On the distribution of eigenvalues of graphs

Xuerong Yong

Department of Mathematics, Xinjiang University, Urumqi 830046, P.R.China

Abstract

Let G be a simple graph with $n(> 2)$ vertices, and $\lambda_i(G)$ be the ith largest eigenvalue of G . In this paper we obtain the following:

If $\lambda_3(G) < 0$, and there exists some index k, $2 \leq k \leq \lfloor \frac{n}{2} \rfloor$ $\frac{n}{2}$, such that $\lambda_k(G)$ = -1, then

$$
\lambda_j(G) = -1, \quad j = k, k+1, \cdots, n - k + 1.
$$

In particular, we obtain that (1) $\lambda_2(G) = -1$ implies

$$
\lambda_1(G) = n - 1, \quad \lambda_j(G) = -1, \quad j = 2, 3, \cdots, n.
$$

and therefore G is complete. This is a result presented in [6]; (2) $\lambda_3(G) = -1$ implies that $\lambda_j(G) = -1$, $j = 3, 4, \cdots, n-2$.

1.Introduction.

All graphs considered here are undirected and simple.

Let G denote a graph with vertex set $\{v_1, v_2, \dots, v_n\}$. Its adjacency matrix $A(G)$ is the $n \times n$ one-zero matrix (a_{ij}) , where $a_{ij}=1$ iff v_i is adjacent to v_j , and $a_{ij}=0$ otherwise. It is seen that $A(G)$ is a symmetric $(0,1)$ matrix with every diagonal entry equal to zero. We shall denote the characteristic polynomial of G by

$$
P(x, G) = det(xI - A(G)) = \sum_{i=0}^{n} a_i x^{n-i}.
$$

Since $A(G)$ is a real symmetric matrix, its eigenvalues, say $\lambda_i(A(G))(i=1,2,\dots, n)$, are real numbers, and may be ordered as $\lambda_1(A(G)) \geq \lambda_2(A(G)) \geq \cdots \geq \lambda_n(A(G)).$ Denote $\lambda_i(A(G))$ simply by $\lambda_i(G)$. The sequence of n eigenvalues of G is known as the spectrum of G. Spectra of graphs appear frequently in the mathematical sciences. A good survey on this field can be found in [1].

The problem how to characterize a graph by the second eigenvalue has been considered by several authors($[2 \sim 5]$). Dasong Cao and Hong Yuan showed that for a simple graph $\lambda_2(G) = -1$ iff G is complete ([6]), they also established in [7]

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}\text{-}\mathrm{Tr}X$

that (1) $\lambda_3(G) < -1$ iff $G \cong P_3$; $(2)\lambda_3(G) = -1$ iff G^c (the complement of G) is isomorphic to a complete bipartite plus isolated vertices; (3) there exist no graphs such that $-1 < \lambda_3(G) < -\frac{\sqrt{5}-1}{2}$ $\frac{5-1}{2}$. In this paper we explore the distribution of eigenvalues of a graph with $\lambda_3(G) < 0$ and obtain that:

If $\lambda_3(G) < 0$, and some $\lambda_k(G) = -1$, $2 \leq k \leq \lfloor \frac{n}{2} \rfloor$ $\frac{n}{2}$, then

$$
\lambda_j(G) = -1, \quad j = k, k+1, \cdots, n-k+1.
$$

The techniques and ideas are in light of matrix theory and graph theory.

2. Lemmas and Results.

Lemma 2.1([7]). Let G be a graph with $n \geq 2$ vertices. Then for $k \geq 2$,

$$
\lambda_k(G) + \lambda_{n-k+2}(G^c) \le -1 \le \lambda_k(G) + \lambda_{n-k+1}(G^c).
$$

Lemma 2.2([7]). For every graph G with at least four vertices,

$$
\lambda_3(G) \ge -1.
$$

Moreover, if G^c is not bipartite, then $\lambda_3(G) \geq 0$.

Lemma 2.3([1]). If G is bipartite, then

$$
\lambda_i(G) = -\lambda_{n-i+1}(G),
$$

for $1 \leq i \leq n$.

Lemma 2.4(1). Let G be a graph with n vertices. Then G has only one positive eigenvalue iff G is a complete multipartite graph plus isolated vertices.

Lemma 2.5. Let G be a graph with n vertices. Then (1) G is complete iff $\lambda_2(G) < 0$; (2) G is complete iff we have

$$
\lambda_1(G) = n - 1;
$$

(3) G is complete iff we have

$$
\lambda_j(G) = -1, \quad j = 2, 3, \cdots, n.
$$

Proof. The assertions are by [6, Theorem 1] and $[8, P_{37},$ Theorem(2.35)].

Theorem 2.6. Let G be a graph with $n(n \geq 4)$ vertices. If $\lambda_3(G) < 0$, and there exists an index k, $2 \leq k \leq \lceil \frac{n}{2} \rceil$ $\frac{n}{2}$, such that $\lambda_k(G) = -1$, then

$$
\lambda_j(G) = -1, \quad j = k, k+1, \cdots, n-k+1.
$$

Furthermore, if G is unconnected and has no isolated vertices, then G is isomorphic to $G_1 \oplus G_2$, where G_i , i=1,2, are complete and therefore we have

$$
\lambda_j(G) = -1, \quad j = 3, 4, \cdots, n.
$$

Proof. By Lemma 2.1, we have

$$
\lambda_{n-k+1}(G^c) \ge 0, \quad \lambda_{n-k+2}(G^c) \le 0.
$$

On the other hand, by Lemma 2.2, $\lambda_3(G) < 0$ implies that G^c is bipartite. Thus, using Lemma 2.3, it yields

$$
0 \leq \lambda_{n-k+1}(G^c) = -\lambda_k(G^c).
$$

Since

$$
0 \leq \lambda_{n-k+1}(G^c) \leq \lambda_{n-k}(G^c) \leq \cdots \leq \lambda_k(G^c) \leq 0,
$$

we have

$$
\lambda_k(G^c) = 0.
$$

Now, we use Lemma 2.1 to the graph G^c , then

$$
\lambda_k(G^c) + \lambda_{n-k+1}(G)
$$

= $\lambda_{n-k+1}(G)$
 ≥ -1 .

Noticing that $n - k + 1 \geq n - \left[\frac{n}{2}\right]$ $\frac{n}{2}$] + 1 \geq $\left[\frac{n}{2}\right]$ $\left[\frac{n}{2}\right] + 1 > k$, it leads to

$$
\lambda_k(G) = -1 \ge \lambda_{k+1}(G) \ge \lambda_{k+2}(G) \ge \cdots \ge \lambda_{n-k+1}(G) \ge -1.
$$

i.e

$$
\lambda_j(G) = -1, \quad j = k, k + 1, \cdots, n - k + 1.
$$

Furthermore, if G is unconnected and has no isolated vertices, G has exactly two components $G_i(i = 1, 2)$ due to $\lambda_3(G) < 0$. Therefore by Lemma 2.4 and Lemma 2.5 (1) G_i are complete. This yields the following by Lemma 2.5(3)

$$
\lambda_j(G) = -1, j = 3, 4, \cdots, n.
$$

The proof is now complete.

Taking advantage of Theorem 2.6, we have the following results: (I) For the case k=2(i.e. $\lambda_2(G) = -1$), by Theorem 2.6

 \blacksquare

$$
\lambda_j(G) = -1, j = 2, 3, \cdots, n - 1.
$$

and since $\sum_{n=1}^{\infty}$ $j=1$ $\lambda_j(G) = 0$, it gives

$$
\lambda_1(G) \ge n - 1.
$$

But, on the other hand, we have that $\lambda_1(G) \leq n-1$. Consequently,

$$
\lambda_1(G) = n - 1, \lambda_j(G) = -1, \quad j = 2, 3, \cdots, n,
$$

which states that G is complete. This is a known result given in [6].

(II) The case k=3(i.e. $\lambda_3(G) = -1$). In this case, we need only consider the case $\lambda_2(G) \geq 0$ due to Lemma 2.5. By Theorem 2.6, then we have

$$
\lambda_j(G) = -1, \quad j = 3, 4 \cdots, n-2.
$$

COROLLARY 2.7. Let G be a graph with $n(\geq 6)$ vertices. Then $\lambda_3(G) = -1$ implies that

$$
\lambda_j(G) = -1, \quad j = 3, 4, \cdots, n-2.
$$

An example: Let

$$
A(G) = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}
$$

be the adjacency matrix of a graph with eight vertices. Then by MATHEMATICA we obtain that $\bigwedge \lambda_1(G) = 5.24384$

$$
\begin{cases}\n\lambda_1(G) = 5.24384 \\
\lambda_2(G) = 1.60317 \\
\lambda_3(G) = -0.182062 \\
\lambda_4(G) = -0.9999 \\
\lambda_5(G) = -1 \\
\lambda_6(G) = -1 \\
\lambda_7(G) = -1.53035 \\
\lambda_8(G) = -2.1346\n\end{cases}
$$

On the other hand, since it is easy to verify that matrix $r(I + A(G)) = 5$ (the rank of matrix $I + A(G)$, we infer that

$$
\lambda_4(G) = \lambda_5(G) = \lambda_6(G) = -1.
$$

Compared with Theorem 2.6, this is the special case that $k=4$, n=8.

REFERENCES

- [1] D.M.CVETKOVIC, M.DOOB,and H.SACHS, Spectra of Graphs. Academic Press, New York,1980.
- [2] D.M.CVETKOVIC, On graphs whose second largest eigenvalue does not exceed 1, Publ.Inst.Math (Belgrad) 31 (1982):15-20.
- [3] D.M.CVETKOVIC, M.DOOB, H.SACHS, and A.TORGASEV, Recent Results in the Theory of Graph Spectra, North-Holland, Amsterdam, 1988.
- [4] A.NEUMAIER and J.J.SEIDEL, Discrete hyperbolic geometry, Combinatorica 3 (1983):219-237.
- [5] M.PERTROVIC, On graphs with exactly one eigenvalues less than -1, J. Combin. Theory B 52 (1991):102-112.
- [6] D.CAO and H.YUAN, Graphs characterized by the second eigenvalue, J.Graph Theorey, 17 (3,1993):325-331.
- [7] D.CAO and H.YUAN, The distribution of eigenvalues of graphs, Linear Algebra Appl., 216(1995):211-224.
- [8] A.BERMAN and J.PLEMMONS, Nonnegative Matrices In the Mathematical Sciences,Academic, New York, 1979.