m k0n−pq−p mod

n
d
is the first element in the mth row that can be divided by

n. (b) can be proven in the same way. �

3. The number of spanning trees in the networks

In this section,making use of the basics obtained in the previous section, we develop amethod for calculating the number
of spanning trees in ECp,qn with constant or nonconstant jumps. We start by recalling the following known lemma.

Lemma 4 ([4]). Let n, p and q be any positive integers and

f (x) =
n−1∏
j=0

(x− εpj − εqj) = δ0xn + δ1xn−1 + δ2xn−2 + · · · + δn−1x+ δn, δ0 = 1. (1)

Then

T (ECp,qn ) = f ′(2) =
n−1∑
j=0

(n− j)δj2n−j−1, (2)

where ε = e
2π i
n .

For some special p < q < n, the following Lemma 5 gives us the binomial expression formula of the power sum, Sm =∑n
j=1(ε

pj
+ εqj)m, of polynomial (1).

Lemma 5. For any positive integers p < q < n,

Sm =


n
d−1∑
i=0

C
(m k0n−pq−p )mod

n
d+

n
d i

m , if (q− p) Ď n, and (q− p)|(k0n− p),

n
q−p−1∑
i=0

C
(v(n−p))mod n

q−p+
n
q−p i

m , if (q− p)|n and gcd(q− p, p) = 1, m = v(q− p),

0, if (q− p)|n and gcd(q− p, p) = 1, m 6= v(q− p),

where d = gcd(n, q− p), k0 = min{k|(q− p)|(kn− p), k = 1, 2, 3, . . .} and v = 1, 2, 3, . . . .
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Proof.

Sm =
n∑
j=1

(εpj + εqj)m

=

n∑
j=1

(C0mε
jpm
+ C1mε

j(p(m−1)+q)
+ C2mε

j(p(m−2)+2q)
+ · · · + Cm−1m εj(p+(m−1)q) + Cmm ε

j(mq))

=

n∑
j=1

(C0mε
j(mp+0(q−p))

+ C1mε
j(mp+(q−p))

+ C2mε
j(mp+(q−p)2)

+ · · · + Cmm ε
j(mp+m(q−p)))

=

n∑
j=1

(C0mε
jbm,0 + C1mε

jbm,1 + C2mε
jbm,2 + · · · + Cmm ε

jbm,m)

= C0m
n∑
j=1

εjbm,0 + C1m
n∑
j=1

εjbm,1 + C2m
n∑
j=1

εjbm,2 + · · · + Cmm
n∑
j=1

εjbm,m ,

where bm,k, k = 0, 1, 2, . . . , are the elements of B. Noting that
n∑
j=1

εjbm,k =

{
n, if n|bm,k,
0, otherwise,

we see that the claim of the lemma is true from the above discussions. �

It is well known that if αi, i = 1, 2, . . . , n, are the roots of a polynomial
p(x) = β0xn + β1xn−1 + β2xn−2 + · · · + βn−1x+ βn, β0 = 1,

then Sk = βk1 + β
k
2 + · · · + β

k
n is called the kth power sum of p(x). The power sums Sk, k = 1, 2, . . . , n, can be calculated, so

the coefficients βk, k = 1, 2, . . . , n, can be derived using Newton’s Identities
Skβ0 + Sk−1β1 + Sk−2β2 + · · · + +S1βk−1 + kβk = 0, (3)

In Lemma 5, we have obtained explicit expressions for the power sums of polynomial (1). The following Theorem 6 can be
obtained by combining Lemma 5withNewton’s Identities. For some special integers p < q < n, we can calculate the number
of spanning trees by using the following Theorem 6.

Theorem 6. For any positive integers p < q ≤ n− 1 if (q− p) Ď n, (q− p)|(k0n− p) then

T (ECp,qn ) =

n−1∑
i=0

(n− i)δi2n−1−i, (4)

where

δk =
1
k
(Sk − Sk−1δ1 − Sk−2δ2 − · · · − S1δk−1),

Sk =
d−1∑
i=0

C
(k n−pq−p )mod

n
d+

n
d i

k , k = 1, 2, . . . , n− 1

d = gcd(n, q− p).

We can see from the expressions in Lemma 5 and Theorem 6 that if (q− p)|n then the formula for the number of spanning
trees can be calculated through the following Corollary 1.

Corollary 1. For any positive integers p < q < n if (q− p)|n and div(q− p, p) = 1 then

T (ECp,qn ) =

n−1∑
i=0

(n− i)δi2n−1−i, (5)

where

δk =
1
k
(Sk − Sk−1δ1 − Sk−2δ2 − · · · − S1δk−1),

Sm =

n
d−1∑
i=0

C
(k( nq−p−p))mod

n
d+

n
d i

m if m = k(q− p), k = 1, 2, . . . ,

0 otherwise.
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We will illustrate our techniques, Theorem 6 and Corollary 1, by evaluating the following two examples.

Example 1. Case T (EC3,1020 ).

Here p = 3, q = 10, n = 20, d = gcd(n, q − p) = 1 and k0 = min{k| (q − p)|(kn − p), k = 1, 2, 3, . . .} = 4; then from
Theorem 6

T (EC3,1020 ) =

19∑
i=1

(20− i)δi219−i, (6)

where

δk =
1
k
(Sk − Sk−1δ1 − Sk−2δ2 − · · · − S1δk−1), (7)

Sk = 20C
(k 4×20−310−3 )mod 201
k

= 20C (11k)mod 20k , k = 1, 2, . . . , 19. (8)

For k = 1, 2, . . . , 19, we have the following results from calculation:

S1 = 20C111 = 0, S2 = 20C22 = 20, S3 = 20C133 = 0, S4 = 20C44 = 20,

S5 = 20C155 = 0, S6 = 20C66 = 20, S7 = 20C177 = 0, S8 = 20C88 = 20,

S9 = 20C199 = 0, S10 = 20C1010 = 20, S11 = 20C111 = 220, S12 = 20C1212 = 20,

S13 = 20C313 = 5720, S14 = 20C1414 = 20, S15 = 20C515 = 60 060, S16 = 20C1616 = 20,

S17 = 20C717 = 1166 880, S18 = 20C1818 = 20, S19 = 20C919 = 923 780.

Then these results plug into (7), that is

δ1 = −
1
1
S1 = 0, δ2 = −

1
2
(S2 + δ1S1) = −10, δ3 = −

1
3
(S3 + δ1S2 + δ2S1) = 0,

and repeating this process we have

δ4 = 45, δ5 = 0, δ6 = −120, δ7 = 0, δ4 = 45, δ5 = 0,
δ6 = −120, δ7 = 0, δ8 = 210, δ9 = 0, δ10 = −252, δ11 = −20,
δ12 = 210, δ13 = −240, δ14 = −120, δ15 = −504, δ16 = 45, δ17 = −46 000,
δ18 = −10, δ19 = 506 200.

And from (6)

T (EC3,1020 ) = 10 485 760 = 20× 524 288.

Example 2. Case T (EC13,2132 ).

Here p = 13, q = 21, n = 32, and d = (n, q− p) = 8; then from Corollary 1, we have that

S8 = 32
7∑
i=0

C (1(32−13))mod4+4im = 32(C38 + C
7
8 ) = 2048,

S16 = 32
7∑
i=0

C (2(32−13))mod4+4i16 = 32(C216 + C
6
16 + · · · + C

14
16 ) = 520 192,

S24 = 32
7∑
i=0

C (3(32−13))mod4+4i24 = 32(C124 + C
5
24 + · · · + C

21
24 ) = 134 217 728.

And the nonzero coefficents, δi, are

δ8 = −256, δ16 = 256, δ24 = −65 536.

Then from (5), we have

T (EC13,2132 ) = 68 719 476 736 = 32× 2147 483 648.
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4. The formula and themth-order ‘Fibonacci’ recurrence relation

In this sectionwe fix p, q and show that, when n,m are large and gcd(n, p) = 1 (or gcd(n, q) = 1), the number of spanning
trees T (ECp,qn ) can be approached asymptotically by the mth-order ‘Fibonacci’ number [14]. Our derivation also implies that
the two quantities, the number of spanning trees T (ECp,qn ) and themth-order ‘Fibonacci’ number, share the same asymptotic
growth rate. The following lemma is crucial for deriving the formulas.

Lemma 7. For any given positive integer m, the polynomial

zm − zm−1 − · · · − z − 1 = (z − α1)(z − α2) · · · (z − αm),

has m distinct roots and has exactly one real positive root (which is the largest in modulus of all the roots), α1(m), with 1 <
α(m) < 2. Furthermore, when m tends to+∞, α1(m) is monotonically increasing and approaches 2.

Proof. The first part of the claim is due to Knuth. See, for example, [14] (page 161). The validity for the second part can be
easily proven by making use of the Perron–Frobenius Theorem in nonnegative matrix theory because the polynomial can
be viewed as the characteristic polynomial of anm×m irreducible nonnegative matrix. (A proof is seen in [15].) �

Sincewe assume that gcd(n, p) = 1, and that 1 ≤ p < q < n, there exist (the smallest inmodulus) two integers u, v such
that un+ vp = 1. Let r = vqmod n and ε1 = εp. Then ε = εv1 and {ε1, ε

2
1, . . . , ε

n−1
1 } is a permutation of {ε, ε

2, . . . , εn−1}.
Noticing that

∏n−1
j=1 (1− ε

j
1) = n and that |

∏n−1
j=1 ε

(n−r)j
1 | = 1 we have

T (ECp,qn ) =

n−1∏
j=1

(2− εpj − εqj) =
n−1∏
j=1

(2− εj1 − ε
vqj
1 )

=

∣∣∣∣∣n−1∏
j=1

(2− εj1 − ε
rj
1 )

n−1∏
j=1

(ε
(n−r)j
1 )

∣∣∣∣∣
=

∣∣∣∣∣n−1∏
j=1

(2ε(n−r)j1 − ε
(n−r+1)j
1 − 1)

∣∣∣∣∣
=

∣∣∣∣∣n−1∏
j=1

(ε
mj
1 − ε

(m−1)j
1 − · · · − ε

j
1 − 1)

n−1∏
j=1

(1− εj1)

∣∣∣∣∣
= n

∣∣∣∣∣n−1∏
j=1

(ε
mj
1 − ε

(m−1)j
1 − · · · − ε

j
1 − 1)

∣∣∣∣∣
where m = n − r . From Lemma 7, we have that εmj1 − ε

(m−1)j
1 − · · · − ε

j
1 − 1 =

∏m
i=1(ε

j
1 − αi). So applying the identity∏n−1

j=1 (ε
j
1 − x) = (−1)

n−1∑n−1
j=0 x

j yields

T (ECp,qn ) = n

∣∣∣∣∣n−1∏
j=1

(ε
mj
1 − ε

(m−1)j
1 − · · · − ε

j
1 − 1)

∣∣∣∣∣
= n

∣∣∣∣∣n−1∏
j=1

m∏
i=1

(ε
j
1 − αi)

∣∣∣∣∣
= n

∣∣∣∣∣ m∏
i=1

n−1∑
j=0

α
j
i

∣∣∣∣∣
= n

m∏
i=1

1− αni
1− αi

.

In [16] it is shown that limn→+∞
(
T (ECp,qn )

)1/n
= 2. This implies

(∏m
i=1(α

n
i − 1)

)1/n
→ 2. So by Lemma 7, when n is large,

we achieve
m∏
i=1

(1− αni ) = 1−
m∑
j=1

αnj +
∑
j1<j2

(
αj1αj2

)n
+ · · · + (−1)m−1

∑
j1<j2<···<jm

(
αj1αj2 · · ·αjm

)n
∼ −

m∑
j=1

αnj .
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Therefore, since
∏m
i=1(1− αi) = −(m− 1) = −(n− r − 1), this yields

T (ECp,qn ) = n
m∏
i=1

1− αni
1− αi

∼
n

n− r − 1

m∑
j=1

αnj ∼ Fn.

On the other hand, if we let Ft =
∑m
j=1 α

t
j , then α

m
i − α

m−1
i − · · · − αi − 1 = 0 implies for all t > 0 that

Ft+m = Ft+m−1 + Ft+m−2 + · · · + Ft .

This is the mth-order ‘Fibonacci’ recurrence relation. Note that when t is large, Ft −→ αt1 and that when n tends to+∞, m
is forced to tend to+∞. Summarizing the above discussions leads to the following theorem.

Theorem 8. Let gcd(n, p) = 1 and u, v be the smallest (in modulus) integers such that un+ vp = 1, and let m = n− r where
r = vqmod n. Then the number of spanning trees, T (ECp,qn ), and the mth-order ‘Fibonacci’ sequence, Fn, have the same asymptotic
growth rate. To be precise, we have the asymptotic formula T (ECp,qn ) ∼ Fn and, if gcd(n+ 1, p) = 1,

lim
n→+∞

T (ECp,qn+1)

T (ECp,qn )
= lim
n→+∞

Fn+1
Fn
= lim
m→+∞

α1(m) = 2

where Ft+m = Ft+m−1+ Ft+m−2+ · · · + Ft and Ft =
∑m
j=1 α

t
j (it can be shown that the initial numbers are F0 = m, Fj = 2

j
− 1,

1 ≤ j ≤ m− 1).

Remark 1. When p = 1 Theorem 8 generates the main result obtained in [15], that is,

lim
n→+∞

T (EC1,qn+1)

T (EC1,qn )
= 2.

Remark 2. It is shown in [8] that T (ECp,qn ) ≤ T (EC1,2n ). However, Theorem 8 implies that they have the same average growth

rate, i.e., limn→+∞
T (ECp,qn+1)

T (ECp,qn )
= limn→+∞

T (EC1,2n+1)

T (EC1,2n )
= 2.

Example 3. When p = 1, q = 2, applying the identity
∏n−1
j=1 (x− ε

j) =
∑n−1
j=0 x

j and by the formula we have that

T (C1,2n ) =

n−1∏
j=1

(2− εj − ε2j) =
n−1∏
j=1

(2+ εj)(1− εj)

= (−1)n−1
n−1∏
j=1

(−2− εj)
n−1∏
j=1

(1− εj)

= n
(
2n + (−1)n

3

)
,

seeing again that limn→+∞
T (EC1,2n+1)

T (EC1,2n )
= 2.

We would like to point out that the authors of [8] define T (ECp,qn ) to be 1n
∏n−1
j=1 (2− ε

pj
− εqj) and prove that it is equal to(

2n+(−1)n

3

)
. We see that Example 3 gives an alternative, but much more simpler, proof of the formula.

5. Conclusion and open question

In this work, for any positive integers p, q, nwith p < q < n, we derived an explicit formula for counting the number of
spanning trees in a class of double fixed-step loop networks, ECq,pn , with constant or nonconstant jumps.We then proved that
the number of spanning trees can be approached by an approximation formula which is based on themth-order ‘Fibonacci’
numbers. Some special cases generate the formulas obtained in previous papers.
One interesting aim would be to simplify the formulas in Theorem 6.
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