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a b s t r a c t

Themost recent general result for counting the exact number of spanning trees in a directed
or an undirected circulant graph is that the numbers satisfy a recurrence relation of size
2s−1 where s is the largest jump [29]. A drawback here is that, when the jump s is large, it is
difficult to apply themethod to get the number of spanning trees because the degree of the
recurrence relation grows exponentially and the coefficientmatrix (it is an integral Toeplitz
matrix of exponential size) of the linear system for establishing recurrence formula is not
well conditioned in calculation.
In this paper, we focus our attention on this point and obtain an efficient approach

(another kind of recursive formula) for counting the number of spanning trees in a directed
or undirected circulant graph which has fixed or non-fixed jumps. The technique is also
applied to the graphs G = Kn ± C , where Kn is the complete graph on n vertices and C is
a circulant graph. Compared with the previous approaches, our advantage is that, for any
given jumps s1 < s2 < · · · < sk, the number of spanning trees can be calculated directly
by a new kind of recursive formula, without establishing the recurrence relation of order
2sk−1. We describe our method by giving concrete examples of its use.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper multiple graphs or digraphs are allowed to appear in our consideration. A spanning tree in an
undirected graph G is a tree that has the same vertex set as G. An oriented spanning tree in a digraph D is a rooted tree
with the same vertex set as D, that is, there is a node specified as the root and from it there is a path to any vertex of D.
The study of the number of spanning trees in a graph has a long history and has been very active because, theoretically,
counting the number is interesting, and the problem has different practical applications in different fields. For example, the
number characterizes the reliability of a network and in physics, designing electrical circuits, analyzing energy of masers
and investigating the possible particle transitions [8,10,14,15,21].
A well-known theoretical result on finding the number is the Matrix Tree Theorem [19] which expresses the number

of spanning trees in terms of the determinant of a matrix obtained from the Laplace matrix of the graph. Unfortunately,
counting the number by evaluating the determinant directly is hard for large graphs [1,4,32]. Due to this reason there have
been developed techniques to get around the difficulties [5,11,12,25,29] and have paid much attention to deriving explicit
and possibly simple formulas for certain special classes of graphs. For example, if G is the complete graph Kn, then Cayley’s
tree formula [18] states that T (Kn) = nn−2. Some most recently derived results about the counting and maximizing the
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number of spanning trees can be found from [13,24,26,28,31]. Our interest here is to consider a class of special graphs,
circulants.
Let s1, s2, . . . , sk be given integers, called jumps, and 1 ≤ s1 < s2 < · · · < sk. A circulant graph C

s1,s2,...,sk
n has n vertices

labeled 0, 1, 2, . . . , n − 1, with each vertex i (0 ≤ i ≤ n − 1) adjacent to vertices i ± s1, i ± s2, . . . , i ± sk (mod n). A
directed circulant graph, EC s1,s2,...,skn , is a digraph on n vertices 0, 1, 2, . . . , n− 1 and for each vertex i (0 ≤ i ≤ n− 1), there
are k arcs from i to vertices i + s1, i + s2, . . . , i + sk (mod n). Note that C

s1,s2,...,sk
n is a 2k-regular graph and that EC s1,s2,...,skn

is a k-regular digraph. It is seen that the simplest undirected circulant graph is the n vertex cycle C1n and that the simplest
directed circulant graph is the n vertex directed cycle EC1n . As usual, we use T (X) to stand for the number of spanning trees
in a graph or digraph X . Starting from the different proofs [3,20,27] of the Conjecture T (C1,2n ) = nF 2n , where Fn the Fibonacci
numbers, of Bedrosian [6] (which was also conjectured by Boesch and Wang in [9] without the knowledge of [20]), the
recurrence formulas for T (C1,3n ), T (C1,4n ) were obtained in [27] and then more general results were recently obtained in
[29,30]. The most general result states that T (C s1,s2,...,skn ) = na2n where an satisfies a linear recurrence relation of order 2

sk−1.
For a directed circulant, the general formula is T (EC s1,s2,...,skn ) = nbn, where bn satisfies a linear recurrence relation of order
2sk−1 [29]. There also have been combinatorial approaches on the number of spanning trees in odd-valiant circulants and
some interesting combinatorial properties of an were derived in [2,11].
The formula for the number of spanning trees in the graph Kn − S has been studied for different types of S. For instance,

when S is a path or a cycle or a complete graph, similar results are established in [6]. A closed formula for T (Kn − C sm) was
obtained in [17] and the same formula was also reproved alternatively by introducing a different technique [30] and there
is a generalization of their approach to getting a formulas for T (Kn ± C

s1,s2,...,sk
m ).

For a large sk, it is hard to use the recurrence relation method to get the number of spanning trees in a circulant graph
because the degree of the recurrence relation increases exponentially with sk. In this paper, we focus our attention on this
point and obtain another kind (recursive) formula for counting the number of spanning trees in a directed or undirected
circulant graph with fixed or non-fixed jumps and formulas for G = Kn ± C , where Kn is the complete graph on n vertices
and C is a circulant graph. Our result states that, in finding the number of spanning trees, it is not necessary to solve a
system of linear equations of exponential size (where the coefficient matrix of the system for establishing the recurrence
formula) is a Toeplitz matrix which, in computation, is not well conditioned [16]. Our advantage is that, for any given jumps
s1 < s2 < · · · < sk, the number of spanning trees can be calculated directly, without establishing the recurrence relation of
order 2sk−1. To make the thing clearer, we describe our method by giving concrete examples of its use.

2. Basic lemmas

In this section, we will derive some fundamental results which are essential in finding the exact number of spanning
trees. Our technique is by applying some basic facts from combinatorics and number theory.

Lemma 1 (G. Pólya [23]). For any positive integers n and r, r = 1, 2, . . . , n− 1, let

µ(n) =
∑
(r,n)=1

e
2π i
n r . (Möbius function) (1)

Then

µ(n) =

1 if n = 1,
0 if n is divisible by a square (apart from 1),
(−1)v(n) in all other cases,

where v(n) is the number of distinct prime factors of n and e
2π i
n is the nth unit root.

For simplicity, throughout the paper, we say that a column vector C is the coefficient vector of a polynomial f (x) if C
is constructed from the coefficients of the polynomial f (x) and its ith component is the coefficient of xi (where the last
component of C is the constant term of f (x)). X t denotes the transpose of a matrix(or vector) X . We also use Ok to stand for
the k dimensional zero column vector.

Lemma 2. Let f (x) = αpxp + αp−1xp−1 + · · · + α1x + α0, αp = 1, be a complex or real polynomial and Cn−1 the coefficient
vector of polynomial

∏n−1
i=1 f (x

i). Then, for k = 2, 3, . . . , n− 1, Ck satisfies the following recurrence relation

Ck =

([
Ck−1
Opk

] [ Ok
Ck−1
O(p−1)k

] [ O2k
Ck−1
O(p−2)k

]
· · ·

[O(p−1)k
Ck−1
Ok

] [
Opk
Ck−1

])
αp
αp−1
...
α0

 ,
with the initial (column) vector C1 = (αp, αp−1, . . . , α1, α0)t .
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Proof. Without loss of generality, we may let

k−1∏
i=1

f (xi) = (x
pk(k−1)
2 , x

pk(k−1)
2 −1, . . . , x, 1)Ck−1. (2)

Then we have
k∏
i=1

f (xi) = f (xk)
k−1∏
i=1

f (xi)

= αpxpk(x
pk(k−1)
2 , x

pk(k−1)
2 −1, . . . , x, 1)Ck−1 + αp−1x(p−1)k(x

pk(k−1)
2 , x

pk(k−1)
2 −1, . . . , x, 1)Ck−1

· · · + α0(x
pk(k−1)
2 , x

pk(k−1)
2 −1, . . . , x, 1)Ck−1

= A

([
Ck−1
Opk

] [ Ok
Ck−1
O(p−1)k

] [ O2k
Ck−1
O(p−2)k

]
· · ·

[O(p−1)k
Ck−1
Ok

] [
Opk
Ck−1

])
αp
αp−1
...
α0

 ,
where A = (x

pk(k+1)
2 , x

pk(k+1)
2 −1, . . . , x, 1). This completes the proof of the lemma. �

To illustrate this we have:

Example 1. Let f (x) = x2 + 3x + 1. We calculate C2, the coefficients vector of the polynomial
∏2
i=1 f (x

i). Since then
C1 = (1, 3, 1)t , by Lemma 2 we have that

C2 =

([
C1
O4

] [O2
C1
O2

] [
O4
C1

])[1
3
1

]
=





1
3
1
0
0
0
0





0
0
1
3
1
0
0





0
0
0
0
1
3
1




[1
3
1

]
=



1
3
4
9
4
3
1

 .

Note that in the above lemma if C1 is symmetric (i.e., its ith component is equal to the (p− i)th component for all i) then
all Ck are symmetric. The components of Ck also have the following properties.

Lemma 3. Let f (x) = αpxp+αp−1xp−1+· · ·+α1x+α0, αp = 1, be a complex or real polynomial, cj, j = pn(n−1)/2, . . . , 2, 1
the components of the coefficient vector, Cn−1, of polynomial

∏n−1
i=1 f (x

i) and

w(k) =
∑

j=k (mod n)

cj. (3)

Then for every q1, q2 ∈ {1, 2, 3, . . . , n− 1} we have that

w(q1) = w(q2) if gcd(q1, n) = gcd(q2, n).

Proof. We assume thatM is the companion matrix of f (x), that is,

M =


0 0 0 · · · 0 −α0
1 0 0 · · · 0 −α1
0 1 0 · · · 0 −α2
...

...
... · · ·

...
...

0 0 0 · · · 1 −αp−1

 .
Then the following two expressions are identical and we have their expansion (where I is the identity matrix)

n−1∏
j=1

f (xj) =
n−1∏
j=1

|xjI −M|

= c pn(n−1)
2
x
pn(n−1)
2 + c pn(n−1)

2 −1x
pn(n−1)
2 −1

+ · · · + c1x+ c0.
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Set x = e
2π i
n and let (1 =)n0 < n1 < · · · < nl(= n) be the all possible divisors of n. Then

n−1∏
j=1

|e
2π i
n jI −M| = c pn(n−1)

2
e
2π i
n
pn(n−1)
2 + c pn(n−1)

2 −1e
2π i
n (

pn(n−1)
2 −1)

+ · · · + c1e
2π i
n + c0

= w(0)+ w(1)e
2π i
n + w(2)e

2π i
n 2 + · · · + w(n− 1)e

2π i
n (n−1) + c0

= w(0)+
∑

gcd(j,n)=n0

w(j)e
2π i
n j + · · · +

∑
gcd(j,n)=nl−1

w(j)e
2π i
n j + c0.

Note that for any pair of positive integers t ′ and t ′′, if gcd(t ′, n) = gcd(t ′′, n) = 1 then

n−1∏
j=1

|e
2π i
n t
′jI −M| =

n−1∏
j=1

|e
2π i
n t
′′jI −M|, (4)

that is ∑
gcd(j,n)=n0

w(j)e
2π i
n t
′j
+ · · · +

∑
gcd(j,n)=nl−1

w(j)e
2π i
n t
′j
=

∑
gcd(j,n)=n0

w(j)e
2π i
n t
′′j
+ · · · +

∑
gcd(j,n)=nl−1

w(j)e
2π i
n t
′′j. (5)

Now, for m = 1, 2, . . . , l− 1, writing each term of both sides in (5) as an inner product of a row vectorWm with a column
vector Em(.), we have that

W0E0(t ′)+W1E1(t ′)+ · · · +Wl−1El−1(t ′) = W0E0(t ′′)+W1E1(t ′′)+ · · · +Wl−1El−1(t ′′), (6)

where, for eachm,

WmEm(t ′) =
∑

gcd(j,n)=nm

w(j)e
2π i
n t
′j

= (w(j1), w(j2), . . . , w(jm))(e
2π i
n t
′j1 , e

2π i
n t
′j2 , . . . , e

2π i
n t
′jm)t .

Noting that Em(t ′) is a permutation of Em(t ′′), there exists a permutation matrix Pm such that Em(t ′′) = PmEm(t ′) and thus
plugging them into (6) generates

W0E0(t ′)+ · · · +Wl−1El−1(t ′) = W0P0E0(t ′)+ · · · +Wl−1Pl−1El−1(t ′). (7)

And this is true for any integer t ′ with (t ′, n) = 1. Therefore comparing the coefficient of Em(t ′) on both sides of (7), we have
Wm = WmPm. This in turn implies that

w(j1) = w(j2) = · · · = w(jm), (8)

completing the proof of the lemma. �

Lemma 4. Let f (x) = αpxp+αp−1xp−1+ · · ·+α1x+α0, αp = 1, be a complex or real polynomial and (1 =)n0 < n1 < · · · <
nl(= n) be all possible divisors of n. Then we have

n−1∏
j=1

f (εj) =

[
αn−10 +

l∑
j=0

µ(n/nj)
dp(n−1)/2e−1∑

i=0

cni+nj

]
, (9)

where ε = e
2π i
n , cj is the jth component of coefficient vector, Cn−1, of polynomial

∏n−1
i=1 f (x

i) and for k = 2, 3, . . . , n − 1, Ck
satisfies the following recurrence relation

Ck =

([
Ck−1
Opk

] [ Ok
Ck−1
O(p−1)k

] [ O2k
Ck−1
O(p−2)k

]
· · ·

[O(p−1)k
Ck−1
Ok

] [
Opk
Ck−1

])
αp
αp−1
...
α0

 ,
with initial vector C1 = (αp, αp−1, αp−2, . . . , α1, α0)t .

Proof. From Lemmas 2 and 3 and their proofs, it is easily obtained that c0 = αn−10 , w(0) = w(n) and that

n−1∏
j=1

f (εj) = αn−10 +

∑
gcd(j,n)=n0

w(j)e
2π i
n j +

∑
gcd(j,n)=n1

w(j)e
2π i
n j + · · · +

∑
gcd(j,n)=nl

w(j)e
2π i
n j.
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Noticing that, if nd is a divisor of n then nd ∈ {j | gcd(j, n) = nd, j = 1, 2, . . . , n}, we have
n−1∏
j=1

f (εj) = αn−10 + w(n0)
∑

gcd(j,n)=n0

e
2π i
n j + w(n1)

∑
gcd(j,n)=n1

e
2π i
n j + · · · + w(nl)

∑
gcd(j,n)=nl

e
2π i
n j.

Further let n/nd = pd, j/nd = rd. Then the above formula is reduced to

n−1∏
j=1

f (εj) = αn−10 + w(n0)
∑

gcd(r0,p0)=1

e
2π i
p0
r0
+ w(n1)

∑
gcd(r1,p1)=1

e
2π i
p1
r1
+ · · · + w(nl)

∑
gcd(rl,pl)=1

e
2π i
pl
rl .

Thus, for d = 0, 1, 2, . . . , l, applying Lemma 1 yields∑
gcd(rd,pd)=1

e
2π i
pd
rd
= µ(pd)

= µ(n/nd),

and from Lemma 3, the components of Cn−1, cj, j = pn(n− 1)/2, . . . , 2, 1 satisfy

w(nd) =
∑

j=nd(mod n)

cj

=

dp(n−1)/2e−1∑
j=0

cnj+nd .

The proof of the lemma is thus completed. �

Lemma 5. If f (x) is a reciprocal polynomial of degree p then the product
∏n−1
i=1 f (x

i) is a also reciprocal polynomial.

Proof. If f (x) is a reciprocal polynomial of degree p [22], that is f (x) = xpf (x−1). Thus,
n−1∏
i=1

f (xi) =
n−1∏
i=1

f (xi)

=

n−1∏
i=1

xpif (x−i)

= xpn(n−1)/2
n−1∏
i=1

f (x−i),

and this proves the lemma. �

3. Spanning trees in circulant graphs

In this section we derive the formulas for finding the exact numbers of spanning trees in circulants with fixed and non-
fixed jumps. The idea is by making use of the results obtained in the previous section.

Lemma 6 (Biggs [7], and Zhang and Yong [32]). For any integer 1 ≤ s1 < s2 < · · · < sk ≤ b n2c

T (C s1,s2,...,skn ) =
1
n

n−1∏
i=1

(2k− ε−s1j − εs1j − ε−s2j − εs2j − · · · − ε−skj − εskj), (10)

T (EC s1,s2,...,skn ) =

n−1∏
i=1

(k− εs1j − εs2j − · · · − εskj), (11)

where ε−j is the conjugate of εj, ε = e2π i/n.

For convenience, let

fs1,s2,...,sk(x) = x
2sk + xsk+sk−1 · · · + xsk+s1 − 2kxsk + xsk−s1 + · · · + xsk−sk−1 + 1, (12)

Efs1,s2,...,sk(x) = x
sk + xsk−1 + · · · + xs1 − k. (13)

Then, counting the number of spanning trees of an undirected circulant graph can be formulated as
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Theorem 7. For 1 ≤ s1 < s2 < · · · < sk ≤ bn/2c, let (1 =)n0 < n1 < · · · < nl(= n) be the all possible divisors of n. Then
we have

T (C s1,s2,...,skn ) =
(−1)(sk+1)(n−1)

n

[
1+

l∑
j=0

µ(n/nj)
sk(n−1)−1∑
i=0

cin+nj

]
, (14)

where cj is the jth component of coefficient vector, Cn−1, of polynomial
∏n−1
i=1 fs1,s2,...,sk(x

i) and for m = 2, 3, . . . , n − 1, Cm
satisfies the following recurrence relation

Cm =

([
Cm−1
O2skm

] [O(sk−sk−1)m
Cm−1

O(sk+sk−1)m

] [O(sk−sk−2)m
Cm−1

O(sk+sk−2)m

]
· · ·

[
O2skm
Cm−1

])


1
...
1
−2k
1
...
1


,

with the initial vector C1 (the coefficient vector of the polynomial fs1,s2,...,sk(x)).

Proof. From (10) and (12) we have that

T (C s1,s2,...,skn ) =
1
n

n−1∏
j=1

(2k− ε−s1j − εs1j − ε−s2j − εs2j − · · · − ε−skj − εskj)

=
1
n

n−1∏
j=1

−ε−skj
n−1∏
j=1

(ε2skj + · · · + ε(sk+s1)j − 2kεskj + ε(sk−s1)j + · · · + 1)

=
(−1)(sk+1)(n−1)

n

n−1∏
j=1

(ε2skj + · · · + ε(sk+s1)j − 2kεskj + ε(sk−s1)j + · · · + 1)

=
(−1)(sk+1)(n−1)

n

n−1∏
j=1

fs1,...,sk(ε
j).

The remaining arguments are analogous to those in Lemma 4. We therefore omit the details here. �

We now illustrate our technique by finding the number of spanning trees in a simple graph.

Example 2. T (C1,24 ).

In this case s1 = 1, s2 = 2, f (x) = x4 + x3 − 4x2 + x+ 1, C1 = (1, 1, − 4, 1, 1)t , n = 4 and the all possible divisors of n
are 1, 2 and 4. So, from (14) we have that

T (C1,24 ) =
−1
4

[
1+ µ(1)

5∑
i=0

c4i+4 + µ(2)
5∑
i=0

c4i+2 + µ(4)
5∑
i=0

c4i+1

]
, (15)

where cj is the jth component of the coefficient vector C3, it can be easily obtained by the following recurrence relation

Cm =

([
Cm−1
O4m

] [ Om
Cm−1
O3m

] [ O2m
Cm−1
O2m

] [ O3m
Cm−1
Om

] [
O4m
Cm−1

])
1
1
−4
1
1

 , (16)

recursive calculation of Cm form = 2, 3 yields (note that Ck are symmetric)

C3 = (1, 1,−3, 3,−6,−6, 16,−14, 2, 13, 23, 3,−66, 3, 23, 13, 2,−14, 16,−6,−6, 3,−3, 1, 1)t .
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On the other hand, from Lemma 1 µ(4) = 0, µ(2) = −1, µ(1) = 1. So plunging them into the formula gives

T (C1,24 ) = −
1
4

[
1+

5∑
i=0

c4i+4 −
5∑
i=0

c4i+2

]

= −
1
4
[1− 73− 72]

= 36

= 4× 32.

In the Introduction we noted that T (C1,2n ) = nF 2n , where Fn is the well-known Fibonacci numbers, this gives T (C
1,2
4 ) =

4F 24 = 4× 3
2. The result is the same as the one we obtained in Example 2.

A similar derivation yields the following theorem about counting the number of spanning trees in a directed circulant
graph.

Theorem 8. For 1 ≤ s1 < s2 < · · · < sk ≤ n− 1, let (1 =)n0 < n1 < · · · < nl(= n) be the all possible divisors of n. Then we
have

T (EC s1,s2,...,skn ) = kn−1 + (−1)n−1
l∑
j=0

µ(n/nj)
dsk(n−1)/2e−1∑

i=0

cin+nj , (17)

where cj is the jth component of the coefficient vector, Cn−1, of polynomial
∏n−1
i=1
Efs1,s2,...,sk(x

i) and for m = 2, 3, . . . , n − 1, Cm
satisfies the following recurrence relation

Cm =

([
Cm−1
Oskm

] [O(sk−sk−1)m
Cm−1
Osk−1m

] [O(sk−sk−2)m
Cm−1
Osk−2m

]
· · ·

[
Oskm
Cm−1

])
1
...
1
−k

 ,
with the initial vector C1 which is the coefficient vector of polynomial Efs1,s2,...,sk(x).

Proof. The proof is similar to that of Theorem 7 and we therefore omit the details. �

Below is an example for a directed graph.

Example 3. T (EC1,24 ).

In this case we have s1 = 1, s2 = 2, f (x) = x2 + x − 2, C1 = (1, 1, − 2)t , n = 4 and all possible divisors of n are 1, 2
and 4. So, from (17) we have

T (EC1,24 ) = 23 −

[
µ(1)

2∑
i=0

c4i+4 + µ(2)
2∑
i=0

c4i+2 + µ(4)
2∑
i=0

c4i+1

]
, (18)

where cj is the jth component of the coefficient vector C3, it can be easily obtained by the following recurrence relation:

Cm =

([
Cm−1
O2m

] [ Om
Cm−1
Om

] [
O2m
Cm−1

])[ 1
1
−2

]
. (19)

Recursive calculation gives C3 = (1, 1,−1, 2,−3,−3, 3,−6, 0, 2, 8, 4,−8)t . From Lemma 1, µ(4) = 0, µ(2) = −1,
µ(1) = 1, plugging them into the formula we have

T (EC1,24 ) = 23 −

[
2∑
i=0

c4i+4 −
2∑
i=0

c4i+2

]
= 8− [−2− 10]

= 20.

Note that the result is the same as the one in Example 3 of [27] (where it is given as 8+ 4+ 8 = 20).
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Noticing further from Theorems 7 and 8 we know that if the number of divisors of n is small then the formulas (14) and
(17) will become simpler. When n is a prime number, we have the following two corollaries.

Corollary 1. Let 1 ≤ s1 < s2 < · · · < sk ≤ bn/2c, and n is a prime number. Then we have

T (C s1,s2,...,skn ) =
(−1)(sk+1)(n−1)

n

[
1+

sk(n−1)−1∑
i=0

(cin+n − cin+1)

]
, (20)

where cj is the jth component of the coefficient vector, Cn−1, of polynomial
∏n−1
i=1 fs1,s2,...,sk(x

i) and for m = 2, 3, . . . , n − 1, Cm
satisfies the following recurrence relation

Cm =

([
Cm−1
O2skm

] [O(sk−sk−1)m
Cm−1

O(sk+sk−1)m

] [O(sk−sk−2)m
Cm−1

O(sk+sk−2)m

]
· · ·

[
O2skm
Cm−1

])


1
...
1
−2k
1
...
1


,

with the initial vector C1 which is the coefficient vector of the polynomial fs1,s2,...,sk(x).

Proof. The divisors of n are 1 and n itself because n is a prime number. The rest of the proof follows that as in Theorem 7. �

Example 4. T (C5,1647 ).

In this case s1 = 5, s2 = 16, f (x) = x32 + x21 − 4x16 + x11 + 1, n = 47 and all possible divisors of n are 1 and 47. So from
Corollary 1 we have

T (C5,1647 ) =
1
47

[
1+

735∑
i=0

(c47i+47 − c47i+1)

]
, (21)

where cj is the jth component of the coefficient vector C46, it can be easily obtained by the following recurrence relation

Cm =

([
Cm−1
O32m

] [O11m
Cm−1
O21m

] [O16m
Cm−1
O16m

] [O21m
Cm−1
O11m

] [
O32m
Cm−1

])
1
1
−4
1
1

 , (22)

with the initial vector

C1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,−4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)t .

Then recursive calculation form = 2, 3, . . . , 46 yields the following result

T (C5,1647 ) =
1
47
2626364127996072949675369

= 55880087829703679780327
= 47× 1188938038929865527241
= 47× 344809808292.

Remark 1. We would like to point out that this method is much more efficient than the one introduced in [29] because, in
that method, we need to establish the recurrence formula of order 216−1 = 32768 and, to this end, we attempt to solve a
linear system of size 32768× 32768 apart from finding the initial values. Exact calculation will therefore become hard!

Corollary 2. Let 1 ≤ s1 < s2 < · · · < sk ≤ n− 1, and n is a prime number. Then we have

T (EC s1,s2,...,skn ) = kn−1 + (−1)n−1
dsk(n−1)/2e−1∑

i=0

(cin+n − cin+1), (23)
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where cj is the jth component of the coefficient vector, Cn−1, of polynomial
∏n−1
i=1
Efs1,s2,...,sk(x

i) and for m = 2, 3, . . . , n − 1, Cm
satisfies the following recursive formula

Cm =

([
Cm−1
Oskm

] [O(sk−sk−1)m
Cm−1
Osk−1m

] [O(sk−sk−2)m
Cm−1
Osk−2m

]
· · ·

[
Oskm
Cm−1

])
1
...
1
−k

 ,
with the initial vector C1, the coefficient vector of the polynomial Efs1,s2,...,sk(x).
Proof. The proof of this corollary is similar to that of Theorem 8. �

4. The number of spanning trees of circulant related graphs

In this section, we consider the formulas for the number of spanning trees of graphs Kn ± C where C are circulants. To
this end we need the following known lemmas.

Lemma 9 (Y.P. Zhang, X. Yong, M.J. Golin [30]). For n ≥
∑l
u=1mu and for each u, 1 ≤ u ≤ l,mu > 2sku ,

T

(
Kn −

l⋃
u=1

C s1u,s2u,...,skumu

)
= n

n−
l∑
u=1
mu+l−2 l∏

u=1

mu−1∏
j=1

(n− 2ku + ε−s1uj + εs1uj + · · · + ε−skuj + εskuj),

where εu = e
2π i
mu .

Lemma 10 (Y.P. Zhang, X. Yong, M.J. Golin [30]). For n ≥
∑l
u=1mu and for each u, 1 ≤ u ≤ l,mu > 2sku ,

T

(
Kn +

l⋃
u=1

C s1u,s2u,...,skumu

)
= n

n−
l∑
u=1
mu+l−2 l∏

u=1

mu−1∏
j=1

(n+ 2ku − ε−s1uj − εs1uj − · · · − ε−skuj − εskuj),

where εu = e
2π i
mu , and for each u, 1 ≤ u ≤ l.

For simplicity, we write the above two formulas, T (Kn −
⋃l
u=1 C

s1u,s2u,...,sku
mu ) and T (Kn +

⋃l
u=1 C

s1u,s2u,...,sku
mu ), into one

expression T (Kn − δ
⋃l
u=1 C

s1u,s2u,...,sku
mu ). Then when δ = 1 it gives T (Kn −

⋃l
u=1 C

s1u,s2u,...,sku
mu ) and when δ = −1 we have

T (Kn +
⋃l
u=1 C

s1u,s2u,...,sku
mu ). We let

fu(x) = x2sku + xsku+s(k−1)u + · · · + (δn− 2ku)xsku + xsku−s1u + · · · + 1,

Φ =
n
n−

l∑
u=1
mu+l−2

δl(mu−1)

l∏
u=1
(−1)sku(mu−1)

.

Then we have the following theorem.

Theorem 11. For 1 ≤ s1u < s2u < · · · < sku ≤ bmu/2c, n ≥
∑l
u=1mu and for each u, 1 ≤ u ≤ l, let (1 =)m0u,

m1u, . . . ,mtu(= mu) be all possible divisors of mu. Then we have

T

(
Kn − δ

l⋃
u=1

C s1u,s2u,...,skumu

)
= Φ

l∏
u=1

[
1+

t∑
j=0

µ(mu/mju)
sku(mu−1)−1∑

i=0

c(u)imu+mju

]
, (24)

where c(u)j is the jth component of the coefficient vector, C
(u)
mu−1, of polynomial

∏mu−1
i=1 fu(xi) and for k = 2, 3, . . . ,mu − 1, C

(u)
k

satisfy the following recurrence relation

C (u)k =

[ C (u)k−1
O2skuk

] O(sku−s(k−1)u)kC (u)k−1
O(sku+s(k−1)u)k

 O(sku−s(k−2)u)kC (u)k−1
O(sku+s(k−2)u)k

 · · ·

[
O2skuk
C (u)k−1

]


1
...
1

δn− 2ku
1
...
1


,

with the initial vector C (u)1 which is the coefficient vector of the polynomial fu(x).
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Proof.

T

(
Kn − δ

l⋃
u=1

C s1u,...,skumu

)
=
n
n−

l∑
u=1
mu+l−2

δl(mu−1)

l∏
u=1

mu−1∏
j=1

(δn− 2ku + ε−s1uj + εs1uj + · · · + ε−skuj + εskuj)

=
n
n−

l∑
u=1
mu+l−2

δl(mu−1)

l∏
u=1
(−1)sku(mu−1)

l∏
u=1

mu−1∏
j=1

(ε2skuj + ε(sku+s(k−1)u)j + · · · + (δn− 2ku)εskuj + ε(sku−s1u)j + · · · + 1)

= Φ

l∏
u=1

mu−1∏
j=1

fu(εj).

The remaining part of the proof is similar to that of Theorem 7. �

As a simple application of Theorem 11, we consider the following Example 5 (This is the combination of Corollaries 4, 5, 7,
8 of [30]).

Example 5.

(a) T (Kn − δC
1,2
3 ) = nn−4(v − 2)2,

(b) T (Kn − δC
1,2
4 ) = δnn−5v(v − 2)2,

(c) T (Kn − δC
1,2
5 ) = nn−6(v − 1)4,

(d) T (Kn − δC
1,2
6 ) = δnn−7v3(v − 2)

2
,

(e) T (Kn − δC
1,2
7 ) = nn−8(v6 − 4v5 + 2v4 + 6v3 − 3v2 − v + 1),

where v = δn− 4, and δ ∈ {−1, 1}.

Proof. Case (a): In this case we have that l = 1, s11 = 1, s21 = 2, f1(x) = x4 + x3 + vx2 + x + 1, v = (δn − 4),
C (1)1 = (1, 1, v, 1, 1, )

t ,m1 = 3 and all possible divisors ofm1 are 1 and 3. So, from (24) we have

T (Kn − δC
1,2
3 ) =

nn−3+1−2δ(3−1)

(−1)2(3−1)

[
1+ µ(3/3)

3∑
i=0

(c(1)3i+3)+ µ(3/1)
3∑
i=0

(c(1)3i+1)

]

= nn−4
[
1+

3∑
i=0

(c(1)3i+3)−
3∑
i=0

(c(1)3i+1)

]

= nn−4(1+ c(1)3 + c
(1)
6 + c

(1)
9 + c

(1)
12 − c

(1)
1 − c

(1)
4 − c

(1)
7 − c

(1)
10 ),

where c(1)j is the jth component of the coefficient vector, C
(1)
2 , of polynomial f1(x)f1(x

2) and

C (1)2 =

[C (1)1
O8

]  O2C (1)1
O6

  O4C (1)1
O4

  O6C (1)1
O2

 [
O8
C (1)1

]

1
1
v
1
1

 . (25)

Simple calculation yields c(1)3 = 2, c
(1)
6 = 2 + v, c

(1)
9 = 2, c

(1)
12 = 1, c

(1)
1 = 1, c

(1)
4 = 1 + 2v, c

(1)
7 = 1 + v, c

(1)
10 = 1 + v.

Plugging them into the above formula of T (Kn − δC
1,2
3 ) gives rise to

T (Kn − δC
1,2
3 ) = nn−4(v2 − 4v + 4)

= nn−4(v − 2)2.

This proves (a). The proofs of (b), (c), (d) and (e) are similar. So we omit them here. �

From Example 5 we know that v = δn− 4 and δ ∈ {1,−1}, thus

T (Kn − δC
1,2
3 ) = nn−4(δn− 6)2, (26)
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and

T (Kn − C
1,2
3 ) = nn−4(n− 6)2, (δ = 1), (27)

T (Kn + C
1,2
3 ) = nn−4(n+ 6)2, (δ = −1). (28)

Formula (28) is the same as the result of the first term of Corollary 8 in [30]. Here we obtain it in an alternative way.

Theorem 12. For 1 ≤ s1 < sk < · · · < sk, δ ∈ {1,−1} and n ≥ m, let v = δn− 2k and

g(x) =
m−1∏
j=1

(x+ ε−s1j + εs1j + ε−s2j + εs2j + · · · + ε−skj + εskj). (29)

Then we have

(a) g(x) is an integer coefficient polynomial of degree m− 1,
(b) (Kn − δC

s1,s2,...,sk
m ) = δm−1nn−m−1g(v).

Proof. From the proof of Theorem 11, we know that each c(u)i in (24) is an integer coefficient polynomial of δn− 2k. �

Remark 2. The exact calculation of the number of spanning trees, T (C s1,s2,...,skn ) = na2n, is the essential in network reliability
analysis [9,21]. For any integer s1 < s2 < · · · < sk, to find the recurrence relations of an, both Theorem8 of [29] and Theorem
3.1 of [12] need to calculate 2sk(2sk−1) values of an and then solve a systemof 2sk−1(2sk−2) linear equationswith unsymmetric
Toeplitz matrix. Because of the exponential size, it is hard to solve such an unsymmetric Toeplitz system for a large sk and
the stability of the process cannot be assured unless its leading principle submatrices are sufficiently well conditioned [16].
Theorem 6 of [2] claims that it is not necessary to solve such a system of linear equations, but one still has to calculate
2sk(2sk−1) values of an. Lemma 6 gives very good expressions of the number of spanning trees, but, unfortunately, we cannot
use it in practice, since it cannot give the exact number even for small sk and n. Theorem7 gives the exact calculation formula
that it is not necessary to calculate 2sk(2sk−1) values of an or to solve a system of 2sk−1(2sk−2) linear equations.

5. Concluding remarks

For a large sk, it is not easy to apply the recurrence relation technique derived in [29] for finding the number of spanning
trees in circulant graphs because the degree of the recurrence relation increases exponentially with sk. For instance, to
evaluate T (C1,20n ) we have to establish a recurrence relation of order 219(= 524288) to get the number of spanning trees.
This is hard!
Focusing our attention on this point, in this paper we obtained direct (recursive) formulas for the numbers of spanning

trees in Gwhere G is either a directed or an undirected circulant graph with fixed or non-fixed jumps. And for G = Kn ± C ,
where Kn is the complete graph on n vertices and C is a circulant graphwith jumps s1 < s2 < · · · < sk, the numbers can also
be calculated efficiently. Our method introduced here does not need to establish the recurrence relation of order 2sk−1. An
interesting problem would be to consider themax and themin value of the average growth rate of the number of spanning
trees by (possibly) making use of the results obtained in this paper.
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