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Abstract

Let G be a simple graph with n(≥ 2) vertices, and λi(G) be the ith largest
eigenvalue of G. In this paper we obtain the following:

If λ3(G) < 0, and there exists some index k, 2 ≤ k ≤ [n
2 ],such that λk(G) =

-1, then
λj(G) = −1, j = k, k + 1, · · · , n− k + 1.

In particular, we obtain that (1) λ2(G) = −1 implies

λ1(G) = n− 1, λj(G) = −1, j = 2, 3, · · · , n.

and therefore G is complete. This is a result presented in [6]; (2) λ3(G) = −1
implies that λj(G) = −1, j = 3, 4, · · · , n− 2.

1.Introduction.
All graphs considered here are undirected and simple.
Let G denote a graph with vertex set {v1, v2, · · · , vn}. Its adjacency matrix A(G)

is the n × n one-zero matrix (aij), where aij=1 iff vi is adjacent to vj , and aij=0
otherwise. It is seen that A(G) is a symmetric (0,1) matrix with every diagonal
entry equal to zero. We shall denote the characteristic polynomial of G by

P (x,G) = det(xI −A(G)) =
n∑

i=0

aix
n−i.

Since A(G) is a real symmetric matrix, its eigenvalues, say λi(A(G))(i = 1, 2, · · · , n),
are real numbers, and may be ordered as λ1(A(G)) ≥ λ2(A(G)) ≥ · · · ≥ λn(A(G)).
Denote λi(A(G)) simply by λi(G). The sequence of n eigenvalues of G is known
as the spectrum of G. Spectra of graphs appear frequently in the mathematical
sciences. A good survey on this field can be found in [1].

The problem how to characterize a graph by the second eigenvalue has been
considered by several authors([2∼ 5]). Dasong Cao and Hong Yuan showed that
for a simple graph λ2(G) = −1 iff G is complete ([6]), they also established in [7]
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that (1) λ3(G) < −1 iff G ∼= P3; (2)λ3(G) = −1 iff Gc (the complement of G) is
isomorphic to a complete bipartite plus isolated vertices; (3) there exist no graphs
such that −1 < λ3(G) < −

√
5−1
2 . In this paper we explore the distribution of

eigenvalues of a graph with λ3(G) < 0 and obtain that:
If λ3(G) < 0, and some λk(G) = −1, 2 ≤ k ≤ [n

2 ], then

λj(G) = −1, j = k, k + 1, · · · , n− k + 1.

The techniques and ideas are in light of matrix theory and graph theory.

2. Lemmas and Results.

Lemma 2.1([7]). Let G be a graph with n ≥ 2 vertices. Then for k ≥ 2,

λk(G) + λn−k+2(Gc) ≤ −1 ≤ λk(G) + λn−k+1(Gc).

Lemma 2.2([7]). For every graph G with at least four vertices,

λ3(G) ≥ −1.

Moreover, if Gc is not bipartite, then λ3(G) ≥ 0.

Lemma 2.3([1]). If G is bipartite, then

λi(G) = −λn−i+1(G),

for 1 ≤ i ≤ n.

Lemma 2.4([1]). Let G be a graph with n vertices. Then G has only one positive
eigenvalue iff G is a complete multipartite graph plus isolated vertices.

Lemma 2.5. Let G be a graph with n vertices. Then
(1) G is complete iff λ2(G) < 0;
(2) G is complete iff we have

λ1(G) = n− 1;

(3) G is complete iff we have

λj(G) = −1, j = 2, 3, · · · , n.

Proof. The assertions are by [6, Theorem 1] and [8,P37, Theorem(2.35)].
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Theorem 2.6. Let G be a graph with n(n ≥ 4) vertices. If λ3(G) < 0, and there
exists an index k, 2 ≤ k ≤ [n

2 ], such that λk(G) = −1, then

λj(G) = −1, j = k, k + 1, · · · , n− k + 1.

Furthermore, if G is unconnected and has no isolated vertices, then G is isomorphic
to G1 ⊕G2, where Gi, i=1,2, are complete and therefore we have

λj(G) = −1, j = 3, 4, · · · , n.

Proof. By Lemma 2.1, we have

λn−k+1(Gc) ≥ 0, λn−k+2(Gc) ≤ 0.

On the other hand, by Lemma 2.2, λ3(G) < 0 implies that Gc is bipartite. Thus,
using Lemma 2.3, it yields

0 ≤ λn−k+1(Gc) = −λk(Gc).

Since
0 ≤ λn−k+1(Gc) ≤ λn−k(Gc) ≤ · · · ≤ λk(Gc) ≤ 0,

we have
λk(Gc) = 0.

Now, we use Lemma 2.1 to the graph Gc, then

λk(Gc) + λn−k+1(G)

= λn−k+1(G)

≥ −1.

Noticing that n− k + 1 ≥ n− [n
2 ] + 1 ≥ [n

2 ] + 1 > k, it leads to

λk(G) = −1 ≥ λk+1(G) ≥ λk+2(G) ≥ · · · ≥ λn−k+1(G) ≥ −1.

i.e
λj(G) = −1, j = k, k + 1, · · · , n− k + 1.

Furthermore, if G is unconnected and has no isolated vertices, G has exactly two
components Gi(i = 1, 2) due to λ3(G) < 0. Therefore by Lemma 2.4 and Lemma
2.5 (1) Gi are complete. This yields the following by Lemma 2.5(3)

λj(G) = −1, j = 3, 4, · · · , n.
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The proof is now complete.
Taking advantage of Theorem 2.6, we have the following results:

(I) For the case k=2(i.e. λ2(G) = −1), by Theorem 2.6

λj(G) = −1, j = 2, 3, · · · , n− 1.

and since
n∑

j=1

λj(G) = 0, it gives

λ1(G) ≥ n− 1.

But, on the other hand, we have that λ1(G) ≤ n− 1. Consequently,

λ1(G) = n− 1, λj(G) = −1, j = 2, 3, · · · , n,

which states that G is complete. This is a known result given in [6].
(II) The case k=3(i.e.λ3(G) = −1). In this case, we need only consider the case
λ2(G) ≥ 0 due to Lemma 2.5. By Theorem 2.6, then we have

λj(G) = −1, j = 3, 4 · · · , n− 2.

COROLLARY 2.7. Let G be a graph with n(≥ 6) vertices. Then λ3(G) = −1
implies that

λj(G) = −1, j = 3, 4, · · · , n− 2.

An example: Let

A(G) =




0 1 1 1 0 0 0 0
1 0 1 1 1 1 0 0
1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 1
0 1 1 1 0 1 1 1
0 1 1 1 1 0 1 1
0 0 0 1 1 1 0 1
0 0 0 1 1 1 1 0




be the adjacency matrix of a graph with eight vertices. Then by MATHEMATICA
we obtain that 




λ1(G) = 5.24384

λ2(G) = 1.60317

λ3(G) = −0.182062

λ4(G) = −0.9999

λ5(G) = −1

λ6(G) = −1

λ7(G) = −1.53035

λ8(G) = −2.1346
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On the other hand, since it is easy to verify that matrix r(I + A(G)) = 5 (the rank
of matrix I + A(G)), we infer that

λ4(G) = λ5(G) = λ6(G) = −1.

Compared with Theorem 2.6, this is the special case that k=4, n=8.
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