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ARTICLE INFO ABSTRACT

Article history: A double fixed-step loop network, af’q, is a digraph on n vertices 0, 1,2, ...,n— 1and for
Received 22 April 2009 each vertexi (0 < i < n—1), there are exactly two arcs going from vertex i to vertices i+p,
Accepted 22 April 2009 i+q (mod n).Letp < q < n be positive integers such that (g — p) t nand (g — p)|(kon — p)

or (q — p)|n (where ko = min{k|(q — p)|(kn — p),k = 1,2,3, .. .}ﬁand ged(q,p) = 1.1In
this work we derive a formula for the number of spanning trees, T(Cy'?), with constant or
nonconstant jumps and prove that T(CE'?) can be represented asymptotically by the mth-
order ‘Fibonacci’ numbers. Some special cases give rise to the formulas obtained recently in
[Z.Lonc, K. Parol, .M. Wojciechowski, On the number of spanning trees in directed circulant
graphs, Networks 37 (2001) 129-133; X. Yong, F.J. Zhang, An asymptotic behavior of the
complexity of double fixed step loop networks, Applied Mathematics. A Journal of Chinese
Universities. Ser.B 12 (1997) 233-236; X. Yong, Y. Zhang, M. Golin, The number of spanning
trees in a class of double fixed-step loop networks, Networks 52 (2) (2008) 69-87].

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

there are k arcs from vertex i to verticesi+sy, i+S5y, . .., i+5S, (mod n). A double fixed-step loop network, E,f "4 is the directed
circulant graph where each vertex has exactly two arcs leaving from it. Since this class of networks arises in the fields of
design and analysis of local area networks, multi-module memory organizations and supercomputer architectures etc., there
has been active research on their parameters such as the number of spanning trees, diameter, average distance, etc. [1-5]
(in applications these parameters are closely related to the bandwidth of a given network). And, among the parameters, the
number of spanning trees is essential and also characterizes the reliability of a network in the presence of line faults [6].
Finding the exact value or the asymptotic number of spanning trees of a graph is usually not easy and, therefore, research
into this parameter has been focusing on special classes of graphs and different techniques are being developed for different
classes of graphs [7,2,8].

Before starting, we should point out that, theoretically, Kirchhoff's Matrix Tree Theorem [9] can be modified to calculate
the number of spanning trees in any digraph G through evaluating the determinant of any (n — 1)th-order sub-matrix of
its ‘Laplace’ matrix. However, counting the number of spanning trees by calculating the determinant is infeasible for large
graphs. Because of this, in the last few decades, researchers have developed techniques for getting around the difficulty
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and paid great attention to deriving explicit or possibly recursive formulas [ 10-13]. For general circulant (di-)graphs, some
recent formulas are seen in [1,4,5]. But, unfortunately, if the biggest jump sy is large, it is not easy to derive the recurrence
relations to get the number of spanning trees in a given directed circulant because the order of the recurrence relation
increases exponentially with s;. This motivated us to come up with the present work.

In Section 2 we derive some basic results which will be used to obtain our main results. Section 3 focuses on finding the

formulas for the number of spanning trees in E,’,’ 1 with constant or nonconstant jumps. For positive integers p, g, n with

p < q < n,some formulas for the numbers are also derived. Section 4 involves finding an approximation formula for T(Ef,f ),
We should address that there is a formula

n—1
T (E,’fq) = H(Z — Pl — g%)
j=1

where ¢ = e%, i= J—_l . But, unfortunately, direct calculation of this formula is not efficient in applications because of
the sin and cos in &/. And the computation is ill-conditioned. The aim of this work is therefore transforming the formula into
something more convenient and interesting.

In this work, for convenience, we use x 1 y to denote that x cannot be divided by y and C,’I< to denote the binomial coeffi-

: n
cients (}).
2. Basic lemmas

We start this section by considering the divisible properties of the positive integers involved to derive our preliminaries.
The idea is to proceed by applying some basic facts from combinatorics. We need to introduce the matrix B below whose
properties will Blay essential roles in establishing the formulas for the numbers of spanning trees in the double fixed-step
loop networks, C2*Y.

Definition 1. For any positive integers p < q < n, let B = (b;;) be the (n — 1) x (+00) matrix satisfying that b; j = pi +
q-pj,i=1,2,...,n—1;j=0,1,2,....

Note that B is a positive integer matrix and with this definition we have the following Lemma 1.
Lemma 1. For any positive integersp < q < n,
@ nlb, kon—p, if (@q—p)tnand(q—p)lkon—p)i=1,2,...,
*q-p
(b) nbi; if (q—p)In,ged(q —p,p) =1, i=k(@—p),j=k(n—p),k=1,2,...,
(ntbi; if (@—p)ngedl@—p,p)=1i#k(@—p).j=012,....k=1,2,...,
where ko = min{k|(q — p)|(kn — p),k=1,2,3,...}.

Proof. (a) By the definition of the elements b; j of B, we have immediately that

. kon —p
b,. ikon—p = p + (q - p) |:l 0 ]
Trap q—p

= ip + ikon — ip
= ikol’l,
which proves (a). To show (b), repeatedly applying the same strategy as was used for proving (a) yields

bij = ip +(q —p)j = k(@ — p)p + (¢ — p)k(n — p)
k(@ —p)p + (¢ — p)kn — (q — p)kp
= (q — p)kn.
This implies that n is a divisor of b;  wheni = k(q — p),j = k(n — p), k = 1, 2, ... and therefore (b) is proven.

We now prove (c) by contradiction. If b; ; could be divided by n, then there would exist integers m;, m; such that % = mj,
= my and b;; = ip + (9 — p)j = myn, equivalent to

_n_
q—p
i n
P +j=m
q—p qa—p
This is a contradiction because the right side is a fraction but the left side is an integer. Putting all the above together the
proof of the lemma is completed. O

= mqmy.

If gcd(q — p,p) = d > 1and (q — p)|n then there exist integers kq, k, and k3 such that ¢ = dky,p = dk, and n =

(q — p)ks = d(ky — ky)ks.So gcd(n, q, p) = d > 1implies that the graph is disconnected and therefore T(Eﬁ’q) = 0. In the
future we will assume that gcd(p, g) = 1 and n is not divisible by g — p.
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We will consider the elements b;; that are divisible by n.

Lemma 2. For any positive integers p < q < n, if the elements b; ; of B satisfy that n|b; ; then n|b,‘,jik% fork =0,1,2,...,
where d = gcd(n, q — p).
Proof. This lemma can be proven in the same way as the one used in the proof of Lemma 1.

. . on
bijriy = ip+(q —p) (J + kE>

. . n

=ip+(q—pJ=E(q —p)ka

kn. O

byt P

Lemma 3. For any positive integersp < q < n,
@) b, kgn—p n» f (@—p)tnand(q—p)lken—p),i=1,2,3,...
> q-p d
, if(@—p)nandged(q—p,p) =1,k=1,2,3,...

is the first element in the ith (k(q—p) th) row that can be divided by n, where d = gcd(n, q—p), ko = min{k|(q—p)|(kn—p), k =
1,2,3,...}.
Proof. To prove (a), without loss of generality, we may consider the mth row of B, where (g — p) t+ nand (g — p)|(kon — p)

then, from Lemma 1 nlb mkon=p and 1f L < mkg” P then from Lemma 2 we have that nlb kon=p _n and if we still have
m,m q—p m,m q—p d

b <m2=E "0" p i then from Lemma 2 againwe haven|b  «n-» » .. We canobtain the first divisible element by repeating

. qg—p d d
the same process until

(b) bk(qu),k(nfp)mod qu

kkn—p n n n
m < -.
- q—rp d d - d

I<0n p

This is equivalent to m-2—*= mod , implying that b nkon=p = is the first element in the mth row that can be divided by
q—

dTl
n. (b) can be proven in the same way. O

3. The number of spanning trees in the networks

In this section, making use of the basics obtained in the previous section, we develop a method for calculating the number
of spanning trees in C£"? with constant or nonconstant jumps. We start by recalling the following known lemma.

Lemma 4 ([4]). Let n, p and q be any positive integers and

n—1
f(x) = ]_[(x — P V) = §oX S X T X"+ 8y X + 80, S0 = 1. (1)
j=0
Then
- n—1 .
T =f@) =) (n—js2"7", (2)
j=0

where ¢ = esz.
For some special p < q < n, the following Lemma 5 gives us the binomial expression formula of the power sum, Sy, =
> i1 (e” 4 e¥)™, of polynomial (1).

Lemma 5. For any positive integersp < q < n,

d—1 kOnp

(m )mod + i .
ny Cm ° , if (q—p) tn,and (q — p)|(kon — p),
i=0
S, = q—p—1 _ dnn;
; n Cr(nv(n pyme A if ( —p)Inand gcd(q —p,p) = 1, m = v(q — p),
i=0
0, if (q—p)Inand ged(q — p,p) = 1, m # v(q — p),

where d = gcd(n, q — p), ko = min{k|(q — p)|(kn — p),k=1,2,3,...}andv =1,2,3,....
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Proof.

n
Sm= D (P + V)"
j=1
n
— (C&S’pm 4 Crbsi(p(mflwq) + Cigi(p(m72)+2q) et Cgflaj(pﬂmfl)q) 4 C::si(mq))
j=1

n
= Z(Cﬁé\i(mwo(q—p)) + C’}lgi(mp+(q—p)) 4+ C’igi(mp+(q—p)2) 4ot CnTsj(mp+m(q_p)))
j=1

(COgbmo 4 Clghbm 4 C2gibm2 ... 4 CMglbmam)

n

j=1
L no L n_
— 0 om0 4 )Y ePm £ 2 e gy gm,
j=1 j=1 j=1 =
where by, x, k=10, 1,2, ..., are the elements of B. Noting that

n .
Zgjbmiyk _ |n,if nlbag,
- 0, otherwise,
J:

we see that the claim of the lemma is true from the above discussions. 0O
It is well known thatifo;, i = 1, 2, ..., n, are the roots of a polynomial
p(x) = Box" + BiX" 4+ X"+ A Buix+ Bu Bo=1,

then S, = ﬂf + ,3§ 4+ + ,8,’1‘ is called the kth power sum of p(x). The power sums Sy, k = 1, 2, ..., n, can be calculated, so

the coefficients By, k = 1, 2, ..., n, can be derived using Newton’s Identities
SkBo + Sk=1P1 + Sk—2f2 + -+ - + +S1B8k—1 + kB = 0,

(3)

In Lemma 5, we have obtained explicit expressions for the power sums of polynomial (1). The following Theorem 6 can be
obtained by combining Lemma 5 with Newton’s Identities. For some special integers p < q < n, we can calculate the number

of spanning trees by using the following Theorem 6.

Theorem 6. For any positive integersp < q <n— 1if (q—p) i n, (q — p)|(kon — p) then

n—1

T(CP =) (n—i)§2" ',

i=0

where

1
S = E(Sk — Sk—181 — Sk—282 — -+ - — S516k—1),

k ’

d-1 n—p nn;
(k=—t)mod 5+ 5i
sk:} c, P T k=1,2,...,n—1
i=0

d =gcd(n, q —p).

We can see from the expressions in Lemma 5 and Theorem 6 that if (g — p)|n then the formula for the number of spanning

trees can be calculated through the following Corollary 1.

Corollary 1. For any positive integersp < q < nif (q — p)|n and div(q — p, p) = 1 then

n—1

TE =Y (n— 52",
i=0

i=

where

1
Sk = E(Sk — Sk—181 — Sk—282 — - -+ — S18k-1),

&l Catpmedt i \ k— 12
Sm= nigo:m lfm_c(q_p)7<_ k) ERCIEIEE ]

0 otherwise.
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We will illustrate our techniques, Theorem 6 and Corollary 1, by evaluating the following two examples.

Example 1. Case T(E;’(‘)m).
Herep = 3,q = 10,n = 20,d = gcd(n,q — p) = 1and kg = min{k| (g — p)|(kn — p), k = 1,2, 3, ...} = 4; then from
Theorem 6

19
T(C'%) =) (20 — )82, (6)

i=1
where
Sk = I%(Sk — Sk—101 — Sk—282 — -+ — S$18k-1), (7)
(k422023 )mod 20

S = 20C, "
= 20¢"0md20 g —1,2,...,19. (8)

Fork = 1,2, ..., 19, we have the following results from calculation;
S1=20C;'=0, S;=20C; =20, S3=20C;’>=0, S,=20C; =20,
Ss =20C° =0, S;=20Cf =20, S;=20C"=0, Sg=20C5 =20,
So=20C° =0,  S;p=20C)0 =20, Sy =20C], =220, S;;=20C,7 =20,
S13 =20C% =5720,  S;4=20Cl; =20,  S;5=20C; =60060,  Sis = 20C,S = 20,
Si7 = 20C}, = 1166880,  S;3 =20Cjs =20,  S;g = 20Cj, = 923 780.
Then these results plug into (7), that is

1 1 1
1 =—TS1 =0, 52=—§(52+5151)=—10, 33 =—§(53+5152+5251)=0,

and repeating this process we have

S4=45, 85=0, S=-—120, 8 =0, S,=45 8 =0,

86 =—120, 8, =0, 83=210, Sq=0, 819=—252, 81 = —20,

812 =210, 813 = —240, 814 =—120, ;5= —504, S;5=45 &7 = —46000,
815 =—10, 819 = 506200.

And from (6)
T(C5'®) = 10485760 = 20 x 524 288.

Example 2. Case T((T‘;; ’21).
Herep = 13,q = 21,n = 32,and d = (n, ¢ — p) = 8; then from Corollary 1, we have that

7
Sg =32y | CLC2TIIImoddA = 35(¢d + () = 2048,
i=0

7
Sis = 32 ZC](EZS(32—13))m0d4+41 _ 32(C126 + C?e +oe gt Cllg) — 520192,
i=0

7
Saa =32 CRPTPIMMH = 39(C), + Gy 4+ + C5)) = 134217 728.
i=0
And the nonzero coefficents, §;, are
8g = —256, 816 = 256, 824 = —65536.
Then from (5), we have

T(CE?') = 68719476736 = 32 x 2147 483 648.
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4. The formula and the mth-order ‘Fibonacci’ recurrence relation

In thi§ section we fix p, g and show that, when n, m are large and gcd(n, p) = 1(orgcd(n, q) = 1), the number of spanning
trees T(CY'?) can be approached asymptotically by the mth-order ‘Fibonacci’ number [14]. Our derivation also implies that

the two quantities, the number of spanning trees T(Eﬁ ‘%) and the mth-order ‘Fibonacci’ number, share the same asymptotic
growth rate. The following lemma is crucial for deriving the formulas.

Lemma 7. For any given positive integer m, the polynomial

M=z 1= )z — @) (2 — ),

has m distinct roots and has exactly one real positive root (which is the largest in modulus of all the roots), a1(m), with 1 <
a(m) < 2. Furthermore, when m tends to 400, a1 (m) is monotonically increasing and approaches 2.

Proof. The first part of the claim is due to Knuth. See, for example, [14] (page 161). The validity for the second part can be
easily proven by making use of the Perron-Frobenius Theorem in nonnegative matrix theory because the polynomial can
be viewed as the characteristic polynomial of an m x m irreducible nonnegative matrix. (A proofis seenin [15].) O

Since we assume that gcd(n, p) = 1,and that 1 < p < q < n, there exist (the smallest in modulus) two integers u, v such
thatun+ vp = 1.Letr = vgmod nand &; = . Then ¢ = ¢ and {e;, sf, e, 8'11_]} is a permutation of {e, €2, ..., " 1}.

Noticing that ]_[f:_f (1—¢)) = nand that | ]_[]'7:_11 " | = 1 we have

n—1 n—1
1@ =[]e-e —eh) =[]@-2 -9
j=1 J=1

n—1

n—1
=[Je-&-eD]]eE"™
=1

j=1

n—1
—n)j —r+1)j
= [Je™ — & — 1)
j=1

n—1 n—1
— H(STJ _Egm—l)] . —8]1 _ 1)1_[(1 —8]])
j=1 j=1
n71 . . .
=n l—[(s']m—sgmfl)]—-u—dl - 1)
j=1
where m = n — r. From Lemma 7, we have that ¢}’ — ¢{™ " — ... — & — 1 = [T, (¢, — ). So applying the identity

10 — % = (D)™ Y0 o yields

n—1
T =n|[JE —e" = =& -1

=1
n—1 m )

=n|[[] ]~
j=1i=1
m n—1

= n l_[ a{
i=1 j=0

e e . 20.q 1/n P . m n 1/n .
In [16] it is shown that lim,,_, | (T(Cn )) = 2. This implies (]_[i:](ai - 1)) — 2.So by Lemma 7, when n is large,
we achieve

m

m
[[a-eh=1=- "o+ > ()" +-+=D"" Y (a0, 0,)"
i=1 =1

J1<i2 J1<ja<:<jm
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Therefore, since ]—[;1](1 —aj) = —(m—1) = —(n—r — 1), this yields

~p.q - 1_05?
T(CP9) = nl_[
i=1

1— (4]
m
n n
Sl DIL g
j=1
On the other hand, if we let F, = )", o, then o — "' — .- — o — 1 = 0 implies for all ¢ > 0 that

Ft+m=F[+m7]+Ft+m72+...+Ft'

This is the mth-order ‘Fibonacci’ recurrence relation. Note that when t is large, F; — ocﬁ and that when n tends to +o00, m
is forced to tend to +o0o. Summarizing the above discussions leads to the following theorem.

Theorem 8. Let gcd(n, p) = 1 and u, v be the smallest (in modulus) integers such that un + vp = 1, and let m = n — r where
r = vq mod n. Then the number of spanning trees, T(CE'?), and the mth-order ‘Fibonacci’ sequence, F,, have the same asymptotic
growth rate. To be precise, we have the asymptotic formula T(CY'?) ~ F, and, if gced(n + 1,p) = 1,

T(C5f1) . Fn+1

lim = = lim = lim m) =2
n——+00 T(C,I:’q) n—+oo F, m—+00 o1 (m)

where Frym = Feym—1 +Frym—a + -+ -+ Frand F, = ZJ'L ajt (it can be shown that the initial numbers are Fp = m, Fj = 21,
1<j<m-1)

Remark 1. When p = 1 Theorem 8 generates the main result obtained in [15], that is,

T(CH
lim (f]“) =2
n>+00 T(Cy'?)

Remark 2. It is shown in [8] that T(a‘f h < T(E,}’Z). However, Theorem 8 implies that they have the same average growth
ACAD I TG _

-1 n
7Y noteo @l

rate, i.e., lim,_, oo

Example 3. When p = 1, q = 2, applying the identity ]_[1'72_1l (x—¢) = Z}’;Ol %' and by the formula we have that

n—1 n—1
T =[Je-¢d - =[]e+Ha-¢)

j=1 j=1

n—1 n—1
= )" (2= ]]a-&)
j=1 j=1

(2"+(—1)”)
= n|{ — y
3

. . . Tyl
seeing again that lim,_, | o T(%Z) =
n

We would like to point out that the authors of [8] define T(C2%) to be 1 ]—[;’:_1] (2 — &P — ¢%) and prove that it is equal to

(w) We see that Example 3 gives an alternative, but much more simpler, proof of the formula.

5. Conclusion and open question

In this work, for any positive integers p, g, n withp < ¢ <n,we derived an explicit formula for counting the number of
spanning trees in a class of double fixed-step loop networks, C;?, with constant or nonconstant jumps. We then proved that
the number of spanning trees can be approached by an approximation formula which is based on the mth-order ‘Fibonacci’
numbers. Some special cases generate the formulas obtained in previous papers.

One interesting aim would be to simplify the formulas in Theorem 6.
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