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Abstract In this paper we present three modified parallel multisplitting
iterative methods for solving non-Hermitian positive definite systems
Ax = b . The first is a direct generalization of the standard parallel multisplit-
ting iterative method for solving this class of systems. The other two are the
iterative methods obtained by optimizing the weighting matrices based on the
sparsity of the coefficient matrix A. In our multisplitting there is only one
that is required to be convergent (in a standard method all the splittings must
be convergent), which not only decreases the difficulty of constructing the
multisplitting of the coefficient matrix A, but also releases the constraints to
the weighting matrices (unlike the standard methods, they are not necessarily
be known or given in advance). We then prove the convergence and derive the
convergent rates of the algorithms by making use of the standard quadratic
optimization technique. Finally, our numerical computations indicate that the
methods derived are feasible and efficient.
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1 Introduction and preliminaries

In solving a large sparse linear system of equations

Ax = b , (1.1)

where A = (aij) ∈ Cn×n is nonsingular, and b ∈ Cn, O’Leary and White [19]
seem to be the first to introduce the parallel algorithms by multisplitting A
and derive the convergence properties. Their formulas can be written as

A = Mi − Ni, i = 1, 2, · · · , m,

Mix
(k)

i = Nix(k−1) + b , k = 1, 2, · · · .

x(k) =
m∑

i=1

Eix
(k)

i ,

where Ei, called the weighting matrices, are nonnegative diagonal matrices that

satisfy the equation
m∑

i=1
Ei = I. The triples (Mi, Ni, Ei)

m
i=1 is said to be a multi-

splitting (m splittings) of A. Subsequently, many authors studied the methods
for the cases that A is an M-matrix [16], an H-matrix [1–5, 8] and an Hermitian
positive definite matrix (e.g., [9–12, 15, 21, 22]), respectively. However, we
noticed that all the above parallel multisplititng iterative methods are based
on the following constraints to A:

• all splittings A = Mi − Ni, i = 1, 2, · · · , m, must be convergent;
• the weighting matrices, E(k)

i (i = 1, 2, . . . , m; k = 1, 2, · · · ) (e.g. [2, 11, 14])
must be given in advance.

When the coefficient matrix A of the system (1.1) is non-Hermitian positive
definite, the first author of this paper and Bai [18] presented some sufficient
conditions that guarantee the convergence of the single (m = 1) iterative
methods and we would like to address that Bai et al. [6, 7] also discussed
two alternative methods, called HSS and PSS methods, which converge un-
conditionally to the unique solution of the system of equations (1.1). But
a common drawback of those methods is that, if A is Hermitian or skew-
Hermitian, the corresponding equations must be solved at each iteration
step. The research into a skew-Hermitian system of linear equations is also
conducted in [13, 19, 20]). But until now we have not seen an article that
discusses the convergence of a parallel multisplitting iterative algorithm for the
non-Hermitian positive definite systems of linear equations. This motivated us
to come up with the algorithms proposed here.
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The aim of this paper is to investigate the convergent parallel multisplitting
iterative algorithms for the non-Hermitian positive definite systems of linear
equations. By making use of the standard quadratic optimization technique we
choose the optimal weighting matrices at each step. And in computation, we
need only one of the splittings A = Mi − Ni, i = 1, 2, · · · , m, to be convergent
and all the others can be constructed arbitrarily. Thus, we not only decrease the
difficulty of constructing the multisplitting of A, but also release the constraints
to the weighting matrices (they are not necessarily be known or given in
advance). The proposed three parallel multisplitting iterative methods are as
follows.

• a direct generalization of the traditional parallel multisplitting iterative
methods for solving non-Hermitian positive-definite systems;

• a method based on combining a special multisplitting that has ’conjugate’
property and the sparsity of the matrix A;

• a parallel multisplitting iterative method with optimal weighting matrices.

It is convenient to introduce some essential notations and preliminaries.
As usual, we use Cn×n to denote the n × n complex matrix set and Cn the n-
dimensional complex vector space. X∗ represents the conjugate transpose of
a matrix or a vector X and 〈x, y〉 stands for the angle between the vectors x
and y. We use || · ||2 to denote the Euclidean norm. If A is an n × n Hermitian
positive definite (or semi-definite) matrix then it is written as A � 0 (or �
0). A matrix A ∈ Cn×n is called positive definite, if for all nonzero x ∈ Cn,
Re(x∗ Ax) > 0 is always true. For a complex or real matrix A we let

H(A) = 1

2
(A + A∗), S(A) = 1

2
(A − A∗). (1.2)

The width l of a sparse matrix A is defined as

l = max{| j − i|, aij �= 0}. (1.3)

For a large sparse matrix A, we always assume that l 	 n. Also, [ n
m ] represents

the integer part of the number n
m . For the residual vectors r(k) = Ax(k) − b ,

k = 1, 2, · · · , if they satisfy

∥∥r(k)
∥∥

2 ≤ ∥∥M−1 N
∥∥k

2
‖r0‖2 , (1.4)

then the convergent rate q is defined as

q = − ln
(‖M−1 N‖2

)
. (1.5)

In the following Section 2 we describe three different parallel multisplitting
iterative algorithms and then in Section 3 we provide the proofs of their
convergence. Finally, We apply our algorithms to two concrete examples and
then illustrate the advantages of the algorithms.
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2 Parallel algorithms

In this section we present three parallel multisplitting iterative algorithms.
The convergence theorems for the algorithms will be established in the next
section. The first is a direct generation of the standard parallel multisplitting
iterative algorithm. The next two are the parallel multisplitting iterative algo-
rithms obtained by optimizing the weighting matrices.

(I) Let the multisplitting of A be given by [9, 10]

A = Bi − Ci, i = 1, 2, · · · , m, (2.1)

where Bi (i = 1, 2, · · · , m) are Hermitian diagonal block matrices,
that is

Bi = diag
(
Bi,1, Bi,2, · · · , Bi,m

)
, (2.2)

where Bi,1, Bi,2, · · · , Bi,m are Hermitian, and the weighting matrices Ei

satisfy
m∑

i=1

Ei = I, Ei = diag (αi1 I1, αi2 I2, · · · , αim Im) ≥ 0, i = 1, 2, · · · , m.

(2.3)

Algorithm 2.1

Give an initial point x(0) and a tolerance ε > 0, for k = 1, 2, · · · until the process
converges, do

Step 1. Solve in parallel the m equations

Mix
(k)

i = Nix(k−1) + b , i = 1, 2, · · · , m.

Step 2. Compute x(k) by the formula

x(k) =
m∑

i=1

Eix
(k)

i .

Step 3. If ‖Ax(k) − b‖2 < ε, stop; Otherwise, k ⇐ k + 1 and go back to
Step 1.

(II) Let the multisplitting of A be given by

A = Mi − Ni, i = 1, 2, · · · , m, (2.4)

where M1 is a Hermitian positive definite matrix, and let

M−1
i = M−1

1 − Pi, i = 2, · · · , m, (2.5)

Pi =
(

0, · · · ,
(

P(i)
[ n

m ]×n

)∗
, · · · , 0

)∗
,
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P(i)
[ n

m ]×n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ · · · ∗
...

...
...

...

∗ ∗ · · · ∗
0 0 · · · 0
...

...
...

...

0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

[ n
m ]×n

, (2.6)

where, the nonzero entries can be from row i[ n
m ] + 1 to row (i + 1)[ n

m ] −
l − 1 and where the zero entries are from row (i + 1)[ n

m ] − l to row (i +
1)[ n

m ]. Similarly, the weighting matrices satisfy

m∑

i=1

E(k)

i = I, E(k)

i = α
(k)

i I, i = 1, 2, · · · , m, k = 1, 2, · · · ,

(2.7)

we now describe our second algorithm.

Algorithm 2.2

Give an initial point x(0) and a tolerance ε > 0, let the residual vector r(0) =
Ax(0) − b . For k = 1, 2, · · · until the algorithm converges, do

Step 1. Compute in parallel

x(k)

i = x(k−1) − M−1
i r(k−1), i = 1, 2, · · · , m,

r(k)

i = Ax(k)

i − b , i = 1, 2, · · · , m.

Step 2. Compute α in parallel for i = 2, · · · , m

α
(k)

i =
−

(
r(k)

i − r(k)
1

)∗
M−1

1 r(k)
1

(
r(k)

i − r(k)
1

)∗
M−1

1

(
r(k)

i − r(k)
1

) , (2.8)

Step 3. Compute x(k) and r(k) by the following formulas

x(k) =
m∑

i=1

α
(k)

i x(k)

i = x(k)
1 +

m∑

i=2

α
(k)

i

(
x(k)

i − x(k)
1

)
,

r(k) =
m∑

i=1

αir
(k)

i .

Step 4. If ‖r(k)‖2 < ε, stop; Otherwise, k ⇐ k + 1 and go back to Step 1.

(III) Let the multisplitting of A be given by

A = Fi − Gi, i = 1, 2, · · · , m, (2.9)
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where F1 is a Hermitian positive definite matrix, and

E(k)

i = α
(k)

i I, i = 1, 2, · · · , m, k = 1, 2, · · · , (2.10)

now we release the constraint
m∑

i=1
E(k)

i = I and describe our third

algorithm below.

Algorithm 2.3

Give an initial point x(0) and a tolerance ε > 0, let r(0) = Ax(0) − b . For k =
0, 1, 2, · · · until the process converges, do

Step 1. Compute in parallel

Fix
(k)

i = Gix(k−1) + b , i = 1, 2, · · · , m.

Step 2. Compute

x(k) =
m∑

i=1

α
(k)

i x(k)

i ,

r(k) = Ax(k) − b ,

where α(k) = (α
(k)
1 , α

(k)
2 , · · · , α(k)

m ) is the solution to the following
quadratic programming

min
α

1

2
r∗M−1

1 r, (2.11)

r = A

(
m∑

i=1

αix
(k)

i

)
− b . (2.12)

Step 3. If ‖r(k)‖2 < ε, stop; Otherwise, k ⇐ k + 1 and go back to Step 1.

In fact, if we define X(k) = (x(k)
1 , · · · , x(k)

m ), then the solution of (2.11)
and (2.12) is given by

α(k) = (
X(k)T AT M−1

1 AX(k)
)−1

X(k)T AT M−1
1 b . (2.13)

Remark We would like to address the releases of the constraints that are
required in the algorithms appeared in the previous articles. Algorithm 2.1 is
a direct generalization of symmetric splitting discussed in [9]. The advantage
of the algorithm is that the weighting matrices do not need to be scaled.
In Algorithm 2.2, the splitting has “conjugate” property. By making use of
the sparsity of the coefficient matrix A, we obtained more general weighting
matrices E(k)

i = α
(k)

i I, i = 1, 2, · · · , m (the matrices do not need to be non-
negative or stationary). In Algorithm 2.3, The m splittings do not need to be
convergent for all i. Instead, we need only one convergent splitting of A in
computation. Also, the weighting matrices E(k)

i = α
(k)

i I, i = 1, 2, · · · , m do not
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need to be nonnegative or stationary and we remove the constraint
m∑

i=1
Ei = I

in computation.

3 Analysis of convergence

In this section we discuss the convergence of the multisplitting algorithms
addressed in the previous section. Our idea is by combining the sparsity of
the matrix A and the property of the solution to a quadratic programming.

Theorem 3.1 Let A = M − N, detM �= 0 be a splitting and T = NM−1. If
H(A) � 0. Then M � 1

2 (H(A) + S(A)∗ H(A)−1S(A)) if and only if
∥∥∥M− 1

2 T M
1
2

∥∥∥
2

< 1. (3.1)

Proof Note that proving ‖M− 1
2 T M

1
2 ‖2 < 1 is equivalent to showing that

M− 1
2 N∗M−1 NM− 1

2 ≺ I,

which is also equivalent to claiming that

N∗M−1 N ≺ M. (3.2)

From N = M − A, we have

(M − A)∗M−1(M − A) = M − A∗ − A + A∗M−1 A.

By combining this identity with formula (3.2) we obtain their another equiva-
lent condition:

A∗M−1 A ≺ A∗ + A,

and it is also equivalent to

M−1 ≺ (A∗)−1(A∗ + A)A−1 = A−1 + (A∗)−1. (3.3)

To prove the theorem we rewrite A−1 in terms of H(A)− 1
2 and S(A). Since

A−1 = (H(A) + S(A))−1

= H(A)−
1
2
(
I + Ŝ(A)

)−1
H(A)−

1
2

= H(A)−
1
2
(
I + Ŝ(A)

)−1 (
I − Ŝ(A)

)−1 (
I − Ŝ(A)

)
H(A)−

1
2

= H(A)−
1
2
(
I − Ŝ 2(A)

)−1 (
I − Ŝ(A)

)
H(A)−

1
2

= H(A)−
1
2
(
I − Ŝ 2(A)

)−1
H(A)−

1
2 − H(A)−

1
2
(
I − Ŝ 2(A)

)−1
Ŝ(A)H(A)−

1
2 ,

where Ŝ(A) = H(A)− 1
2 S(A)H(A)− 1

2 , we have that

A−1 + (A∗)−1 = 2H(A)−
1
2 (I − Ŝ 2(A))−1 H(A)−

1
2 .
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Combining this relation with (3.3) yields

M−1 ≺ 2H(A)−
1
2
(
I − Ŝ 2(A)

)−1
H(A)−

1
2 ,

which is equivalent to

M � 1

2
(H(A) + S(A)∗ H(A)−1S(A)).

Observing the assumptions in the theorem yields (3.1). ��

Theorem 3.2 Let (Bi, Ci, Ei)
m
i=1 be the multisplitting given by the formulas

(2.1)–(2.3) and B = diag(Bi,1, Bi,2, · · · , Bi,m) be of the same forms as Bi (i =
1, 2, · · · , m). If

Bi � B � 1

2
(H(A) + S(A)∗ H(A)−1S(A)), H(A) � 0,

m∑

i=1

Ei = I, i = 1, 2, · · · , m, Ei ≥ 0,

then the sequence {x(k)} generated by Algorithm 2.1 converges to the solution of
(1.1).

Proof From the proofs given in [9, 17] it is trivially seen that the multisplitting
(Bi, Ci, Ei)

m
i=1 is convergent if and only if the splitting

A =
(

m∑

i=1

Ei B−1
i

)−1

−
(

m∑

i=1

Ei B−1
i

)−1 m∑

i=1

Ei B−1
i Ci

is convergent. Thus, it suffices to prove
(

m∑

i=1

Ei B
−1
i

)−1

� B. (3.4)

From (2.2) and (2.3) we have that

Ei B−1
i = diag

(
αi1 B−1

i,1 , αi2 B−1
i,2 , · · · , αim B−1

i,m

)

� diag
(
αi1 B−1

11 , αi2 B−1
22 , · · · , αim B−1

mm

)
.

Consequently,
m∑

i=1

Ei B
−1
i � diag

(
m∑

i=1

αi1 B−1
11 ,

m∑

i=1

αi2 B−1
22 , · · · ,

m∑

i=1

αim B−1
mm

)
= B−1,

which is equivalent to (3.4). Now, from Theorem 3.1 we see that the splitting

A =
(

m∑
i=1

Ei B
−1
i

)−1

−
(

m∑
i=1

Ei B
−1
i

)−1 m∑
i=1

Ei B
−1
i Ci is convergent. This proves

the theorem. ��
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Lemma 3.3 If the widths of A and B are l and d, respectively, then the width of
AB is at most l + d.

Proof Let A = (aij), B = (bij), C = (cij) = AB. Then

cij =
n∑

k=1

aikb kj = aii−lb i−l j + · · · + aii+lb i+l j.

If i − l − j > d, then bi−l j = · · · = bi+l j = 0, so cij = 0.

If i + l < j − d, then bi−l j = · · · = bi+l j = 0, so cij = 0.

Hence, if |i − j| > l + d, then cij = 0. ��

Lemma 3.4 (‘Conjugate’ property) Let the width of the matrix A be l, and let
l, m << n, [ n

m ] = n
m . Assume Pi = (0, · · · , (P(i)

[ n
m ]×n)

∗, · · · , 0)∗, where P(i)
[ n

m ]×n is
i-th block matrix with nonzero rows being from i[ n

m ] + 1 to (i + 1)[ n
m ] − l − 1.

Then

P∗
i AP j = 0, ∀ i �= j. (3.5)

Proof Since

P∗
i AP j =

(
0, · · · ,

(
P(i)

[ n
m ]×n

)∗
, 0, · · · , 0

)
A

(
0, · · · ,

(
P( j)

[ n
m ]×n

)∗
, · · · , 0

)∗

and the nonzero rows of AP j are from j [ n
m ] − l + 1 to ( j + 1)[ n

m ] − 1, the
nonzero columns of P∗

i are at most from i[ n
m ] + 1 to (i + 1)[ n

m ] − l − 1. This
implies P∗

i AP j = 0 for all i, j such that i �= j. ��

Remark If [ n
m ] < n

m , we can select Pm = (
0, · · · , 0,

(
P(m)

k×n

)∗)∗, where k = n −
(m − 1)[ n

m ], then P(m)

k×n has [ n
m ] − l − 1 nonzero rows. Hence, for the case that

[ n
m ] �= n

m , Lemma 3.4 is still true.

Theorem 3.5 Let the multisplitting (Mi, Ni, Ei)
m
i=1 be given by formulas

(2.4)–(2.7). Assume that Pi (i = 1, 2, · · · , m) satisfy P∗
i A∗M−1

1 AP j = 0. If
M1 � 1

2 (H(A) + S(A)∗ H(A)−1S(A)) and H(A) � 0. Then {x(k)} generated
by Algorithm 2.2 converges to the solution of (1.1). Furthermore, if〈
M

− 1
2

1 r(k), M
− 1

2
1 r(k)

1

〉
≥ θ , then the convergent rate is given by

q = −
(

ln ||M− 1
2

1 N1 M
− 1

2
1 ||2 + ln | cos θ |

)
, (3.6)

Proof Let r(k) = Ax(k) − b . Then

x(k)

i = x(k−1) − M−1
i r(k−1), i = 1, 2, · · · , m, (3.7)

which implies

r(k)

i = r(k−1) − AM−1
i r(k−1) = (

I − AM−1
i

)
r(k−1), i = 1, 2, · · · , m. (3.8)
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On the other hand, since

r =
m∑

i=1

αir
(k)

i = r(k)
1 +

m∑

i=2

αi

(
r(k)

i − r(k)
1

)
,

we consider the following quadratic programming

r∗M−1
1 r =

(
r(k)

1 +
m∑

i=2

αi

(
r(k)

i − r(k)
1

))∗
M−1

1

(
r(k)

1 +
m∑

i=2

αi

(
r(k)

i − r(k)
1

))

=
(

r(k)
1

)∗
M−1

1 r(k)
1 + 2

m∑

i=2

αi

(
r(k)

i − r(k)
1

)∗
M−1

1 r(k)
1

+
m∑

i=2

αi

(
r(k)

i − r(k)
1

)∗
M−1

1

m∑

i=2

αi

(
r(k)

i − r(k)
1

)

=
(

r(k)
1

)∗
M−1

1 r(k)
1 + 2

m∑

i=2

αi

(
r(k)

i − r(k)
1

)∗
M−1

1 r(k)
1

+
m∑

i, j=2

αiα j

(
r(k)

i − r(k)
1

)∗
M−1

1

(
r(k)

j − r(k)
1

)
, (3.9)

from (3.8), it follows

r(k)

i − r(k)
1 = A

(
M−1

1 − M−1
i

)
r(k−1)

= APir(k−1),

and
(

r(k)

i − r(k)
1

)∗
M−1

1

(
r(k)

j − r(k)
1

)
= (

r(k−1)
)∗

P∗
i A∗M−1

1 AP jr(k−1) = 0.

Hence, (3.9) is reduced to

r∗M−1
1 r =

(
r(k)

1

)∗
M−1

1 r(k)
1 + 2

m∑

i=2

αi

(
r(k)

i − r(k)
1

)∗
M−1

1 r(k)
1

+
m∑

i=2

α2
i

(
r(k)

i − r(k)
1

)∗
M−1

1

(
r(k)

i − r(k)
1

)
. (3.10)

Now, by differentiating r∗M−1
1 r with respect to αi, i = 1, 2, · · · , m, we obtain

formula (2.8). That is, the critical point (· · · , α
(k)

i , · · · ) that minimizes the
quadratic form r∗M−1

1 r:

α
(k)

i =
−

(
r(k)

i − r(k)
1

)∗
M−1

1 r(k)
1

(
r(k)

i − r(k)
1

)∗
M−1

1

(
r(k)

i − r(k)
1

) , i = 2, 3, · · · , m. (3.11)
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Fig. 1 The orthogonality

between M
− 1

2
1 r(k) and

M
− 1

2
1 (r(k) − r(k)

1 )

Next, we discuss the convergence and convergent rate of {x(k)}. For r(k) and
r(k)

1 , (3.11) yields
(
r(k)

)∗
M−1

1

(
r(k) − r(k)

1

)
= 0,

which implies that the vectors M
− 1

2
1 r(k) and M

− 1
2

1 (r(k) − r(k)
1 ) are orthogonal

vectors shown in Fig. 1.

From the assumption
〈
M

− 1
2

1 r(k), M
− 1

2
1 r(k)

1

〉
≥ θ , we see that

(
r(k)

)∗
M−1

1 r(k) ≤ cos2 θ
(

r(k)
1

)∗
M−1

1 r(k)
1 . (3.12)

Hence,
∥∥∥M

− 1
2

1 r(k)
∥∥∥

2
≤ | cos θ |

∥∥∥M
− 1

2
1 r(k)

1

∥∥∥
2

= | cos θ |
∥∥∥M

− 1
2

1 N1 M−1
1 r(k−1)

∥∥∥
2

≤ | cos θ |
∥∥∥M

− 1
2

1 N1 M
− 1

2
1

∥∥∥
2

∥∥∥M
− 1

2
1 r(k−1)

∥∥∥
2

...

≤ | cosk θ |
∥∥∥M

− 1
2

1 N1 M
− 1

2
1

∥∥∥
k

2

∥∥∥M
− 1

2
1 r(0)

∥∥∥
2

From Theorem 3.1, we have that ‖M
− 1

2
1 N1 M

− 1
2

1 ‖2 < 1. Thus,

lim
k−→∞

∥∥∥M
− 1

2
1 r(k)

∥∥∥
2

= 0, (3.13)

which implies lim
k−→∞

r(k) = 0. Furthermore, by the definition of the convergent

rate (see (1.4) and (1.5)), we obtain (3.6). ��

Theorem 3.6 Let the multisplitting (Fi, Gi, Ei)
m
i=1 be given by formulas (2.9)–

(2.10), and let F1 � 1
2 (H(A) + S(A)∗ H(A)−1S(A)). Then the sequence {x(k)}

that is generated by Algorithm 2.3 converges to the solution of (1.1). Further-

more, if
〈
F

− 1
2

1 r(k), F
− 1

2
1 r(k)

1

〉 ≥ θ , then the convergent rate is

q = −
(

ln
∥∥∥F

− 1
2

1 G1 F
− 1

2
1

∥∥∥
2
+ ln | cos θ |

)
. (3.14)
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Proof Let r(k) = Ax(k) − b . Then combination of (2.11) and (2.12) implies
(3.12). Thus, proceeding a similar derivation results in the following property

lim
k−→∞

r(k) = 0 (3.15)

and (3.14) (Their derivations are omitted), which proves the theorem. ��

4 Numerical results

Example [6] Consider the generalized convection-diffusion equations in a
two-dimensional case:

−∂2u
∂x2

− ∂2u
∂y2

+ q ∗ exp(x + y) ∗ x ∗ ∂u
∂x

+ q ∗ exp(x + y) ∗ y ∗ du
dy

= f (4.1)

with the homogeneous Dirichlet boundary condition. We use the standard
Ritz-Galerkin Finite Element Method and apply the conforming linear tri-
angular elements to approximate its continuous solutions u = x ∗ y ∗ (1 − x) ∗
(1 − y) in the domain � = [0, 1] × [0, 1], where the step-sizes along both x and
y directions are selected to be the same h = 1

128 .

After discretization the matrix A of this equation is given by

A =

⎡

⎢⎢⎢⎢⎢⎣

A11 B12

C21 A22 B23

. . .
. . .

. . .

Cp−1p−2 Ap−1p−1 Bp−1p

Cpp−1 App

⎤

⎥⎥⎥⎥⎥⎦

p×p

,

where Aii, i = 1, · · · , p are n-by-n nonsymmetric matrices and BT
ii+1 �= Ci+1i.,

and np = 1282.
Let q = 1. Given x(0) = (0, · · · , 0)T and a tolerance ε = 10−5, the iteration

fails in computation for the iterative number that is up to 30,000.
Now, let H(A) = D − L − LT , where D = diag(H(A11), · · · , H(App)),

and L the block strictly lower triangle matrix of H(A). Since A is a sparse
matrix with the block width l = 1, we choose

M1 = D = diag(H(A11), · · · , H(App)).

the splittings (Mi, Ni), i = 2, 3 are constructed by (2.5) and (2.6), where the
nonzero part of P(i)

[ p
3 ]×p is the corresponding part of the following matrix

⎡

⎢⎢⎢⎣

H(A11)

H(A22)

. . .

H(App)

⎤

⎥⎥⎥⎦

−1
⎡

⎢⎢⎢⎢⎢⎣

0 B12

C21 0 B23

. . .
. . .

. . .

Cp−1p−2 0 Bp−1p

Cpp−1 0

⎤

⎥⎥⎥⎥⎥⎦
.
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Our numerical results of Algorithm 2.2, when p = 64, are given in Table 1.
When we use the following multisplitting iterative method

(1) M1 = (D − L)T D−1(D − LT), N1 = M1 − A;
(2) the block SOR method (parameter ω = 1.8);
(3) The block Jacobi method.
(4) Algorithm 2.3

The computation generates the following results (see Table 2).
If we replace the splitting (1) with the new splitting M1 = H(A), N1 =

−S(A), and unchange the others, our algorithm generates much better results,
illustrating in the following Table 3.

From the above numerical results we see that the multisplitting parallel
algorithms for non-Hermitian linear systems are convergent. In addition, the
multisplitting parallel algorithm has less iterative number than the single split-
ting iteration. The rate of convergence of the multisplitting parallel algorithm
depends on the section of the main splitting.

Table 1 Comparisons of Algorithm 2.2 and the single splitting iterative methods when p = 64

Methods M1 − N1 M2 − N2 M3 − N3 Algorithm 2.2

IT 16956 – – 15454

Table 2 Comparisons of Algorithm 2.3 and the single splitting iterative methods

Methods Block Jacobi Block SOR Splitting (1) Algorithm 2.3

IT – 1734 8762 629

Table 3 Comparisons of Algorithm 2.3 and the single splitting iterative methods

Methods Block Jacobi Block SOR The new splitting Algorithm 2.3

IT – 1734 20 16
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